A Realistic And Efficient Information Gathering In Tree Based Wireless Sensor Networks
Main Article Content
Abstract
How fast can information are collected from a wireless sensor network organized as tree? We evaluate a number of different techniques using realistic simulation models under the many-to-one communication paradigm known as converge cast. Consider time scheduling on a single frequency channel with the aim of minimizing the number of time slots required to complete a converge cast. Next, we combine scheduling with transmission power control to mitigate the effects of interference, and show that while power control helps in reducing the schedule length under a single frequency, scheduling transmissions using multiple frequencies is more efficient. We give lower bounds on the schedule length when interference is completely eliminated, and propose algorithms that achieve these bounds. Then, the data collection rate no longer remains limited by interference but by the topology of the routing tree. we construct degree-constrained spanning trees and capacitated minimal spanning trees, and show significant improvement in scheduling performance over different deployment densities.
Downloads
Download data is not yet available.
Article Details
Section
Articles
COPYRIGHT
Submission of a manuscript implies: that the work described has not been published before, that it is not under consideration for publication elsewhere; that if and when the manuscript is accepted for publication, the authors agree to automatic transfer of the copyright to the publisher.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work
- The journal allows the author(s) to retain publishing rights without restrictions.
- The journal allows the author(s) to hold the copyright without restrictions.