AN INTELLIGENT APPROACH FOR CROP WATER FOOTPRINT PREDICTION
Main Article Content
Abstract
Agriculture is the largest consumer of water; enhancement of the water level irrigation is essential for sustainability. This project employs the Random Forest Regressor for crop specifications as per hectare with considering the features such as crop type, seasonal data, location and meteorological data. To improve the robustness of the model performance, data preprocessing, Feature Engineering and Exploratory Data Analysis are used. The trained model is incorporated with a Flask Based web application, enabling the user, farmer, researchers and policymakers to custom their inputs and obtain their regional and crop specific predictions of water footprint. An in- built water calculator helps in manual estimations of predicting the water level required by specific crops along with yield area in cubic meters. By the combination of Machine Learning with user interface, it helps in the prediction of water footprint by considering the different features and improving the water conservation
Downloads
Article Details
COPYRIGHT
Submission of a manuscript implies: that the work described has not been published before, that it is not under consideration for publication elsewhere; that if and when the manuscript is accepted for publication, the authors agree to automatic transfer of the copyright to the publisher.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work
- The journal allows the author(s) to retain publishing rights without restrictions.
- The journal allows the author(s) to hold the copyright without restrictions.