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Abstract: In this paper, we present a curious experiment with the hot list strategy in solving sliding block puzzles by paramodulation. The hot list 

strategy is one of the look-ahead strategies using paramodulation in automated reasoning. We define two heat flows in the reasoning process - 

vertical with the hot list of permutations along the Y-axis and horizontal along the X-axis. In the experiment, we have generated 500 * 8 puzzles 

under the test of the solvability checking by counting inversions. We have obtained curious 2D and 3D plots of the complexity by defining heat 

flow with hot lists. We can distinguish a few groups in 500 boards (puzzles) based on the concept of heat-resisting. 
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I. INTRODAUCTION  

A sliding puzzle (also called a sliding block puzzle) is a 
combination puzzle where a player slides pieces along certain 
routes on a board to reach a certain end configuration (state). 

 

 

Figure 1.  Initial state and goal state of 8 puzzle. 

In sliding puzzles, a player is prohibited from lifting any 
piece off the board. This constraint separates sliding puzzles 
from rearrangement puzzles. Consequently, discovering routes 
opened up by each move with the two-dimensional confines of 
the board is an interesting point of solving sliding block 
puzzles. Figure 1 shows the example of a sliding puzzle. The 
puzzle has 9 square slots on a square board. 

The first eight slots have square pieces. The 9th slot is 
empty. Sliding block can be represented as the permutation. A 
permutation of a set S is a bijection from S onto itself. If the set 
we permuting is $ A = {1,2, ..., n} $, it is often convenient to 
represent a permutation sigma as follows: 

 

 
 
For instance, consider the set A = {1,2,3,4,5,6}. Then the 

permutation $\pi$, 
 

 
 
sends 1 to 4, 2 to 1, 3 to 5 and fixes, or leaves unchanged, 

the element 6. 

 
The theorem prover OTTER (Organized Techniques for 

Theorem-proving and Effective Research) has been developed 
by W. McCune as a product of Argonne National Laboratory. 
OTTER is based on earlier work by E. Lusk, R. Overbeek, and 
others [1]. OTTER adopts the given-clause algorithm and 
implements the set of support strategy [2]. In this paper we use 
OTTER for our experiments. 

 

 
Algorithm 1. Given clause algorithm 

II. GIVEN CLAUSE ALGORITHM 

OTTER adopts given-clause algorithm in which the 
program attempts to use any and all combinations from axioms 
in the given clause. In other words, the combinations of the 
clause are generated from given clauses which have been 
focused on. Given clause algorithm is shown in Algorithm 1. 

At line 2, given clause G is extracted from SoS (Set of 
Support). Line 4 and 5 is a loop to use any and all combinations 
of the given clause and Usable List. In detail, \cite{Slaney} 
discuss the basic framework of the given clause algorithm. 
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III. PARAMODULATON 

A. Formulation 

Paramodulation, which is introduced by [3], is a powerful 

method of equational reasoning. Paramodulation takes two 

clauses of which at least cone contains positive equality literal 

r. 

 
According to [4], paramodulation is a realization of Leibniz's 

substitution of equals by equals. In the case that L1 contains a 

subterm at a position p which is unifiable with l, the 

paramount can be computed with the unifier sigma. For 

example, consider two clauses. 

 
(4) generates the new clause. 

 
From the mathematical rules x+0=x and -y+y=0. 

 
generates from the first into the second of the clauses. 

 
Paramodulation uses unification, while demodulation adopts 

matching. 

 
Algorithm 2. Paramodulation 

 

B. Implementation 

Concerning the implementation of OTTER, in 

paramodulation, two parents and a child are processed. The 

parent clauses contain the equality applied for the replacement. 

The parent clauses are divided into two: from parent and from 

clause. If equality comes from the literal, the side of equality 

unifies with the term, which is replaced with from the term. 

The replaced term is called the into the term. The literal 

containing the replaced term is also called the into literal. Also, 

the parent containing the replaced term is called the into the 

parent or into clause. Paramodulation is divided into two 

procedures: para_into and para_from. 

 

• para_into. Paramodulation into the given clause. 
When we make an inference by the para\_into rule, we 
paramodulte into the given clause from containing 
positive equality and on the usable list. 

• para_from. Paramodulation from the given clause. 
When we make an inference by the para\_from rule, 
the given clause contains positive equality, and the 
inference is made by paramodulating using this 
equality into a clause. 

 

In this paper, we use the rule of para_into. The procedure of 

para_into is invoked from infer_and_process taking the given 

clause. 

 

Algorithm 2 has two loops. The first one (lines 2 to 11) is over 

literals. The second one (lines 4 to 10) is over terms. Clauses, 

literals, and terms are defined as follows. 

 

• Clause is an expression formed from a finite collection 
of literals (atoms or their negations). 

• Literal is an atomic formula (atom) or its negation. 

• A variable, a constant and an n-ary function symbol 
applied to n terms 

•  
At line 6, OTTER computes paramodulants over current 
subterm lists. 

IV. HOT LIST STRATEGY 

The hot list strategy [5] is one of the look-ahead strategies. 
Look-ahead strategies are designed to enable the program to 
evade many CPU hours to draw conclusions. The conclusion to 
draw may require focusing on a retained clause. 
 
Definition of the hot list strategy. The hot list strategy enables 
the program to specify the facts by revisiting the hot clause 
repeatedly in the context of completing the application of an 
inference rule. For implementing the hot list strategy, the main 
loop based on the given clause algorithm should be modified. 
The main loop for inferring and processing clauses and 
searching for a refutation operates mainly on the lists usable 
and SoS. 
 

• Choose appropriate given_clause in SoS; 

• Move given_clause from list(SoS) to list(usable) 

• Infer and process new clauses using the inference rules 
set. 

• Newly generated clause must have the 
$given\_clause$. 

• Do the retention test on new clauses and append those 
to list(SoS). 

 
Figure 2 shows the chart flow of modifying the main loop for 
the hot list strategy. The hot list strategy is designed to make 
some set of clauses (hot lists) immediately considered with 
each newly retained clause. With the modification, if the 
program passes the branch on the lower side of Figure 2, which 
is ``hotlist exists?'', the paramodulation routine (para\_into) is 
immediately invoked in the post-process. 
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Figure 2.  Hot list sttegy by modifying main loop 

V. METHODOLOGY 

Wherever Times is specified, Times Roman or Times New 
Roman may be used. If neither is available on your word 
processor, please use the font closest in appearance to Times. 
Avoid using bit-mapped fonts if possible. True-Type 1 or Open 
Type fonts are preferred. Please embed symbol fonts, as well, 
for math, etc. 

 

A. Setting Inferene Rule set 

As we discussed before, the basic inference mechanism of 

OTTER is based on the given-clause algorithm. Given-clause 

algorithm can be viewed as a simple implementation of the set 

of support strategy. OTTER maintains four lists of clauses: 

usable, SoS, demodulator, and passive. In our case, we cope 

with two kinds of clauses: usable and SoS. Horizontal sliding 

from row[i] to row[i+1] is represented as follows. 

 

 
 

Vertical sliding from row[i] to row[i+4] is represented as 

follows. 

 

 
 

B. Generating puzzles (boards) 

In general, to check the solvability of N puzzles, the number 

of inversions of each number of N slots is calculated. For 

example, if we have the board configuration board 

[2,3,6,1,7,8,5,4, hole] (5,2,8,4,1,7, hole, 3,6), the number of 

inversions are as follows: 

 

 
 

Total inversions 1+1+3+0+2+2+1+0 = 10 (Even Number) So 

this puzzle configuration is solvable. On the other hand, it is 

not possible to solve an instance of 8 puzzles if a number of 

inversions are odd in the input state. 

 

 

 
Algorithm 3. Checking solvability 

 

Algorithm 3 shows the procedure for checking the 

solvability of N puzzles. At lines 2 to 9, the number of 

inversions of each slot is counted. These figures are counted 

up at lines 11 to 14. Finally, the sum is checked if it is an even 

or odd number at lines 15 to 19. 

 

VI. EXPERIMENTAL RESULTS 

A. Generating puzzles 

In the experiment, we have generated 500 sliding puzzles with 

size 8 * 8.All generated configurations of 8 puzzles are 

solvable. For each puzzle, we have measured the number of 

generated clauses with the procedures shown in Algorithm 2. 

For simplicity, we have generated the configuration of the first 

8 slots with random integers ranging from 1 to 8 and fixed 9th 

slot to hole. 

 

B. Counting clauses 

Algorithm 4 shows the brief description of the modified given 

clause algorithm for counting the generated clauses. 
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Algorithm 4. Counting clauses generated 

 

At line 9, the number of generated clauses is incremented. 

After line 8 of picking up the clause from a set of support, we 

can record the current size of the set of support. 

By doing this, we can obtain the plot with \# puzzles and the 

number of generated clauses of the Y-axis, as shown in the 

next section. 

 

Table I shows the numerical results of solving 500 puzzles 

randomly generated. The number of generated clauses with 

paramodulation ranges from 510 (1,3,5,4,6,8,7,2,hole - easiest) 

to 188,610 (6,2,7,3,4,5,8,1,hole - the most difficult). In the 

view of complexity of reasoning process, the configuration 

[#295 1,3,5,4,6,8,7,2,hole)] is 369.82 times harder to solve 

than the configuration [#124 (6,2,7,3,4,5,8,1,hole)]. 

 

 
Table 1. Initial board states and the complexities of 

paramodulation 

 

 
Table 2. The number of clauses generated by 

vertical/horizontal heat flow 

 

 

Figure 3.  Heat flow in paramodulation. 

C. Heat flow 

In nature, sliding puzzles are two-dimensional, even if the 

sliding is facilitated by encaged marbles or three-dimensional 

tokens. We define the heat flow in paramodulation as follows. 

 

Definition of heat flow. Heat flow makes the reasoning 

program consider the hot list immediately with vertical and 

horizontal permutation. 

 

Horizontal heat flow is set by the hot clause as follows: 

 
 

Also, vertical heat flow is set by the hot clause as follows: 

 

 
 

 

Figure 4.  2D scatter diagram of the number of clauses geerated by solving 

500 puzzles 

Figure 4 shows the number of clauses generated in solving 500 

puzzles. Figure 4 has 500 points of the initial state of the board. 

The X-axis is the number of clauses generated with vertical 

heat flow. Y-axis is the number of clauses generated with 

horizontal heat flow. That is, there are 500 points of boards 

with point (x,y) where x is the number of clauses generated 

with horizontal heat flow and y is the number of clauses in 

vertical heat flow. For example, the points \#295 have the 

values (388,254) as shown in Table II. 

 

In Figure 4, we distiguish three areas among 500 points. 

 

1. Area A: The boards are affected by vertical heat flow. 

2. Area B: Horizontal heat flow are effective on the boards. 

3. Area C: Both vertical and horizontal heat flow have 

effects on the boards 
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Figure 5.  3D scatter diagram of the number of generated clauses in solving 

500 puzzles. 

Figure 5 is a 3D scatter diagram of 500 boards. Points in 

Area C in Figure 4 are also plotted in Figure 5. We see the 

bulk of points (Area D) in the lower side of the figure 

(seemingly with little effect of bidirectional heat flow). 

 

VII. RELATED WORK 

Historically, Noyes Chapman invented the oldest type of 

sliding puzzle, which is the fifteen puzzle in 1880. Folklore 

tells us that in 1886, puzzle master Sam Loyd offered a one-

thousand dollar prize if anyone could swap tile 14 and 15 and 

return the other tiles to their original slots. Archer [6] firstly 

discusses an algorithmic analysis of 15 puzzles. In [6], a 

summary of all possible permutations of slots attained by 

moving the black block from cell i to cell j affecting the 

permutation of sigma_i,j. Howe [7] proposes two approaches 

in the two kinds of viewpoints: the properties of permutations 

and graph theory. Calabro [8] proposes $ O(n^2) $ time 

algorithm for deciding the time when the initial configuration 

of the n * n puzzle game is solvable. 

Paramodulation originated as development of resolution 

[12], one of the main computational methods in first-order 

logic, see [13]. For improving resolution-based methods, the 

study of the equality predicate has been particularly important 

since reasoning with equality is well-known to be of the great 

importance of mathematics, logic, and computer science. Ando 

et al. [14] propose a measurement of the complexity of sliding 

block puzzles using paramodulation. 

VIII. CONCLUSION 

In this paper, we have presented the new novel experiments 

of the complexity of sliding block puzzles based on the 

concept of heat flow in paramodulation.  Heat flow is set by 

the hot list with vertical and horizontal permutation. In the 

experiment, we have generated 500 * 8 puzzles to calculate the 

number of clauses generated by vertical and  horizontal heat 

flow in the board. We have obtained some curious results. To 

name a few, board \#295 (1,3,5,4,6,8,7,2,hole) turned out to be 

easiest with the 2D coordinate (388, 254). Board \#124 

(6,2,7,3,4,5,8,1,hole) is the most difficult with the 2D 

coordinate (96,809 100,824). Also, we have distinguished 

three areas in 500 points. For one possible further work, we 

are aiming to leverage this research for the hybrid of 

algorithmic module 

IX. REFERENCES 

[1] Ewing L. Lusk, William McCune, Ross A. Overbeek: ITP 
at Argonne National Laboratory. CADE 1986: 697–698 

[2] Larry Wos, George A. Robinson, Daniel F. Carson: 
Efficiency and Completeness of the Set of Support 
Strategy in Theorem Proving. J. ACM 12(4): 536–541 
(1965) 

[3] G. Robinson and L. Wos: Paramodulation and theorem-
proving in first order theories with equality. In D. Michie 
and R. Meltzer (eds.), Machine Intelligence, Vol. IV, pp. 
135–150. Edinburgh University Press, 1969. 

[4] Peter Graf: Term Indexing (Lecture Notes in Computer 
Science, 1053), Springer, Mar. 27, 1996. 

[5] Larry Wos, Gail W. Pieper: The Hot List Strategy. J. 
Autom. Reason. 22(1): 1–44 (1999) 

[6] A. F. Archer: A Modern Treatment of the 15 Puzzle. The 
American Mathematical Monthly 106, 793–799, 1999. 

[7] Tom Howe: Two Approaches to Analyzing the 
Permutations of the 15 Puzzle. 
https://www.whitman.edu/Documents/Academics/Mathe
matics/2017/ 

[8] Chris Calabro (2005): Solving the 15-Puzzle. 

[9] John K. Slaney, Ewing L. Lusk, William McCune: 
SCOTT: Semantically Constrained Otter System 
Description. CADE 1994: 764–768 

[10] Ross A. Overbeek: An implementation of hyper-
resolution. Computers & Mathematics with Applications, 
Vol. 1, Issue 2, June 1975, pp. 201–214. 

[11] Larry Wos, Gail W. Pieper: The Hot List Strategy. J. 
Autom. Reason. 22(1): 1–44 (1999) 

[12] J. A. Robinson: A machine-oriented logic based on the 
resolution principle. Journal of the Association for 
Computing Machinery, Vol. 12 (1965), pp. 23–41. 

[13] L. Bachmair, H. Ganzinger: Resolution theorem proving. 
In A. Robinson, A. Voronkov (eds.), Handbook of 
Automated Reasoning, Vol. I, Elsevier Science, 
Amsterdam (2001), pp. 19–99. 

[14] Ruo Ando, Yoshiyasu Takefuji: A new perspective of 
paramodulation complexity by solving massive 8 puzzles. 
CoRR abs/2012.08231 (2020) 

 

 


