
DOI: http://dx.doi.org/10.26483/ijarcs.v15i5.7348

Volume 15, No. 5, September-October 2025

International Journal of Advanced Research in Computer Science

RESEARCH PAPER

Available Online at www.ijarcs.info

© 2023-2025, IJARCS All Rights Reserved 76

ISSN No. 0976-5697

AN EXPERIMENT OF THE COMPLEXITY OF SLIDING BLOCK PUZZLES BY

2D HEAT FLOW IN PARAMODULATION

Ruo Ando
National Institute of Informatics

2-1-2 Hitotsubashi, Chiyoda-ku, Tokyo, 101-8430 Japan

Yoshiyasu Takefuji
Musashino University

3-3-3 Ariake, Koto-Ku, Tokyo 135-8181, Japan

Abstract: In this paper, we present a curious experiment with the hot list strategy in solving sliding block puzzles by paramodulation. The hot list

strategy is one of the look-ahead strategies using paramodulation in automated reasoning. We define two heat flows in the reasoning process -

vertical with the hot list of permutations along the Y-axis and horizontal along the X-axis. In the experiment, we have generated 500 * 8 puzzles

under the test of the solvability checking by counting inversions. We have obtained curious 2D and 3D plots of the complexity by defining heat

flow with hot lists. We can distinguish a few groups in 500 boards (puzzles) based on the concept of heat-resisting.

Keywords: Paramodulation, Hot List Strategy, Sliding Block Puzzle, Given Clause Algorithm, Heat Flow, Complexity Measurement

I. INTRODAUCTION

A sliding puzzle (also called a sliding block puzzle) is a
combination puzzle where a player slides pieces along certain
routes on a board to reach a certain end configuration (state).

Figure 1. Initial state and goal state of 8 puzzle.

In sliding puzzles, a player is prohibited from lifting any
piece off the board. This constraint separates sliding puzzles
from rearrangement puzzles. Consequently, discovering routes
opened up by each move with the two-dimensional confines of
the board is an interesting point of solving sliding block
puzzles. Figure 1 shows the example of a sliding puzzle. The
puzzle has 9 square slots on a square board.

The first eight slots have square pieces. The 9th slot is
empty. Sliding block can be represented as the permutation. A
permutation of a set S is a bijection from S onto itself. If the set
we permuting is $ A = {1,2, ..., n} $, it is often convenient to
represent a permutation sigma as follows:

For instance, consider the set A = {1,2,3,4,5,6}. Then the

permutation π,

sends 1 to 4, 2 to 1, 3 to 5 and fixes, or leaves unchanged,

the element 6.

The theorem prover OTTER (Organized Techniques for

Theorem-proving and Effective Research) has been developed
by W. McCune as a product of Argonne National Laboratory.
OTTER is based on earlier work by E. Lusk, R. Overbeek, and
others [1]. OTTER adopts the given-clause algorithm and
implements the set of support strategy [2]. In this paper we use
OTTER for our experiments.

Algorithm 1. Given clause algorithm

II. GIVEN CLAUSE ALGORITHM

OTTER adopts given-clause algorithm in which the
program attempts to use any and all combinations from axioms
in the given clause. In other words, the combinations of the
clause are generated from given clauses which have been
focused on. Given clause algorithm is shown in Algorithm 1.

At line 2, given clause G is extracted from SoS (Set of
Support). Line 4 and 5 is a loop to use any and all combinations
of the given clause and Usable List. In detail, \cite{Slaney}
discuss the basic framework of the given clause algorithm.

Ruo Ando et al, International Journal of Advanced Research in Computer Science, 15 (5), September-October 2025, 76-80

© 2023-2025, IJARCS All Rights Reserved 77

III. PARAMODULATON

A. Formulation

Paramodulation, which is introduced by [3], is a powerful

method of equational reasoning. Paramodulation takes two

clauses of which at least cone contains positive equality literal

r.

According to [4], paramodulation is a realization of Leibniz's

substitution of equals by equals. In the case that L1 contains a

subterm at a position p which is unifiable with l, the

paramount can be computed with the unifier sigma. For

example, consider two clauses.

(4) generates the new clause.

From the mathematical rules x+0=x and -y+y=0.

generates from the first into the second of the clauses.

Paramodulation uses unification, while demodulation adopts

matching.

Algorithm 2. Paramodulation

B. Implementation

Concerning the implementation of OTTER, in

paramodulation, two parents and a child are processed. The

parent clauses contain the equality applied for the replacement.

The parent clauses are divided into two: from parent and from

clause. If equality comes from the literal, the side of equality

unifies with the term, which is replaced with from the term.

The replaced term is called the into the term. The literal

containing the replaced term is also called the into literal. Also,

the parent containing the replaced term is called the into the

parent or into clause. Paramodulation is divided into two

procedures: para_into and para_from.

• para_into. Paramodulation into the given clause.
When we make an inference by the para_into rule, we
paramodulte into the given clause from containing
positive equality and on the usable list.

• para_from. Paramodulation from the given clause.
When we make an inference by the para_from rule,
the given clause contains positive equality, and the
inference is made by paramodulating using this
equality into a clause.

In this paper, we use the rule of para_into. The procedure of

para_into is invoked from infer_and_process taking the given

clause.

Algorithm 2 has two loops. The first one (lines 2 to 11) is over

literals. The second one (lines 4 to 10) is over terms. Clauses,

literals, and terms are defined as follows.

• Clause is an expression formed from a finite collection
of literals (atoms or their negations).

• Literal is an atomic formula (atom) or its negation.

• A variable, a constant and an n-ary function symbol
applied to n terms

•
At line 6, OTTER computes paramodulants over current
subterm lists.

IV. HOT LIST STRATEGY

The hot list strategy [5] is one of the look-ahead strategies.
Look-ahead strategies are designed to enable the program to
evade many CPU hours to draw conclusions. The conclusion to
draw may require focusing on a retained clause.

Definition of the hot list strategy. The hot list strategy enables
the program to specify the facts by revisiting the hot clause
repeatedly in the context of completing the application of an
inference rule. For implementing the hot list strategy, the main
loop based on the given clause algorithm should be modified.
The main loop for inferring and processing clauses and
searching for a refutation operates mainly on the lists usable
and SoS.

• Choose appropriate given_clause in SoS;

• Move given_clause from list(SoS) to list(usable)

• Infer and process new clauses using the inference rules
set.

• Newly generated clause must have the
$given_clause$.

• Do the retention test on new clauses and append those
to list(SoS).

Figure 2 shows the chart flow of modifying the main loop for
the hot list strategy. The hot list strategy is designed to make
some set of clauses (hot lists) immediately considered with
each newly retained clause. With the modification, if the
program passes the branch on the lower side of Figure 2, which
is ``hotlist exists?'', the paramodulation routine (para_into) is
immediately invoked in the post-process.

Ruo Ando et al, International Journal of Advanced Research in Computer Science, 15 (5), September-October 2025, 76-80

© 2023-2025, IJARCS All Rights Reserved 78

Figure 2. Hot list sttegy by modifying main loop

V. METHODOLOGY

Wherever Times is specified, Times Roman or Times New
Roman may be used. If neither is available on your word
processor, please use the font closest in appearance to Times.
Avoid using bit-mapped fonts if possible. True-Type 1 or Open
Type fonts are preferred. Please embed symbol fonts, as well,
for math, etc.

A. Setting Inferene Rule set

As we discussed before, the basic inference mechanism of

OTTER is based on the given-clause algorithm. Given-clause

algorithm can be viewed as a simple implementation of the set

of support strategy. OTTER maintains four lists of clauses:

usable, SoS, demodulator, and passive. In our case, we cope

with two kinds of clauses: usable and SoS. Horizontal sliding

from row[i] to row[i+1] is represented as follows.

Vertical sliding from row[i] to row[i+4] is represented as

follows.

B. Generating puzzles (boards)

In general, to check the solvability of N puzzles, the number

of inversions of each number of N slots is calculated. For

example, if we have the board configuration board

[2,3,6,1,7,8,5,4, hole] (5,2,8,4,1,7, hole, 3,6), the number of

inversions are as follows:

Total inversions 1+1+3+0+2+2+1+0 = 10 (Even Number) So

this puzzle configuration is solvable. On the other hand, it is

not possible to solve an instance of 8 puzzles if a number of

inversions are odd in the input state.

Algorithm 3. Checking solvability

Algorithm 3 shows the procedure for checking the

solvability of N puzzles. At lines 2 to 9, the number of

inversions of each slot is counted. These figures are counted

up at lines 11 to 14. Finally, the sum is checked if it is an even

or odd number at lines 15 to 19.

VI. EXPERIMENTAL RESULTS

A. Generating puzzles

In the experiment, we have generated 500 sliding puzzles with

size 8 * 8.All generated configurations of 8 puzzles are

solvable. For each puzzle, we have measured the number of

generated clauses with the procedures shown in Algorithm 2.

For simplicity, we have generated the configuration of the first

8 slots with random integers ranging from 1 to 8 and fixed 9th

slot to hole.

B. Counting clauses

Algorithm 4 shows the brief description of the modified given

clause algorithm for counting the generated clauses.

Ruo Ando et al, International Journal of Advanced Research in Computer Science, 15 (5), September-October 2025, 76-80

© 2023-2025, IJARCS All Rights Reserved 79

Algorithm 4. Counting clauses generated

At line 9, the number of generated clauses is incremented.

After line 8 of picking up the clause from a set of support, we

can record the current size of the set of support.

By doing this, we can obtain the plot with \# puzzles and the

number of generated clauses of the Y-axis, as shown in the

next section.

Table I shows the numerical results of solving 500 puzzles

randomly generated. The number of generated clauses with

paramodulation ranges from 510 (1,3,5,4,6,8,7,2,hole - easiest)

to 188,610 (6,2,7,3,4,5,8,1,hole - the most difficult). In the

view of complexity of reasoning process, the configuration

[#295 1,3,5,4,6,8,7,2,hole)] is 369.82 times harder to solve

than the configuration [#124 (6,2,7,3,4,5,8,1,hole)].

Table 1. Initial board states and the complexities of

paramodulation

Table 2. The number of clauses generated by

vertical/horizontal heat flow

Figure 3. Heat flow in paramodulation.

C. Heat flow

In nature, sliding puzzles are two-dimensional, even if the

sliding is facilitated by encaged marbles or three-dimensional

tokens. We define the heat flow in paramodulation as follows.

Definition of heat flow. Heat flow makes the reasoning

program consider the hot list immediately with vertical and

horizontal permutation.

Horizontal heat flow is set by the hot clause as follows:

Also, vertical heat flow is set by the hot clause as follows:

Figure 4. 2D scatter diagram of the number of clauses geerated by solving

500 puzzles

Figure 4 shows the number of clauses generated in solving 500

puzzles. Figure 4 has 500 points of the initial state of the board.

The X-axis is the number of clauses generated with vertical

heat flow. Y-axis is the number of clauses generated with

horizontal heat flow. That is, there are 500 points of boards

with point (x,y) where x is the number of clauses generated

with horizontal heat flow and y is the number of clauses in

vertical heat flow. For example, the points \#295 have the

values (388,254) as shown in Table II.

In Figure 4, we distiguish three areas among 500 points.

1. Area A: The boards are affected by vertical heat flow.

2. Area B: Horizontal heat flow are effective on the boards.

3. Area C: Both vertical and horizontal heat flow have

effects on the boards

Ruo Ando et al, International Journal of Advanced Research in Computer Science, 15 (5), September-October 2025, 76-80

© 2023-2025, IJARCS All Rights Reserved 80

Figure 5. 3D scatter diagram of the number of generated clauses in solving

500 puzzles.

Figure 5 is a 3D scatter diagram of 500 boards. Points in

Area C in Figure 4 are also plotted in Figure 5. We see the

bulk of points (Area D) in the lower side of the figure

(seemingly with little effect of bidirectional heat flow).

VII. RELATED WORK

Historically, Noyes Chapman invented the oldest type of

sliding puzzle, which is the fifteen puzzle in 1880. Folklore

tells us that in 1886, puzzle master Sam Loyd offered a one-

thousand dollar prize if anyone could swap tile 14 and 15 and

return the other tiles to their original slots. Archer [6] firstly

discusses an algorithmic analysis of 15 puzzles. In [6], a

summary of all possible permutations of slots attained by

moving the black block from cell i to cell j affecting the

permutation of sigma_i,j. Howe [7] proposes two approaches

in the two kinds of viewpoints: the properties of permutations

and graph theory. Calabro [8] proposes $ O(n^2) $ time

algorithm for deciding the time when the initial configuration

of the n * n puzzle game is solvable.

Paramodulation originated as development of resolution

[12], one of the main computational methods in first-order

logic, see [13]. For improving resolution-based methods, the

study of the equality predicate has been particularly important

since reasoning with equality is well-known to be of the great

importance of mathematics, logic, and computer science. Ando

et al. [14] propose a measurement of the complexity of sliding

block puzzles using paramodulation.

VIII. CONCLUSION

In this paper, we have presented the new novel experiments

of the complexity of sliding block puzzles based on the

concept of heat flow in paramodulation. Heat flow is set by

the hot list with vertical and horizontal permutation. In the

experiment, we have generated 500 * 8 puzzles to calculate the

number of clauses generated by vertical and horizontal heat

flow in the board. We have obtained some curious results. To

name a few, board \#295 (1,3,5,4,6,8,7,2,hole) turned out to be

easiest with the 2D coordinate (388, 254). Board \#124

(6,2,7,3,4,5,8,1,hole) is the most difficult with the 2D

coordinate (96,809 100,824). Also, we have distinguished

three areas in 500 points. For one possible further work, we

are aiming to leverage this research for the hybrid of

algorithmic module

IX. REFERENCES

[1] Ewing L. Lusk, William McCune, Ross A. Overbeek: ITP
at Argonne National Laboratory. CADE 1986: 697–698

[2] Larry Wos, George A. Robinson, Daniel F. Carson:
Efficiency and Completeness of the Set of Support
Strategy in Theorem Proving. J. ACM 12(4): 536–541
(1965)

[3] G. Robinson and L. Wos: Paramodulation and theorem-
proving in first order theories with equality. In D. Michie
and R. Meltzer (eds.), Machine Intelligence, Vol. IV, pp.
135–150. Edinburgh University Press, 1969.

[4] Peter Graf: Term Indexing (Lecture Notes in Computer
Science, 1053), Springer, Mar. 27, 1996.

[5] Larry Wos, Gail W. Pieper: The Hot List Strategy. J.
Autom. Reason. 22(1): 1–44 (1999)

[6] A. F. Archer: A Modern Treatment of the 15 Puzzle. The
American Mathematical Monthly 106, 793–799, 1999.

[7] Tom Howe: Two Approaches to Analyzing the
Permutations of the 15 Puzzle.
https://www.whitman.edu/Documents/Academics/Mathe
matics/2017/

[8] Chris Calabro (2005): Solving the 15-Puzzle.

[9] John K. Slaney, Ewing L. Lusk, William McCune:
SCOTT: Semantically Constrained Otter System
Description. CADE 1994: 764–768

[10] Ross A. Overbeek: An implementation of hyper-
resolution. Computers & Mathematics with Applications,
Vol. 1, Issue 2, June 1975, pp. 201–214.

[11] Larry Wos, Gail W. Pieper: The Hot List Strategy. J.
Autom. Reason. 22(1): 1–44 (1999)

[12] J. A. Robinson: A machine-oriented logic based on the
resolution principle. Journal of the Association for
Computing Machinery, Vol. 12 (1965), pp. 23–41.

[13] L. Bachmair, H. Ganzinger: Resolution theorem proving.
In A. Robinson, A. Voronkov (eds.), Handbook of
Automated Reasoning, Vol. I, Elsevier Science,
Amsterdam (2001), pp. 19–99.

[14] Ruo Ando, Yoshiyasu Takefuji: A new perspective of
paramodulation complexity by solving massive 8 puzzles.
CoRR abs/2012.08231 (2020)

