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Abstract: The escalating volume of pollutants flowing into the oceans and waterways is an alarming concern, not only to marine 

ecosystems but also to the health and livelihoods of communities worldwide. The rate at which aquatic trash is accumulating far 

outpaces its’ slow degradation, creating a persistent and growing problem. Both prevention and cleanup are essential for restoring 

and maintaining healthy aquatic environments. Advanced technology combining machine learning and deep learning algorithms 

with autonomous underwater vehicles (AUVs) is creating intelligent, automated solutions for detecting and removing trash from 

the waterways. This approach simplifies the cleanup process and is more efficient than manual methods. This paper examines the 

crucial role of machine learning and deep learning in detecting various types of aquatic trash. It offers a comprehensive analysis of 

recent research in the field, comparing different studies based on a variety of parameters. The study also discusses the challenges 

of trash detection in dynamic aquatic environments, highlighting scope for the future research. 
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I. INTRODUCTION 

Approximately 71% of the Earth's surface is covered by 

water. Aquatic ecosystems are vital to the planet, playing 

key roles in climate regulation, transportation, employment, 

economic development, recreation and supporting rich 

biodiversity as well as habitat. They also provide essential 

resources such as renewable energy, food, medicinal 

products, raw materials, etc. [1]-[3]. Oceans generate over 

half of the world's oxygen and store fifty times more carbon 

dioxide than the atmosphere, making them critical for 

maintaining environmental balance. According to SDG 14 

"Life Below Water," supporting global sustainable 

development requires a shared objective to responsibly 

utilize seas, oceans, and their resources while minimizing 

marine pollution [4]-[5].  

 

Fig. 1: Types and Sources of Waste 

In today's world, rapid growth of the human population 

is accompanied by a significant increase in waste generation 

from anthropogenic activities. Figure 1 illustrates the 

different types of waste with their corresponding sources 

[6]-[7]. Aquatic trash or marine litter is any unwanted, 

discarded or disposed solid substance (either manufactured 

or treated) that floats and ultimately ends up in coastal or 

aquatic environment [8].  Upon entering the aquatic 

environment, waste not only spreads across the surface but 

also sinks to deeper layers and may even settle on the 

seabed. Various materials such as metal, plastic, radio-active 

substances and rubber are highly resistant to decomposition 

and take a significant amount of time to break down. 

Accumulation of underwater waste leads to numerous 

critical consequences including ingestion by animals, 

entanglement, habitat destruction, economic loss, 

navigational hazard, unforeseen climatic changes, effect on 

human health and more [9]-[11]. Proper collection and 

management of aquatic litter is a challenging yet crucial task 

that must be carried out timely. Manually cleaning water 

reservoirs is highly labor-intensive, time-consuming and 

costly. Here’s where automation comes into the picture. 

Image-based automation is becoming a key approach to 

combat aquatic trash. However, the complexities of the 

underwater environment pose significant challenges for 

object identification. Attenuation, absorption, scattering, and 

artificial lighting degrade image quality by introducing 

noise, reducing contrast, blurring the details and causing 

inconsistent illumination [12]-[13]. Therefore, pre-

processing is essential to enhance the clarity of litter images. 

To develop robust and high-performing models, datasets 

undergo augmentation using various transformations. 

Subsequently, key features are extracted using either 

conventional techniques (e.g., HOG, SIFT, LBP) or modern 

intelligent methods [14]-[15]. These extracted features are 
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then used to classify, locate or detect litter within water 

bodies. 

Exploring the cutting edge of aquatic trash detection and 

classification, this paper delves into machine learning and 

deep learning advancements. Latest papers published in the 

last half-decade have been analyzed, identifying significant 

techniques, emerging trends and key challenges confronting 

the field. 

 

II. MACHINE LEARNING AND DEEP LEARNING FOR 

AQUATIC TRASH DETECTION 

Underwater environment itself significantly complicates 
detection efforts due to phenomena like light scattering, 
absorption and attenuation which degrade image quality. 
Furthermore, turbidity and non-uniform illumination severely 
hinder clear visibility, making manual recognition incredibly 
time-consuming and often impractical. These obstacles 
underscore the critical need for timely, automated solutions 
to accurately detect and classify aquatic waste. Machine 
Learning as well as deep learning-based approaches [14] 
have emerged as groundbreaking technologies for the real-
time object detection and identification purposes, advancing 
ahead the struggle against mounting marine pollution. 
However, the perception and criteria of both machine and 
deep learning is fundamentally different. 

Traditional machine learning models require a user 

expertise to define the visual characteristics of trash like its’ 

color, texture and shape through a process called feature 

engineering [15]. Some of the handcrafted feature extractors 

are Histogram of Oriented Gradients (HOG), Scale-Invariant 

Feature Transform (SIFT), Local Binary Pattern (LBP), etc. 

These predetermined features are then fed to train an 

algorithm (such as a Decision Tree, K-Nearest Neighbor, 

Support Vector Machine) to perform the final classification 

[16]. Figure 2 depicts the concept of machine learning 

algorithm: 

 

Fig. 2: Concept of Machine Learning 

In contrast, deep learning's power lies in its’ ability to 

learn these features automatically. Its multi-layered 

architecture progressively extracts features from an image, 

with the initial layers recognizing basic elements like edges, 

colors and the deeper layers synthesizing these elements to 

understand the complete, complex form of an object. This 

automated and end-to-end learning gives deep learning the 

superior performance in complex environments. For image 

classification, popular architectures include the foundational 

Convolutional Neural Network (CNN) and advanced models 

built upon it, such as AlexNet, ResNet, VGG (Visual 

Geometric Group), MobileNet, EfficientNet, Inception, etc. 

[17]. Figure 3 shows the basic process of deep learning: 

 

Fig. 3: Concept of Deep Learning 

When the goal is not just to classify an image but to 

locate objects within it, object detection models are used. 

These are typically divided into two categories: - two-stage 

detectors [18] like R-CNN and its more refined versions like 

Fast R-CNN and Faster R-CNN, which are known for their 

high accuracy; and single-stage detectors [19] such as 

YOLO, SSD and RetinaNet, which are popular for their 

speed and real-time performance.  

III. ANALYSIS OF LITERATURE 

Table I provides a comprehensive overview of recent 

research papers on waste classification, focusing on studies 

published within the last five years. The table systematically 

compares these papers based on three key criteria: the 

technique's functionality (e.g., the specific deep learning or 

machine learning models used), the evaluation parameters 

applied (accuracy, precision, recall, F1-score, mean average 

precision, etc.), and the classes of waste considered in each 

study. Structured analysis helps to quickly identify the 

methods, metrics and waste types addressed in the current 

literature.

Table I.    Comprehensive analysis of recent research in the field 

Author Year Technique(s) applied Classes of litter Evaluation parameter 

Marin et al. [20] 2021 Evaluates the performance of VGG19, 

Inception-ResNetV2, InceptionV3, 

ResNet50, MobileNetV2, DenseNet121 

Plastic, Metal, Rubber, Glass, 

Other trash, No trash 

Precision, recall, 

accuracy, F1-score 

Rehman et al. 

[21] 

2025 YOLOv8s with OFAT (One factor at a 

time) optimization strategy for fine 

tuning 

Cans, masks, gloves, bottles, 

electronics, plastic bags, rods, 

tires, general debris, metal 

objects 

Precision, F1-score, 

recall, mAP 

Sarkar et al. [22] 2025 Underwater-YOLOv3: modified 

YOLOv3 by using k-means++ 

clustering, SPP for feature aggregation, 

resizing features 

MIRNet for image enhancement 

Classes in Trash-ICRA: Plastic, 

ROV, Bio 

Classes in Brackish dataset: 

crabs, small fish and other 

aquatic animals 

Precision, recall, F1-

score, Intersection over 

Union (IoU), mAP 

Demir and Yaman 2024 Feature generator: ResNet101 Garbage, Sea Animals Precision, accuracy, 
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[23] Feature selector: NCA (Neighborhood 

Component Analysis) 

Classifier: k-NN (k-nearest neighbor) 

sensitivity, geometric 

mean, and F-score 

Sumallika et al. 

[24] 

2023 ResNet (combined with enhancement, 

normalization, augmentation, feature 

analysis) 

Metal, glass, rubber, cloth, 

plastic, natural debris, ropes, 

nets 

Accuracy 

Gupta et al. [25] 2023 Multi feature based pyramid network 

(ResNet-101 for feature extraction) 

Marine debris, ship, organic 

material, waves, foam, clouds, 

etc. 

MIoU, F1-score, 

Accuracy 

Aleem et al. [26] 2022 Pre-processing: Histogram equalization, 

Median Filtering Detector: Faster R-

CNN with ResNet  

Can, Bottle, Hook, Propeller, 

Chain, Tire, Valve, Drink-

carton, shampoo-bottler, 

standing-bottle 

Accuracy, recall, Mean 

IoU 

Guan and Guo 

[27] 

2025 Improved YOLOv5 (integration of 

attention mechanism and lightweight 

convolution layers) 

trash bottle, boot trash, trash 

bag, other trash 

mAP, detection time 

Cai et al. [28] 2024 YOLOv8-RepGhost-EMA 

(Improvement of YOLOv8 using 

GhostNet) 

Plastic, biological material, 

ROVs 

Precision, recall, mAP 

Demir and Yaman 

[29] 

2024 HOG (Histogram of Oriented Gradient) 

as feature extractor  

k-NN, linear discriminant, decision tree, 

SVM and naïve bayes for classification. 

Biological material, ROV, 

plastic 

Accuracy, precision, 

recall 

Aminurrashid et 

al. [30] 

2024 YOLOv5 

Integration on embedded platform as 

well 

Plant, animal, different 

subclasses of plastic and non-

plastic trash 

F1-confidence curve, 

confusion matrix, testing 

in challenging conditions 

Sánchez-Ferrer et 

al. [31] 

2023 Mask R-CNN Plastic bag, bottle, fishing net, 

rope, wood, can, tire, bumper, 

gloves, etc. (total 17 classes)  

mAP, IoU 

Yang et al. [32] 2024 Improvements in base VGG-16, 

parameter tuning, transfer learning 

Subcategories of natural 

degradation, textile-based 

products, plastic products, other 

objects (total 15 classes) 

Precision, recall, 

accuracy, f1-score 

Lin et al. [33] 2021 FMA-YOLOv5s (feature map attention 

added to backbone of YOLO), mosaic 

data augmentation 

Floating debris from waterways 

(bottle, milk box, branch, grass, 

leaf, ball, plastic garbage, plastic 

bags) 

mAP, frames per second 

Assem et al. [34] 2024 Modified VGG-Net 

Compares the performance of a 

modified VGG-Net with CNN using 

transfer learning and Fast RCNN 

Tire, Plastic bottle, rope, 

plastic_bag, glass bottle, 

metal_ladder, metal_chain, 

metal_container, etc. (total 15 

classes) 

Accuracy 

Jain et al. [35] 2024 Mask R-CNN, YOLOv8, YOLACT, 

EfficientDet-DO 

Plastic, biological material, 

ROV 

Recall, mAP, F1-score 

Saji et al. [36] 2024 YOLOv8n Debris, non-debris Precision, recall, mAP, 

computational load 

Xue et al. [37] 2021 Hybrid Shuffle-Xception network fishing net and rope, plastic, 

metal, rubber, glass, cloth, 

natural debris. 

Recall, precision, F1-

score 

Kshirsagar et al. 

[38] 

2021 Pre-processing: RGB-Gray scale, 

equalization, normalization 

Feature extraction: DWT and GLCM 

Classification: Feed forward Neural 

network 

Dead reef, oil spills, plastic, 

fishing net 

Accuracy 

Musić et al. [39] 2020 Custom-based CNN 

Transfer learning using pre-trained 

weights from ResNet, VGG16, 

Xception, YOLOv4 

Metal, Plastic, Glass, Cardboard, 

etc. 

Validation and Test 

accuracy 

Kylili et al. [40] 2021 Annotation: VGG 

Detection: YOLOACT++, YOLOv5 

Wrappings, bags, buckets, 

bottles, straws, nets 

IoU, Accuracy, 

Precision, Recall 

Lee et al. [41] 2023 YOLOv5 (hyper-parameters optimized 

using GA) 

Bottle, rope, net, glass, metal, 

Styrofoam piece or box, etc. 

mAP, Inference speed 
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Panwar et al. [42] 2020 RetinaNet (ResNet and feature pyramid 

network as backbone) 

Paper, plastic, glass, cardboard IoU, Average precision, 

Recall 

Fulton et al. [43] 2019 Object detection networks: YOLOv2 

(darknet-19 as custom network), Tiny-

YOLO, Faster RCNN with Inception v2, 

SSD (Multi-Box) with MobileNet v2 

Plastic as main debris category 

(like plastic bottles, grocery 

bags, etc.), other classes such as 

plants, animals, ROVs included 

so that resulting model does not 

confuse them with plastic. 

mAP, IoU 

  

IV. CHALLENGES 

Optical properties of water change the way light behaves. 

This leads to a range of problems in underwater imaging, 

including attenuation, scattering (forward and backward) and 

non-uniform illumination. Consequently, captured images 

suffer from low contrast, pervasive color cast and loss of 

sharpness [12]-[13]. Aquatic environment causes trash objects 

to deform, resulting in irregular and often unrecognizable 

shapes. Additionally, these objects are frequently occluded by 

other debris or entangled with natural vegetation [43][44]. 

Occlusion possesses a challenge for detection and 

classification models, as it complicates the task of 

differentiating individual items from the background or from 

each other. Presence of marine organisms in the water can 

confuse the models, leading them to mistakenly identify these 

organisms as trash objects. Another matter of concern is the 

scarcity of large, high-quality and well-labelled datasets 

[20][37]. Since machine learning and deep learning models are 

highly dependent on data, lack of sufficient ground-truth data 

leads to poor generalization capabilities and limits their 

performance on computer vision tasks.   

V. CONCLUSION 

For classification or detection of aquatic trash, deep 
learning models have been more effective than classical 
machine learning, mainly because deep learning models can 
automatically learn complicated features from visual data, 
avoiding the drawbacks of manual feature engineering. 
However, performance of both approaches is limited by several 
factors inherent to the aquatic environment. These include the 
degradation of image quality from phenomena like light 
attenuation and scattering, complexity of recognizing deformed 
or occluded objects and a major bottleneck stemming from the 
scarcity of large, high-quality and labelled datasets. Ultimately, 
advancement of aquatic trash classification and detection 
requires a multifaceted approach that integrates a deep 
understanding of both environmental variables and 
technological capabilities to deliver effective, AI-driven 
solutions to the global marine pollution crisis. 
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