
DOI: http://dx.doi.org/10.26483/ijarcs.v16i4.7305

Volume 16, No. 4, July-August 2025

International Journal of Advanced Research in Computer Science

RESEARCH PAPER

Available Online at www.ijarcs.info

© 2023-2025, IJARCS All Rights Reserved 57

ISSN No. 0976-5697

IMPROVE DATA ENCRYPTION BY USING DIFFIE-HELLMAN AND DNA

ALGORITHMS, AUTHENTICATED BY HMAC-HASH256

Nada Abdul Aziz Mustafa
Information Technology section

University of Baghdad, Collage of Languages

Baghdad, Iraq

 Ali T. Al-Quraishi
Information Technology Department

Ministry of Planning

Baghdad, Iraq

Abstract: The need for means of transmitting data in a confidential and secure manner has become one of the most important subjects in the

world of communications. Therefore, the search began for what would achieve not only the confidentiality of information sent through means of

communication, but also high speed of transmission and minimal energy consumption, Thus, the encryption technology using DNA was

developed which fulfills all these requirements [1]. The system proposes to achieve high protection of data sent over the Internet by applying the

following objectives:

1. The message is encrypted using one of the DNA methods with a key generated by the Diffie-Hellman Ephemeral algorithm, part of this key is

secret and this makes the process of predicting the key very difficult.

2. Ensuring the integrity and reliability of the transmitted data using the HMAC-HASH256 algorithm that is resistant to attacks, where the 256

hash function is used with a key generated from the Diffie-Hellman Ephemeral algorithm.

3. Analyzing the system by trying to measuring the impact of using encryption with authentication on cost and speed and calculating the time

taken to implement the HMAC-SHA256 algorithm. System implementation was done by using IntelliJ IDEA with java FX.

Keywords: DNA encoding, Diffie-Hellman Ephemeral, HASH256, MDC and MAC, HMAC-HASH256.

1. INTRODUCTION

The purpose of encryption is to transfer data and

information in a way that is difficult for an attacker to reveal

its contents. Many encryption algorithms have been

developed and their uses have varied. DES-AES algorithms

are used to maintain the confidentiality of data, while MDF-

SHA512 algorithms are used to ensure the integrity of the

data and prove that it is not subject to change or

modification by an unauthorized person [2], [3]. With the

development of attack methods and the increased need to

store massive data, there has become an urgent need for

algorithms that not only provide high levels of security, but

also have massive storage and low energy consumption, and

this is what was obtained from encryption using DNA

computing [4]. Many methods are used for encryption using

DNA, such as generating keys and hiding information in an

image or video and it is considered one of the fields known

as biological technology that has provided large areas of

storage [5]. Encryption using DNA is considered a new

technology for using the properties of DNA molecules,

whose algorithms can confront statistical and differential

attacks by using one of the four nitrogenous bases when

encrypting to transform each letter of the message into a

different form, which are (adenine A, cytosine C, guanine G,

and thymine T) [4]. The encryption process is carried out by

converting secret data into a sequence of nitrogenous bases,

storing it and retrieving data from it through analyzing the

stored DNA sequence [5].

Encryption algorithms using DNA are among the rapidly

developing technologies, and complex algorithms can be

designed with high memory capacity and low storage energy

consumption, thus it is possible to store all the world’s data

in a few milligrams [4]. One gram of DNA contains 1021

DNA bases (that is 108 terabytes of data). This technology

is considered resistant to attacks because of the difficulty of

manipulation with it [5].

2. DIFFIE-HELLMAN

The Diffie-Hellman algorithm is a method of

creating or exchanging keys between the sender and the

recipient in a way that ensures confidentiality when sending

them over an unsecured network, and the generated keys are

used only once [6]. Both the sender and the recipient agree

on two declared values (N, M), provided that N is a prime

number, in addition to a random number for each of them (a,

b), which is private and undeclared [7].

The algorithm has proven its strength in generating,

exchanging keys and the difficulty of guessing the key due

to the complexity of the mathematics used [8]. Diffie-

Hellman used in TLS protocols may be ADH It is

considered ineffective, because it is not possible to verify

the identity of both the sender and the recipient, it is

vulnerable to a man-in-the-middle attack [9], or it may be

DH, which is ineffective due to the use of fixed keys by the

sender and recipient [10]. As for DHE, keys are used once

for each connection, if the key currently used is revealed, it

cannot be used to decrypt previous conversations that took

place with different keys [11]. To achieve high

confidentiality, the DHE method is used with encryption

algorithms such as AES [12].

Nada Abdul Aziz Mustafa et al, International Journal of Advanced Research in Computer Science, 16(4), July-August 2025, 57-62

© 2023-2025, IJARCS All Rights Reserved 58

3. HASH256 ALGORITHM

It is one of the hashing algorithms used in

encryption, where each letter of the message is converted

into a hexadecimal and the input is divided into blocks with

a length of 512 bits (the input is less than 64^2 bits) [13]. 64

rounds of complex mathematical operations are applied to

each block, and the result is used again as input for the

second block until the last block is reached. The result we

obtain is a value of fixed length, equal to 256 bits [14]. The

input cannot be obtained from the hash output, and any

change in the input leads to a significant change in the hash

value [13].

4. MDC AND MAC

The security and integrity of data during its transfer

between server devices is vulnerable to the possibility of

modifications to it by a hacker, and this gives the impression

that the data may have been changed and modified [15].

Thus, the focus is on the issue of data integrity here [16].

That is, even if this data is encrypted in complex ways such

that it is difficult to decrypt, this does not guarantee that it

will not be tampered with and possibly changed during its

transmission [15]. Here appears the urgent need to discover

the modification made by the hacker using the MDC hash

function, where a summary of any message is obtained [17].

This is done by producing a fixed-sized string that

represents the contents of the message, and this summary

will serve as a single fingerprint of the sender’s original

message [18]. The recipient will use the same function as

the sent message to obtain the fingerprint [19]. The integrity

of the data will be verified when the fingerprint is identical

to the sent fingerprint, meaning the sent message has not

been tampered with, provided that the hash function used is

the same by the sending and receiving parties [18].

Examples of hash functions are SHA-256 and MD5 [19].

The message and summary might be modified by the hacker

during sending, and the recipient would not know that the

message has been modified [17]. Therefore, we need to

ensure the integrity of the message by using MAC and

detecting whether its contents have been modified, the

message is correct and intact [20]. In MAC, a secret key is

used between the sender and the recipient, then the message

is sent with the MAC output, after which the recipient

separates the message and calculates the MAC and the

secret key, provided that he is aware of the hash function

used [21]. A comparison is taken between the two functions,

and if a match occurs, it means that the message is original

and has not been tampered with [20]. As long as the hacker

does not obtain the secret key, the message can’t be

modified and a MAC that matches the MAC generated by

the recipient can’t be created [21].

5. HMAC-HASH256 ALGORITHM

It is an algorithm that represents an authentication

code consisting of a hash function that is used to verify the

authenticity of data sent using a secret key [22], it is

considered more secure than MAC because of its use of a

complex hash function in addition to padding [17]. It is

implemented by specifying the key (a shared key of length

32 bytes) [23]. If the length of the key is greater than 32

bytes, it is hashed using the same algorithm (hash 256), and

after preparing the secret key, the hash function is combined

with a secret key to prove the integrity and authenticity of

the transmitted data and prevent impersonation [18].

6. THE PROPOSED SYSTEM

The system is implemented in two basic stages: the

first stage is encrypting the sent data and including it within

the DNA sequence and using the HMAC-HASH256

algorithm to confirm the integrity of the sent data. The

second stage is decrypting, confirming the reliability and

integrity of the received data. The first stage takes place in

two basic steps:

The first step is to encrypt the data by applying the

following points:

1.Generate a key using the Diffie-Hellman Ephemeral (K1)

algorithm.

2. Executing XOR to the first letter of the message after

transforming it to 8 bits with the key created from the

Diffie-Hellman's algorithm from the first step (K1)

3. Choosing the base of the DNA sequence and converting it

to the binary. In our system, A=00, T=11, C=01, G=10 were

used, and based on the value of the second key agreed upon

between the two parties, and in our system K2=2, where the

chain is divided based on it. (The user may choose a

different value for the second key).

4. Each bit of the first letter of the secret message from the

result of the second step is added at the beginning of every 2

bits of the DNA sequence of the string (from the result of

step 3), then the string is merged and converted to

nucleotide base and the process is repeated for all letters of

the message, as shown in figure 1.

Figure1. Shows the encryption in the proposed system

An example of encoding the first letter of the message

(NADA), which is the letter N

Message N=78=01001110

Key1(DHE)=6=00000110

01001000 XOR

Nada Abdul Aziz Mustafa et al, International Journal of Advanced Research in Computer Science, 16(4), July-August 2025, 57-62

© 2023-2025, IJARCS All Rights Reserved 59

when A=00, T=11, G=10, C=01 and Key2=2 then

DNA=CTAAGCTGCAC =01 11 00 00 10 01 11 10 01 00

01 = 001 111 000 000 110 001 011 010 01 00 01 =

ATTAAATACCGGCAC.

Step Two: Confirm the integrity of data arrival (HMAC-

HASH256 implementation steps):

The process of implementing HMAC-HASH 256 is done by

creating a 32-byte key generated by the Diffie-Hellman

Ephemeral algorithm and two secret keys, IPad and Opad,

by applying the following steps:

1.Preparing the key generated by the Diffie-Hellman

algorithm (if the key is larger than 512 bits, it is hashed

using the Hash256 function in order to obtain a key with a

length of 32 bytes (512 bits). However, if the key is less

than 512 bits, the key is filled with zeros to reach the

required block size.

2.Create an internal fill: (IPad) It is created by performing

an XOR operation between the key generated from step 1

and the repeated value 0x36 to fill the block size.

3.The result (IPad) is added with the letters of the secret

message to obtain Stage1, and then hashed using the

Hash256 algorithm.

4.Create an external fill: (OPad) It is created by performing

an XOR operation between the key resulting from step 1 and

the value 0x5c duplicated to fill the block size.

5.The output of step 4 is hashing from the output of step 3 to

obtain stage2.

6.Hash stage2 using the same hash algorithm to obtain

HMAC-HASH 256 which will be sent to the recipient, see

Figure 2,3,4.

Figure 2. Shows the HMAC-Hash256 with Diffie-Hellman

keys.

Figure 3. Shows the encryption of the first letter of the

secret message using Intellij with JavaFx

Figure 4. Shows the HMAC_HASH256 algorithm with

Diffie-Hellman keys using Intellij with JavaFx.

The second stage is the process of decryption and

confirming the integrity of the transmitted data, which is

carried out through the following steps:

1. Convert the sent nucleotide base to the binary sequence

(A=00, T=11, C=01, G=10).

2. Divide the result from step 1 using Key 2+1, which equals

3, to get a sequence.

3. Collect the first bit of each segment and obtain a sequence

consisting of 8 bits (which represents the first letter of the

message).

4. XOR the result of step 3 with Key1.

5. Convert the binary sequence to ASCII text value.

6. To confirm the integrity of the message, the key K3

generated from the Diffie-Hellman algorithm is used and

added to the message resulting from step 4 (after obtaining

the complete secret message) and applied to the hash

Nada Abdul Aziz Mustafa et al, International Journal of Advanced Research in Computer Science, 16(4), July-August 2025, 57-62

© 2023-2025, IJARCS All Rights Reserved 60

function 256, the result represents HMAC-HASH 256, then

it is compared with the result received from the message

sender.

Example: Decoding the first letter of a message

ATTAAATACCGGCAC=001111000000110001011010010

001

Dived DNA by using key2+1=3= 001 111 000 000 110 001

011 010 01 00 01
Take the first bit from each segments= 01001000 XOR with

Key1

 Key1(DHE)=6=00000110 XOR 01001000 = 01001110 =

78=N (first character from the message).

To confirm the integrity of the message and verify that it has

not been hacked:

Hash 256 from the sender=

8f6a7bbc332db92d7c29feafd2d94c0b96929f5a75cd7df5272

16fd5b517fd20

Hash256(Key3+message) = Hash256(18NADA) =

8f6a7bbc332db92d7c29feafd2d94c0b96929f5a75cd7df5272

16fd5b517fd20

It is equal to the hash sent by the sender, see Figure 4.

7. ANALYZING THE TIME TAKEN TO EXECUTE THE

HMAC-HASH256 ALGORITHM, MEASURING

THE STORAGE SPEED USING THE DNA

ALGORITHM

The time taken to execute the HMAC algorithm was

calculated using the Java code ‘() System.nanoTime', where

the time is measured before and after the HMAC execution,

and the difference between them is calculated, the result is

then converted from nanoseconds to milliseconds by

dividing the result in nanoseconds by 1,000,000 (1

Millisecond = 1000000 nanoseconds). The storage rate can

be calculated based on the amount of data stored and the

time taken to write and read it. For example, if 1MB of data

is stored in 10 minutes, the storage rate would be 0.1MB per

minute, see figure 5 and table 1.

Figure 5. Shows Calculate the time taken to execute the HMAC

algorithm in the system

Example:

Time taken= After implementation- Before implementation

1,442,887,000,000,200,000- 1,442,887,000,000,000,000

= 200,000 nanoseconds= 0.2 milliseconds.

Table 1. Execution time of HMAC algorithm for system using

Java functions

Time in

milliseconds

Execution speed

time

System output

less than 1 ms

Very fast

0.2 ms

The system implementation

speed is considered very

fast (less than 1 ms)

2-11 ms Between normal

and acceptable

More than 12 slow

The time evaluation depends on the data size, algorithm type, and

device performance. If the difference is (for example, from

100,000 to a few million nanoseconds), this is considered a normal

and very fast time and does not indicate slow execution.

8. CONCLUSIONS

1.The system has proven to provide high levels of security

by encrypting confidential data using the DNA algorithm

which has huge storage capacity, with keys generated using

the Diffie-Hellman Ephemeral algorithm, where keys are

generated instead of exchanging and sending them through

unsafe paths that expose them to hacking. The advantage of

generating keys using the Diffie-Hellman Ephemeral

algorithm is that they replace their keys in each session,

which adds additional complexity to guessing the keys. That

is, when a key is hacked within a session, it does not affect

other sessions that have different keys. In addition, the error

rate may be non-existent when compared to other keys,

provided that numbers are not used Simple or fixed prime.

2.The HMAC-HASH256 algorithm was made complex by

using it with a key generated by the Diffie-Hellman

Ephemeral algorithm to ensure that the transmitted

confidential data would not be modified or tampered with.

In addition, it provided stronger resistance to attacks, such

as collision attacks and man-in-the-middle attacks, in

addition to any change in the data sent will be detected by

the recipient. The recipient must then combine the key with

the message using the same method as the sender (the key

then the message or vice versa), otherwise it won’t generate

the same summary to confirm reliability.

3.Using an encryption system with authentication achieves a

high level of security at the expense of cost and speed. See

Table 2.

Nada Abdul Aziz Mustafa et al, International Journal of Advanced Research in Computer Science, 16(4), July-August 2025, 57-62

© 2023-2025, IJARCS All Rights Reserved 61

Table 2. The difference between using encryption and

encryption with reliability.

4.When using the reading speed measurement law (read

speed = data read / time spent), i.e. (MBs = Mb/second), it

was found that the storage speed of DNA is Below average

even though it provides high storage, see Table 3.

Table 3. Shows the time taken to execute HMAC-

HASH256, the storage speed (DNA).

Data

size

Time taken

HMAC-HASH256

Reading speed

MBs=Mb/seconds

To obtain faster

storage

DNA

2KB Less than MS fast

2MB 20-60 MS middle

30MB 1-many seconds Below average

5. Through the results of Table No. 3, which measures the

time taken to implement the HMAC-HASH256 algorithm, it

is shown that the larger the size of the data, the greater the

time taken for implementation with Ensuring high security

for the transmitted data. The execution speed of the

HMAC-HASH256 algorithm ranges from a few

milliseconds to several seconds, and the execution speed

depends on the memory and processor.

9. REFERENCES

 [1] M.K. Padmapriya, Pamela Vinitha Eric,”A Technique of
Data Security using DNA Cryptography with
Optimized Data Storage”, Journal of System and
Management Sciences, ISSN 1816-6075 (Print), 1818-
0523 (Online), Vol. 12 (2022) No. 4, pp. 412-438,
DOI:10.33168/JSMS.2022.0425.

[2] Yash Shah, Riddhi Rane, Siddhesh Kharade , Rutuja
Patil,” Analysis of AES and DES Algorithm”,
International Journal of Trend in Research and
Development, Volume 7(2), ISSN: 2394-9333, IJTRD |
Mar – Apr 2020 Available Online@www.ijtrd.com.

[3] Salah Taha Allawi, Nada Abdul Aziz Mustafa,” Image
encryption based on combined between linear feedback
shift registers and 3D chaotic maps”, Indonesian
Journal of Electrical Engineering and Computer
Science, Vol. 30, No. 3, June 2023, pp. 1669~1677,
ISSN: 2502-4752, DOI: 10.11591/ijeecs. v30.i3.
pp1669-1677.

[4] Khobzaoui Abdelkader, Benyahia Kadda, Mansouri
Boualem, Sofiane Boukli Hacene,” DNA-Based
Cryptographic Method for the Internet of Things”,
International Journal of Organizational and Collective
Intelligence 12(1):1-12, January 2022,
DOI:10.4018/IJOCI.2022010101

[5] Bahubali Akiwate, Latha Parthiban,” A DNA
Cryptographic Solution for Secured Image and Text
Encryption”, (IJACSA) International Journal of
Advanced Computer Science and Applications, Vol. 12,
No. 2, 2021.

[6] Aryan, Chaithanya Kumar, Durai Raj Vincent P M,”
Enhanced diffie-hellman algorithm for reliable key
exchange”, IOP Conf. Series: Materials Science and
Engineering 263 (2017) 042015 doi:10.1088/1757-
899X/263/4/042015.

[7] Om Pal, Bashir Alam,” Diffie-Hellman Key Exchange
Protocol with Entities Authentication”, International
Journal of Engineering and Computer Science
ISSN:2319-7242 Volume 6 Issue 4, April 2017, Page
No. 20831-20839, Index Copernicus value (2015):
58.10 DOI: 10.18535/ijecs/v6i4.06

[8] Parth Sehgal ,Nikita Agarwal, Sreejita Dutta, P.M.Durai
Raj Vincent, “Modification of Diffie-Hellman
Algorithm to Provide More Secure Key
Exchange” ,June 2013, International Journal of
Engineering and Technology 5(3):2498-2501, License
CC BY 4.0.

[9] Akshat Puri, Piyush Saxena, Gitesh Kumar, Gitesh
Kumar,” Implementation of Diffie-Hellman Algorithm
for Information Security”, International Journal of
Engineering Research in Computer Science and
Engineering (IJERCSE), ISSN (Online) 2394-2320,
Vol 10, Issue 5, May 2023.

[10] V. Vinothini, C. Muthukumaran,” Key Exchange
Technique in Cryptography Using Diffie-Hellman
Algorithm”, International Journal of Computer Sciences
and Engineering, E-ISSN: 2347-2693, Vol.-7, Special
Issue, 4, Feb 2019.

[11] CH.Bhanu Prakash, Shaik Shavali,” FPGA
Implementation DIFFIE-HELLMAN key Exchange
Algorithm using DES, International Journal of
Innovative Research in Electronics and
Communications (IJIREC), ISSN 2349-4042 (Print) &
ISSN 2349-4050 (Online), Volume 1, Issue 4, July
2014, PP 26-36.

 [12] Demba Sow, Mamadou Ghouraissiou Camara & Djiby
Sow1, “Attack on Strong Diffie-Hellman-DSA KE and
Improvement”, Journal of Mathematics Research;
Published by Canadian Center of Science and
Education, ISSN 1916-9795 E-ISSN 1916-9809; Vol. 6,
No. 1; 2014.

[13] Fariha Jahan, Mayel Mostafa, Shahrin Chowdhury,”
SHA-256 in Parallel Blockchain Technology: Storing
Land Related Documents, International Journal of
Computer Applications (0975 – 8887), Volume 175 –
No. 35, December 2020.

[14] Nada Abdul Aziz Mustafa, “Analysis attackers’ methods
with hashing secure password using CSPRNG and

Encryption with reliability Encryption

It may affect the speed of

implementation

The speed of

encryption and

decryption is

high

High costs (licenses, equipment,

maintenance, technical support

and training)

Low costs

Reduces security risks Security risks are

high

mailto:Online@www.ijtrd.com
https://www.researchgate.net/profile/Khobzaoui-Abdelkader?_tp=eyJjb250ZXh0Ijp7ImZpcnN0UGFnZSI6InB1YmxpY2F0aW9uIiwicGFnZSI6InB1YmxpY2F0aW9uIn19
https://www.researchgate.net/profile/Benyahia-Kadda?_tp=eyJjb250ZXh0Ijp7ImZpcnN0UGFnZSI6InB1YmxpY2F0aW9uIiwicGFnZSI6InB1YmxpY2F0aW9uIn19
https://www.researchgate.net/profile/Mansouri-Boualem?_tp=eyJjb250ZXh0Ijp7ImZpcnN0UGFnZSI6InB1YmxpY2F0aW9uIiwicGFnZSI6InB1YmxpY2F0aW9uIn19
https://www.researchgate.net/profile/Mansouri-Boualem?_tp=eyJjb250ZXh0Ijp7ImZpcnN0UGFnZSI6InB1YmxpY2F0aW9uIiwicGFnZSI6InB1YmxpY2F0aW9uIn19
https://www.researchgate.net/profile/Sofiane-Boukli-Hacene?_tp=eyJjb250ZXh0Ijp7ImZpcnN0UGFnZSI6InB1YmxpY2F0aW9uIiwicGFnZSI6InB1YmxpY2F0aW9uIn19
https://www.researchgate.net/journal/International-Journal-of-Organizational-and-Collective-Intelligence-1947-9352?_tp=eyJjb250ZXh0Ijp7ImZpcnN0UGFnZSI6InB1YmxpY2F0aW9uIiwicGFnZSI6InB1YmxpY2F0aW9uIn19
https://www.researchgate.net/journal/International-Journal-of-Organizational-and-Collective-Intelligence-1947-9352?_tp=eyJjb250ZXh0Ijp7ImZpcnN0UGFnZSI6InB1YmxpY2F0aW9uIiwicGFnZSI6InB1YmxpY2F0aW9uIn19
http://dx.doi.org/10.4018/IJOCI.2022010101
https://www.researchgate.net/journal/International-Journal-of-Engineering-and-Technology-0975-4024?_tp=eyJjb250ZXh0Ijp7ImZpcnN0UGFnZSI6InB1YmxpY2F0aW9uIiwicGFnZSI6InB1YmxpY2F0aW9uIn19
https://www.researchgate.net/journal/International-Journal-of-Engineering-and-Technology-0975-4024?_tp=eyJjb250ZXh0Ijp7ImZpcnN0UGFnZSI6InB1YmxpY2F0aW9uIiwicGFnZSI6InB1YmxpY2F0aW9uIn19
https://www.researchgate.net/deref/https%3A%2F%2Fcreativecommons.org%2Flicenses%2Fby%2F4.0%2F?_tp=eyJjb250ZXh0Ijp7ImZpcnN0UGFnZSI6InB1YmxpY2F0aW9uIiwicGFnZSI6InB1YmxpY2F0aW9uIn19
http://ejuow.uowasit.edu.iq/index.php/ejuow/article/view/502
http://ejuow.uowasit.edu.iq/index.php/ejuow/article/view/502

Nada Abdul Aziz Mustafa et al, International Journal of Advanced Research in Computer Science, 16(4), July-August 2025, 57-62

© 2023-2025, IJARCS All Rights Reserved 62

PBKDF2”, Wasit Journal of Engineering Sciences, Vol.
12 No. 2 (2024), 12(2), 60-70.
https://doi.org/10.31185/ejuow.Vol12.Iss2.502.

[15] Muhamad Rais Rabtsani, Agung Triayudi, Gatot
Soepriyono,” Combination of AES (Advanced
Encryption Standard) and SHA256 Algorithms for Data
Security in Bill Payment Applications”, Journal of
Technology and Information Systems, ISSN: 2985-
8933 (Media Online), Vol 2, Issue 1, February 2024, Page
175-189, DOI: 10.58905/SAGA.vol2i1.250.

[16] Prateek Baranwal, Ritik Katiyar, Prajusha Kundu, Meenakshi
Yadav,” Implementation of SHA256 for NFT Management
Using Blockchain”, International Research Journal of
Engineering and Technology (IRJET), E-ISSN: 2395-0056, p-
ISSN: 2395-0072, Volume: 11 Issue: 06 Jun 2024.

[17] Nureni Ayofe Azeez and Onyema Juliet Chinazo, “Achieving
Data Authentication With HMAC-SHA256 Algorithm”,
Publisher: Georgian and MICM - Muskhelishvili Institute of
Computational Mathematics of the Georgian Technical
University, Computer Science and Telecommunications
2018|No.2(54), ISSN 1512-1232, Impact Factor РИНЦ
2018: 0,025,2018.

[18] Dilli Ravilla; Chandra Shekar Reddy Putta, “Implementation of
HMAC-SHA256 algorithm for hybrid routing protocols in
MANETs”, International Conference on Electronic Design,

Computer Networks & Automated Verification (EDCAV),
DOI: 10.1109/EDCAV34670.2015 29-30 Jan. 2015,
Publisher: IEEE.

[19] Alaa B. Baban, Safa A. Hameed, “Securing a Web-Based
Hospital Management System Using a Combination of AES
and HMAC”, Iraqi Journal for Electrical and Electronic
Engineering, College of Engineering, University of Basrah
Vol. 19, Issue 1, June 2023, DOI: 10.37917/ijeee.19.1.12.

[20] K V V N L Sai Kiran, Harini N,” Evaluating Efficiency of
HMAC and Digital Signatures to Enhance Security in IOT”,
International Journal of Pure and Applied Mathematics,
Volume 119 No. 12 2018, 13991-13997, ISSN: 1314-3395,
url: http://www.ijpam.eu.

[21] Lihui Lin, Kaizhi Chen, and Shangping Zhong,” Enhancing the
Session Security of Zen Cart based on HMAC-SHA256”, Ksii
Transactions on Internet and Information Systems, VOL. 11,
NO. 1, Jan. 2017, Copyright 2017 KSII, January 31, 2017,
ISSN: 1976-7277, DOI: 10.3837/tiis.2017.01.025

[22] N. A. Azeez, and O.J. Chinazo, “Achieving Data
Authentication with Hmac-Sha256 Algorithm”, Computer
Science & Telecommunications, Vol. 54, No. 2, 2018.

[23] BoSun Park, JinGyo Song and Seog Chung Seo, “Efficient
Implementation of a Crypto Library Using Web Assembly”,
Electronics 2020,9, 1839; doi:10.3390/electronics9111839,
November, License CC BY 4.0.

http://ejuow.uowasit.edu.iq/index.php/ejuow/article/view/502
https://ejuow.uowasit.edu.iq/index.php/ejuow/issue/view/30
https://ejuow.uowasit.edu.iq/index.php/ejuow/issue/view/30
https://doi.org/10.31185/ejuow.Vol12.Iss2.502
http://micm.edu.ge/en/
http://micm.edu.ge/en/
http://micm.edu.ge/en/
https://elibrary.ru/title_about.asp?id=3199
https://ieeexplore.ieee.org/author/37591160400
https://ieeexplore.ieee.org/author/37086755576
https://doi.org/10.1109/EDCAV34670.2015
http://www.ijpam.eu/
https://www.researchgate.net/deref/https%3A%2F%2Fcreativecommons.org%2Flicenses%2Fby%2F4.0%2F?_tp=eyJjb250ZXh0Ijp7ImZpcnN0UGFnZSI6InB1YmxpY2F0aW9uIiwicGFnZSI6InB1YmxpY2F0aW9uIn19

