An Ensemble Methods of Predicting the New Labels with Concept Drift from a High-Dimensional Data Stream
Main Article Content
Abstract
Multi-Label Learning (MLL) has arisen in data engineering to identify instances based on a specific feature associated with a collection of labels. Adaptive learning necessitates classifying features with New Labels (NLs) if a data stream contains newer perspectives. As a result, an MLL with Emerging Multiple NLs (MuEMNL) and managing High-Dimensional data streams (MuEMNLHD) approaches were developed that divides the NL sets into multiple NLs for efficient classification. However, it did not handle concept drift issues when huge amounts of data arrived at high speeds using limited resources. Hence, this article proposes an adaptive ensemble learning approach to cope with a huge amount of data streams and solve concept drift issues by constructing a MuEMNL-Ensemble Neural Network (ENN) rather than a random forest classifier. It defines the number of NNs in the ensemble, whether or not they use constructive pruning, how many hidden nodes each NN uses, and how many training samples are used to train each NN independently. Also, to solve the concept drifts, pairwise and non-pairwise diversity measures are analyzed while constructing ensemble NN for efficient training using the entire learning examples. Moreover, the tradeoff between the NN’s precision and diversity is maintained simultaneously. At last, the test outcomes reveal that the proposed approach attains a better performance contrasted with the existing MLL approaches.
Downloads
Article Details
COPYRIGHT
Submission of a manuscript implies: that the work described has not been published before, that it is not under consideration for publication elsewhere; that if and when the manuscript is accepted for publication, the authors agree to automatic transfer of the copyright to the publisher.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work
- The journal allows the author(s) to retain publishing rights without restrictions.
- The journal allows the author(s) to hold the copyright without restrictions.