Interval Type-2 Fuzzy Integral Based Iris Recognition

Main Article Content

Thiyam Churjit Meetei
Shahin Ara Begum


Most of iris recognition system uses single matcher or classifier for decision making. In this paper, an Interval Type-2 Fuzzy Integral (IT2 FI) is proposed as a new approach to combine the match scores of three classifiers viz. fuzzy k-NN and two backpropagation neural networks with logsig and tansig transfer functions in order to improve the performance as well as robustness of the system. A comparison with other fusion rules viz. the sum rule, max-rule, product-rule and fuzzy integral, is also conducted. From the experimental results, it is observed that the proposed Interval Type-2 Fuzzy Integral based matching score fusion approach outperforms some of the existing fusion methods.


Download data is not yet available.

Article Details



A. Ross, K. Nandakumar and A. K. Jain, Handbook of Multibiometrics, New York: Springer, 2006.

J. Daugman, “How Iris Recognition Worksâ€, IEEE Transactions on Circuits and Systems for Video Technology, vol. 14(1), pp. 21-30, 2004.

S. Lim, K. Lee, O. Byeon and T. Kim, “Efficient Iris Recognition through Improvement of Feature Vector and Classifierâ€, J. ETRI, vol. 23(2), pp. 61-70, 2001.

R. Wildes, “Iris Recognition: an Emerging Biometric Technologyâ€, Proc. IEEE, 85(9), pp. 1348-1363, September 1997.

J. M. Keller, M. R. Gray and J. A. Givens, “A Fuzzy K-Nearest Neighbor Algorithmâ€, IEEE Transactions on Systems, Man, and Cybernetics, vol. 15(4), pp. 580-585, 1995.

M. Bishop, Pattern Recognition and Machine Learning, New York: Springer Science and Business Media, 2006.

J. Kittler, M. Hatef, R. P. W. Duin, and J. Matas, “On Combining Classifiersâ€, IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 20, pp. 226-239, 1998.

S. B. Cho and J. H. Kim, “Combining multiple neural networks by fuzzy integral and robust classificationâ€, IEEE Transactions on Systems, Man, and Cybernetics, vol. 25, pp. 380–384, 1995.

L. I. Kuncheva, Combining Pattern Classifiers: Methods and Algorithms, New Jersey: Wiley-Interscience, 2004.

H. P. S. Hui, H. M. Meng and M. W. Mak, “Adaptive Weight Estimation in Multi-Biometric Verification using Fuzzy Logic Decision Fusionâ€, Proc. International Conference of Acoustics, Speech and Signal Processing (ICASSP), Hawaii, U.S.A. (2007), pp. 501- 504, April, 2007.

V. Conti, G. Milici, P. Ribino, F Sorbello and Vitabile, “Fuzzy Fusion in Multimodal Biometric Systemsâ€, in KES 2007/WIRN 2007, Part I, LNAI 4692, B. Apolloni et al. (Eds.), Berlin Heidelberg: Springer-Verlag, 2007, pp. 108–115, 2007.

K. C. Kwak and W. Pedrycz, “Face Recognition Using Fuzzy Integral and Wavelet Decomposition Methodâ€, IEEE Transactions on Systems, Man, and Cybernetics—Part B: Cybernetics, vol. 34(4), pp. 1666 – 1675, 2004.

Y. Liu, S. Yuan, X. Zhu and Q. Cui, “A Practical Iris Acquisition System and a Fast Edges Locating Algorithm in Iris Recognitionâ€, Proc. IEEE Instrumentation and Measurement Technology Conf. (IMTC’03), CO, USA, pp. 166–168, May 2003.

M. Monro, S. Rakshit and D. Zhang, “DCT-based Iris Recognitionâ€, IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 29(4), pp. 586-595, 2007.

P. P. Chitte, J. G. Rana, R. R. Bhambare, V. A. More, R. A. Kadu and M. R. Bendre, “Iris Recognition System using ICA, PCA, Daugman’s Rubber Sheet Model togetherâ€, International Journal of Computer Technology and Electronics Engineering, vol. 2(1), pp. 16-23, 2012.

P. S. R. Chandra Murty and E. S. Reddy, “Iris Recognition System using Principal Components of Texture Characteristicsâ€, TECHNIA- International Journal of Computing Science and Communication Technologies, vol. 2(1), pp. 343-348, 2009.

A. Murugan and G. Savithiri, “Fragmented Iris Recognition System using BPNNâ€, International Journal of Computer Application, vol. 36(4), pp. 28-33. 2011.

T. Jolliffe, Principal Component Analysis, New York: Spinger-Verlag, 2002.

Hyvärinen and E. Oja, Independent component analysis: algorithms and applications, Neural Networks, vol. 13(4-5), pp. 411-430, 2000.

H. Gävert, J. Hurri, J. Särelä and Hyvärinen, FastICA Matlab package. Accessed 26 Aug 2014.

Matlab, Wavelet Toolbox, at < allpdf.html#wavelet>. Accessed 26 Aug 2014.

Q. Liang and J. M. Mendel, “Interval type-2 fuzzy logic systems: Theory and designâ€, IEEE Transactions on Fuzzy Systems, vol. 8(5), pp. 535–550, 2000.

S. Greenfield and F. Chiclana, “Accuracy and complexity evaluation of defuzzification strategies for the discretised interval type-2 fuzzy setâ€, International Journal of Approximate Reasoning, vol. 54(8), pp. 1013-1033, 2013.

M. Nie, and W. W. Tan, “Towards an Efficient Type-Reduction Method for Interval Type-2 Fuzzy Logic Systemsâ€, Proc. IEEE International Conference of Fuzzy Systems (FUZZ-IEEE 2008), Hong Kong, China, pp. 1425–1432, June 2008.

CASIA Iris image database, at . Accessed 26 Aug 2014.