
DOI: http://dx.doi.org/10.26483/ijarcs.v16i2.7197

Volume 16, No. 2, March-April 2025

International Journal of Advanced Research in Computer Science

REVIEW ARTICLE

 Available Online at www.ijarcs.info

© 2024-2027, IJARCS All Rights Reserved 5

ISSN No. 0976-5697

 A COMPREHENSIVE LITERATURE STUDY ON LOAD BALANCING METHODS

IN CLOUD COMPUTING WITH INTERNET OF THINGS

M. Parveen Taj
Phd Research Scholar,

Department of Computer Science,

PPG College of Arts and Science,

Coimbatore-641035, Tamil Nadu, India

Dr.N.Muthumani
Principal,

PPG College of Arts and Science,

Coimbatore - 641035,

Tamil Nadu, India

Abstract: Incorporating IoT devices such as smart appliances, routers, sensors, and cellphones into a singular network is the novel concept behind

the Internet of Things. Cloud computing manages the storage and the processing of data produced by these IoT devices which require extensive

amounts of data. The cloud also enables real time analysis of data that allows fast decision-making. In settings that require the integration of Cloud

Computing and Internet of Things like Cloud-IoT, making the most out of the infrastructure with effective load balancing techniques becomes

critical. These techniques serve the purpose of drowning out the faults, increasing throughput, and lowering execution and response time while

also ensuring that there is fair workload distribution. With the intent of balancing the distinct and complex features of IoT, this articles aims to

provide a summary on the various techniques of load balancing within a cloud environment, covering both centralized techniques as well as more

advanced ones. This study digs deeper into the performance metrics and challenges, as well as application scenarios of all solutions, including

energy usage, execution period, scalability, and workflow adaptability. Lastly, we present a comparison of the leading load sharing algorithm's

effectiveness on a few tested IoT cloud systems.

Keywords: Load balancing, Internet of Things (IoT), cloud computing, Energy Consumption, Execution time

I. INTRODUCTION

The quick development of IoT devices—such as smart
homes, healthcare, transportation, and industrial
automation—has affected many different sectors [1]. The
enormous volumes of data these devices generate call for real-
time storing and processing. Growing in relevance inside IoT
systems as a tool to achieve these goals, cloud computing
offers scalable, flexible, reasonably priced solutions. Cloud
computing has the architecture needed to handle enormous
amounts of data. Combining the Internet of Things (IoT) with
cloud computing generates a strong synergy that opens various
applications to access advanced analytics, remote
management, and real-time data processing [2]. Once
gathered and sent by IoT devices, a great volume of data is
processed, examined, and kept on the cloud. Apart from
providing the processing capability required for complex
operations, cloud platforms are scalable and elastic—qualities
crucial for enabling the exponential growth of IoT devices [3].
Among the most urgent issues with IoT-cloud systems,
though, are reducing latency, preserving dependability, and
keeping resource use low. Dealing with these problems
depends much on using effective load balancing techniques.

 Load balancing aims to enhance efficiency, prevent
straining any one computing resource, and guarantee that all
of the resources of a system are used to their best [4]. It
guarantees that none of one server or node becomes a
bottleneck so that Cloud-IoT applications run effectively and
without problems. Effective load balancing guarantees
scalability and endurance of cloud-based IoT systems as well
as improves Quality of Service (QoS) [5]. This is a must-have
since growing demand for consistent IoT solutions spans
many different fields. Over years, many load-balancing
techniques have been developed to address these problems.
These algorithms employ task scheduling, resource allocation,

and dynamic load distribution [6] among other tactics to meet
their performance criteria. Furthermore, changes in
optimization algorithms and artificial intelligence (AI) have
opened extra opportunities for creating more sophisticated and
flexible load balancing techniques. These advancements aim
to keep up with the growing complexity and size of IoT-cloud
systems thereby ensuring their usefulness in practical
applications.

 Moreover, edge computing as well as fog computing have
become indispensable additional tools to overcome the limits
of centralized cloud-IoT systems. An all-encompassing
architecture, fog computing assigns resources to smart devices
sequentially via the cloud. It not only stretches the cloud but
also actively incorporates IoT-using networks [7]. Figures 1
shows the load balancing process.

 The parts that follow address algorithms, metrics
influencing load balancing, challenges in load balancing
implementation in Cloud-IoT environments. Understanding
the function of load balancing in distributed systems depends
on some basic ideas that maximize performance, scalability,
and effective use of resources.

.

1.1 Factors Influencing Load Balancing

Many significant steps are taken to evaluate load-
balancing systems' general performance and effectiveness [8].

• Response Time (RT)- It is the period of time needed
for a request to advance from submission to system
first response. In time-sensitive applications, such IoT-
dependent healthcare systems, a reduced response time
usually denotes better efficiency.

• Throughput (TP)- Measuring the overall number of
chores completed during a given period of time yields.
Higher throughput assures that resources are being

M. Parveentaj et al, International Journal of Advanced Research in Computer Science, 16 (2), March-April 2025, 5-13

© 2024-2027, IJARCS All Rights Reserved 6

used more wisely and shows that the system can
properly handle tasks.

• Scalability- It is also a crucial factor since it shows that
the system can control unanticipated workload
variations without performance deterioration. With a
scalable load balancing method, which can adapt to
various needs, one can maintain constant performance
in always changing surroundings.

• Resource Utilization (RU)- It is important since it
gauges the efficiency of memory, storage, processing
capability, and processing power consumption.
Effective resource use is essential for both enhancing
system performance and lowering energy consumption
in environments sensitive to energy use, such IoT-
cloud ecosystems.

• Makespan (MS)- Another important consideration is
the general time required to finish any chore.
Munising makespan is essential for applications with
limited deadlines since it accelerates the execution of
tasks.

• Associated Overhead (AO)- It considers additional
costs including task migration, algorithm running time,
and communication delays, all of which must be
avoided if the goal is to improve the operational
effectiveness of the system. Using techniques that cut
computational overhead without compromising
performance is more long-term sustainable and
efficient.

• Energy Efficiency (EE) - Environmentally friendly
computing is context, EE, is becoming ever more
crucial. Effective load balancing systems aim to
maximize energy consumption without compromising
system performance, therefore enabling the
sustainability of big-scale cloud environments.

• Service Level Agreement (SLA)- It gauges the
system's conformity to accepted criteria of service
quality including availability, response time, and
prioritizing. Minimizing SLA deviations helps to
maintain users' trust and satisfy contractual
obligations.

• Processing Cost– An important component is whether
load balancing techniques are practical. Included in
this group are running costs like extra software
overhead, device upkeep, and energy consumption.
Effective algorithms seek to increase job effectiveness
while avoiding resource waste, therefore helping to
control expenses. Thanks to cost-effective load
balancing, which also ensures system durability,
cloud-based IoT solutions are becoming accessible and
reasonably priced for businesses. .

These criteria taken together provide a thorough
framework for evaluating load-balancing methods' handling
of problems including varying workloads, various resources,
and economy of cost-effectiveness.

1.2 Challenges in Load Balancing for IoT-Cloud
Environments

The features of IoT networks cause several challenges that
load balancing systems must overcome. Creating effective
solutions calls for a complete awareness of these issues [9].

• The performance of cloud systems is greatly affected
by workload patterns, which are defined by changing
needs, unpredictable traffic behavior, and various
applications. To manage these differences and ensure
smooth operations, effective techniques are required.

• The geographical dispersion of data centers in the
cloud—typically found in far-off locations—cause
transmission delays. Technologies like fog computing
and edge computing are absolutely essential to address
this since they help to lower latency by evaluating data
closer to its source. Although fog and edge devices
have few resources, it can be difficult to effectively
control them.

• Load balancing techniques are much shaped by
financial and cost factors. All methods have as their
shared objectives reducing running expenses and
optimizing the use of the resources at hand by removing
pointless idle.

• Given the often-changing character of applications and
the consequent need for continuous monitoring, cloud
services must also be elastic and scalable. Maintaining
proper load distribution can be challenging depending
on the level of monitoring.

• Compliance with SLAs is an extra vital component
since breached SLAs undermine the quality of cloud
service providers. It is imperative to strike a mix
between throughput, energy consumption, makespan,
cost, and service quality.

• While in some situations Virtual Machine (VM)
migrations might maximize resources, if done too often
they could compromise service quality. The temporal
complexity of frequent virtual machine migrations rises
due to the enormous volume of work involved in data
migration including copy pages of memory to the
destination system.

• Load balancing's success mostly depends on the
resources' availability. The existence of limited
resources-induced bottlenecks can compromise the
system's efficiency in managing tasks. Data centers
also much worry about their energy use. Effective load
balancing can lower power consumption by
transferring VMs from hosts with high workloads to
those with lesser loads.

1.3 Algorithms used in Load Balancing

In order to achieve efficient workload distribution in cloud
and IoT-based systems, algorithms with a variety of
approaches for workload allocation, resource optimization,
and system performance improvement have been developed.
Generic categorization into static, dynamic, and hybrid
approaches is possible because to the fundamental ideas of
these algorithms. The algorithms utilized for load balancing
are displayed in Figure 2.

A. Static Load Balancing Algorithms

Since they distribute work according to pre-defined
criteria [8], static algorithms are faster than dynamic ones and
easier to implement. Among such methods are Weighted
Round Robin (WRR) [11] and Round Robin (RR) [10].

B. Dynamic Load Balancing Algorithms
Dynamic algorithms modify the allocation of tasks in real-

time based on the current condition of the system. They
perform more effectively when faced with ambiguous
obligations. These techniques include Least Connection (LC)
[12], Equally Spread Current Execution (ESCE) [13] and
Biased Random Sampling (BRS) [14].

C. Hybrid Load Balancing Algorithms
Hybrid algorithms leverage the optimal characteristics of

both dynamic and static methodologies through their
integration. One technique is PSO-DA, which denotes Particle
Swarm Optimization combined with a Dragonfly Algorithm
[15].

M. Parveentaj et al, International Journal of Advanced Research in Computer Science, 16 (2), March-April 2025, 5-13

© 2024-2027, IJARCS All Rights Reserved 7

D. Artificial Intelligence and Machine Learning
Algorithms

Combining artificial intelligence and machine learning is
helping new approaches enhance load balancing. Two such
are algorithms grounded on fuzzy logic [17] and
Reinforcement Learning (RL) [16].

E. Metaheuristic Algorithms
A main reason metaheuristic algorithms are becoming

more and more popular is their ability to find almost ideal
answers to challenging issues. Such algorithms derive from
biological processes previously reported in the physical
sciences based on nature [17].

.

Figure 1. Structure of load balancing

Figure 2. Algorithms used in load balancing

This include Ant Colony Optimization (ACO) [18], Genetic

Algorithm (GA) [19], Simulated Annealing (SA) [20], Bat

Algorithm (BA) [21], Firefly Algorithm (FA) [22], Cuckoo

Search Algorithm (CSA) [23], Artificial Bee Colony (ABC)

[24], Dragonfly Algorithm (DA) [25], Crow Search

Algorithm (CSA) [26] and various hybrid algorithms such as

HEHO-HAS [27].Because of its own respective benefits and

drawbacks, every one of these algorithms is appropriate for a

certain job. Through load-balancing solutions tailored for

cloud and IoT systems, these algorithms address scalability,

latency, energy efficiency, and cost-effectiveness. This

survey aims to provide a summary of the subject and focuses

on modern load balancing algorithms created for IoT

installations in the cloud. By means of classification and

evaluation of current approaches, this study reveals their

advantages and drawbacks, therefore shedding light on the

present situation of the subject by class.

M. Parveentaj et al, International Journal of Advanced Research in Computer Science, 16 (2), March-April 2025, 5-13

© 2024-2027, IJARCS All Rights Reserved 8

 The following is the configuration of the surviving elements:

Emphasizing the techniques and applications of load

balancing algorithms created for IoT cloud systems, Section

II provides a literature review on them. In Section III, it

contrasts and contrasts different survey forms highlighting

both their advantages and drawbacks as well as their

similarities. By analyzing significant performance indicators

and their impact on general system efficiency, Section IV

evaluates the effectiveness of the approaches. Section V at

the conclusion of the survey offers a synopsis of the key ideas

and recommendations for future research directions in this

discipline.

II. SURVEY ON LOAD BALANCING ALGORITHMS

FOR CLOUD BASED IOT ENVIRONMENTS

Xingjun et al. [28] showed using a Grey Wolf
Optimization (GWO) technique to disperse the burden in
cloud-based IoT environments, hence lowering reaction time
and improving system performance. Inspired by the social
structure and hunting behavior of grey wolves, the approach
follows how virtual machines (prey) are given tasks (wolves)
depending on their load condition. Using fuzzy logic, which
assigns linguistic values—such as high, low, or moderate—to
activities depending on CPU performance and virtual machine
load guarantees efficient task allocation. By matching
resource-constrained virtual machines with non-used
workloads, the method maximizes load distribution.
Considering both response time and load imbalance, the
fitness function of the algorithm aims to lower response time
while yet attaining a balanced load among VM.

 Zhang et al. [29] introduced a multiuser, execute many
jobs, multitier Mobile-Edge Cloud Computing (MEC) system
design, so optimizing processing time and energy utilization.
Computation responsibilities are dynamically dispersed in this
three-tier architecture among Mobile Devices (MDUs), edge
servers or tiny Base Stations (BSs), and a central cloud server.
The system integrates an orthogonal frequency-based
communication model and a computation-based model to
enable local or offload of activities and lowers interference.
Load balancing among BSs is accomplished by use of a central
control manager to allocate MDUs according to resource
usage and computational demands. The concept addresses
security issues by including an AES encryption method
augmented with cryptographic keys based on ECG data. This
method preserves important data during offloading.
Recasting the optimization problem as a binary linear one
allows them to use a secure Load Balancing and
Computational Offloading (LBCO) technique ensuring
efficient offloading options with minimum complexity.

 Agarwal et al. [30] constructed a Load Balancing-
Assisted Access Control Mechanism (LB-ACM) inside a
multilayer Edge-Fog-Cloud network design in order to
provide load balancing and safe access control in IoT
environments. This architecture addresses excessive latency,
network congestion, and unlawful access among other
problems. The design consists of three layers: the IoT sensors,
the edge, and the cloud. At the edge layer, abnormalities from
IoT sensor generated data are pre-processed. Dynamic load
balancing and periodic network architecture refreshment by
the fog layer helps before filtered data is sent to the cloud.
Comprising VMs, firewalls, and Access Control Lists (ACLs),
the cloud layer ensures safe access and effective resource use.
Regarding the first load processing and distribution, the LB-
ACM's fog and edge layers take front stage. Regarding the
cloud layer, it keeps unwanted people out and manages traffic

effectively using a three-tiered access control system
comprising virtual machine-level authentication, ACLs, and
firewalls.

 Nezami et al. [31] developed a distributed multi-agent
system known Electronic Point of Sale Fog (EPOS Fog) to
effectively position IoT services over the edge-to---cloud
continuum. This approach balances loads and slow reaction
times in IoT environments. EPOS Fog seeks to Minimize the
Variance in usage across network nodes (MIN-VAR) and the
Cost of service execution (MIN-COST) with its two-objective
optimization method. The technology lets local agents design
service placement strategies based on workload criteria and
proximity of resources. Using the I-EPOS method for group
decision-making, they might also cooperate to maximize
worldwide placement.

 Abdulhammed et al. [32] suggested a two-stage technique
for healthcare systems based on the IoT using the Sparrow
Search Algorithm (SSA), therefore solving the load balancing
issue in cloud computing. This approach moves healthcare
from standard in-hospital techniques toward real-time remote
monitoring by using IoT wearable devices linked via wireless
networks. Between sensors and task queues, an IoT gateway
serves as a link; these devices collect and forward patient
data—including blood pressure and temperature—to it. The
system manages the enormous volumes of data using cloud
computing, therefore relieving some of the demand on the
infrastructure of the Internet. The system depends critically
on task queues, VMs, cloud brokers, and VM managers.
Maintaining focused attention on tasks, maintaining sufficient
resources, and liaising with the cloud broker—who assigns
tasks to VM—using the SSA—are responsibilities of the VM
manager. By weighing their fitness value—derived from
metrics including execution speed, storage use, and CPU
use—the SSA decides how best to divide work among VMs.

 Li et al. [33] developed a load-balanced data-layered
transmission strategy inside a cooperative Cloud-Edge-End
(CEE) IoT architecture in order to address the several and
diverse data processing requirements of IoT applications. The
design divides the edge layer into two sections: the intelligent
edge device level and the edge infrastructure layer, therefore
increasing data routing efficiency. By assigning jobs to the
suitable levels depending on data type, flow size, and available
resources, the classification of data transmission into real-
time, near-real-time, and non-real-time guarantees that
heterogeneous devices may communicate effortlessly. A
central control module dynamically controls resource
allocation and hierarchical data routing to maximize system
performance, hence perhaps using Software-Defined
Networking (SDN). Furthermore balanced in this module are
packet delivery rates, energy usage, and latency.

 Aqeel et al. [34] used the Chaos-based Horse Ride
Optimization Algorithm (CHROA) method to develop a load-
balancing and energy-saving strategy for IoE systems housed
in the cloud. IoT networks as well as cloud computing are
included into the system design. Under this system, data is
transferred from cluster members to the cloud via cluster
heads while clusters are generated using CHROA. Using the
notion of chaos and hierarchical behavior in horse herds, the
CHROA algorithm balances the exploration and exploitation
phase so enhancing global optimization. Apache Flume and
Apache Spark respectively handle real-time data input and
processing while storage is under control by the Hadoop
Distributed File System (HDFS).

 Using a Deep Load Balancer (DLB) to control the
enormous volumes of data generated by IoT devices in the
cloud, the authors Devi et al. [35] proposed a method for IoT

M. Parveentaj et al, International Journal of Advanced Research in Computer Science, 16 (2), March-April 2025, 5-13

© 2024-2027, IJARCS All Rights Reserved 9

data storage in the cloud. By combining a real-time
scheduling approach and deep learning techniques such as
Restricted Boltzmann Machines (RBM) and Deep Belief
Networks (DBN), the model minimizes latency and
maximizes load balancing. The three key components of the
DLB approach are Dynamic Scheduler (DS), which chooses
which servers are most suitable to perform the task; Deep
Classifier (DC), which decides whether cloud servers are fit
for the task; Loud Resource Monitor (CRM), which preserves
cloud resources. The DLB approach works well since it
maximizes and normalizes resource characteristics, therefore
improving resource allocation and reducing latency. The
model also underlines the need of evenly spreading workload
among VMs in the cloud in order to maximize general load
distribution, Energy Consumption (EC), and task execution
time (ET).

 Shamsa et al. [36] developed the Multiple Workflow
Scheduling with a Load-Balancing Approach and Dynamic
Resources Allocation (MWL-DRA) paradigm to control
several workflow scheduling in hybrid cloud, fog, and IoT
settings. It consists of layers one through four: Workflow
Generator Layer (WGL), Fog Computing Layer (FCL),
Resource Analyzer Layer (RAL) and Cloud Computing Layer
(CCL). By means of fog nodes, the intermediary level with
moderate processing capacity bridges the WGL with the IoT
devices producing particular resource requirements. Part of
the CCL are powerful computers situated in data centers
capable of handling large processing and vast data storage. At
the core of this design, the RAL manages the cellular, regional,
and system levels of load balancing; it is in charge of
analyzing and assessing events from the other layers, therefore
generating workload projections, and allocating resources.
Using Kruchten's 4+1 model—which incorporates a scenario
view for requirement identification in addition to process,
logical, physical, and developmental viewpoints—the
framework is further detailed Essential components of RAL
designed to dynamically allocate resources and maximize
workflow scheduling are the Data Logger, Models Trainer,
Status Predictor, LBP Maker, and Load Balancer. Including
ATAM-based evaluation into the design helps one assess
quality characteristics including performance, scalability, and
dependability.

 Vijarania et al. [37] proposed a combined fog-computing
model for efficient energy management and load balancing in
an IoT-fog-cloud environment to address problems including
increasing congestion in fog devices, decreasing performance
of fog gateways, and delayed transmission links generated by
the fast expansion of IoT devices. By giving fog nodes top
precedence over cloud nodes, the three- stage architecture of
the model allowed for the optimization of resource usage,
decrease of latency, and energy economy.

 Yakubu and Murali [38] presented the Modified Harris
Hawks Optimization (MHHO) method and the layer fit
strategy to control resources and distributing tasks in IoT-Fog-
Cloud environments. The Layer Fit Method guarantees
effective distribution of the fog as well as cloud layer with
workloads by ranking jobs according to delays like processing
and transmission time. Processing work with a higher priority
and forwarding lower priority activities to the cloud helps one
avoid the resources of the fog from becoming overwhelmed.
The MHHO algorithm enhances the fundamental HHO by
using a load-balancing mechanism for equitable distribution
of resources and including an enhanced energy update strategy
to avoid local optima. Resource administrators monitor the
active capacity of every level in the model architecture—edge
devices, BSs, fog devices, and cloud resources.

 Ala'anzy et al. [39] created the Optimized Load Balancing
(OLB) method to enhance network performance in healthcare
systems depending on the IoT. IoT devices track patients'
vitals in real time; fog nodes process data in real time near
BSs; the cloud layer keeps data for use later on. OLB employs
an array-based strategy to efficiently manage and update
traffic and computational loads, therefore significantly
lowering superfluous computations and increasing scalability.

 Using a fuzzy logic approach, Mahapatra et al. [40]
developed a three-tiered IoT, fog, and cloud architecture to
maximize the load balancing and job scheduling in computer
systems. User request generation from scattered smart devices
comes from the IoT layer; intermediary networking nodes and
clusters of Fog nodes supplied by a Fog Controller (FC) come
from the Fog layer; and resource-intensive job hosting in data
centers comes from the Cloud layer. The system sorts
activities into high, medium, and low priority using fuzzy
logic after weighing elements such task length, start time, and
delay limits. While high-priority tasks are passed over
effective nodes in the fog or the cloud to lower delay, low-
priority tasks are managed locally. Apart from a Binary
Linear-Weight JAYA (BLWJAYA) algorithm for effective
task scheduling, a compatibility-based work offloading
technique employing cosine similarity for fair load allocation
between fog nodes was also developed.

 Shamsa et al. [41] were able to maximize resource
management in IoT-cloud-fog computing systems and prevent
either over- or underuse of the resources by tackling the
critical problem of allocating resource workloads equitably.
A Load Balancing Plan (LBP) looking at resources to
maximize usage among Data Centers (DCs), Fog Points (FPs),
and IoT nodes achieves this. Thirdly, the model consists of
the System Management Component (SMC), the Region
Management Component (RMC), and the Cell Management
Component (CMC), in that sequence. The SMC divides the
system into grid cells of uniform size, generates a Cellular
Coordinates Map (CCM) for effective administration, and
assigns resources to their matching cells. The RMC creates
Long Short-Term Memory (LSTM) algorithms to estimate
workload patterns and generates the LBP so that tasks from
Overloaded Cells (OLCs) may be transferred to Underloaded
Cells (ULCs). It then examines system events. To keep
everything in balance, the CMC last but not least handles local
scheduling, process distribution, and cell-level load balancing.

 With an eye toward enhancing task offloading between
devices, fog, and cloud servers, Tishin et al. [42] proposed ML
for use in load balancing in IoT systems. It shows how
supervised and reinforcement learning may be employed as
well as how Natural Language Processing (NLP) and Large
Language Models (LLMs) may be used to forecast runtime
complexity like Big(O) using examples of network traffic
analysis and job scheduling. By matching tasks to suitable
devices, assessing device capabilities, and hence ensuring
effective resource utilization and task allocation, the LLM
model guarantees.

 Moparthi et al. [43] introduced an energy-efficient load-
balancing system to address problems including resource
restrictions, changing workloads, and energy usage in IoT-
based cloud environments. IoT sensors gather varied data,
process it using edge-computing technologies, and then
forward some data to the cloud for analysis. One of its main
characteristics is the Energy Sensitive Balancing Load
(ESBL) algorithm, which considers metrics like CPU use,
power consumption, memory usage, and SLA violations to
optimize workload distribution. IoT sensors. The ESBL
algorithm assures effective job allocation across VM,

M. Parveentaj et al, International Journal of Advanced Research in Computer Science, 16 (2), March-April 2025, 5-13

© 2024-2027, IJARCS All Rights Reserved 10

therefore lowering operational expenses and energy
consumption and increasing resource economy and
scalability.

III. COMPARATIVE ANALYSIS

The evaluation of the aforementioned literature
comparison is presented in this section.

Table I. Comparative analysis of different load-balancing models

Ref No. Techniques Merits Demerits Environment

used

Performance Metrics

[28] GWO The model improves system

performance, balances load, and

reduces reaction time, all of

which contribute to an

improved user experience and

meetability of service level

agreements.

Because of the model's

iterative optimization

process, it may induce higher

energy consumption.

CloudSim Degree of load imbalance = 0.95/ 1000

tasks, Runtime = 96.5/ 400 tasks

[29] MEC, Secure

LBCO, AES

By reducing data transmission

and optimizing resource

allocation, integrating load

balancing with security lowers

communication costs.

While offloading, the model

works with static MDUs, but

performance could suffer if

MDUs are constantly

switching across sBSs.

MATLAB System cost (energy and time to execute

tasks) = 11x106 / 10 tasks

[30] LB-ACM The approach enhances system

efficiency by minimizing

needless strain on resources and

optimizing CPU consumption in

the cloud network.

Packet loss can happen in

surroundings that are

constantly changing.

Amazon Web

Service (AWS)

CPU utilization = 26%, Average

Network packets in = 6845 count,

Average Network Packets Out = 6472

count

[31] EPOS Fog As the number of agents

increases within the network's

fixed capacity, the model's

performance remains good,

demonstrating its ability to scale

in dispersed contexts.

The most error-prone cases

involve beta service

distribution, which shows

that workload allocation

might impact the model's

performance.

Google cluster

trace

For BA topology: Load balance

improvement = 0.13, Normalized error

=0.9, Utilization variance = 0.17. For

WS topology: Load balance

improvement = 0.15, Normalized error

=0.88, Utilization variance = 0.73. For

ER topology: Load balance

improvement = 0.172, Normalized error

=0.73, Utilization variance = 0.198.

[32] SSA The possibility of overloading is

decreased because the model

makes optimal use of the VMs.

In extremely changing

contexts, when job durations

and virtual machine

capabilities fluctuate

erratically, the system's

adaptability may be

compromised.

CloudSim For 500 task, Degree of imbalance =

177.7675, processing time=899.8979

ms, Makespan time =23.05 ms,

[33] CEE Reducing computing

complexity, improving QoS,

and supporting varied IoT

scenarios are all achieved using

this method.

Due to its absence of CEE

IoT layer-specific data

forwarding models and its

use of a random method to

pick target nodes, the system

produces outcomes that are

less than objective.

MATLAB

R2020b

For 15 edge infrastructure, Cumulative

delivery rate = 0.878/50 MB, System

throughput = 579 Mbps/ 20000 packets,

(For medium load) Average delay = 1

ms/ 320 kb

[34] CHROA,

HDFS

The suggested architecture

provides real-time, low-latency

services, allowing for efficient

machine-to-machine

interactions; this is particularly

true in healthcare applications.

Particularly in large-scale

deployments, the suggested

methodologies' practical

consequences and real-world

applications are

fully unaddressed.

MATLAB Average throughput = 70.122 kbps,

End-to-End (ETE) delay = 0.0643 s,

Normalized overhead = 0.4069,

Network lifetime = 510.256 s, Total

energy consumption = 5.1289 J

[35] DLB, CRM,

RBM, DBN,

DC, DS

By assessing available cloud

resources before to assigning

tasks, the approach ensures

secure task allocation.

There has been no

investigation into how

external variables, such as

network latency, could

impact performance.

CloudSim For 50 VMs, Response time = 0.36 ms,

makespan = 0.709 ms, Overhead = 0.75,

migration time = 0.09 ms

[36] MWL-DRA Job scheduling is very

successful with few

unscheduled jobs, which is a

sign of good task management.

.

In cases when there is a

sudden increase in workload

or when IoT or fog nodes

fail, the approach might not

be able to cope well.

MATLAB Average time steps = 1210.5, standard

deviation = 15.45, Max time steps =

190, Minimum time steps = 81,

Skewness = 0.11, kurtosis = 0.522

[37] Fog

computing

By dividing up work across the

cloud and fog layers, the

technique decreases

computational and transmission

delays, leading to more efficient

operations and quicker reaction

times.

Under conditions of very

high data flow, the

algorithm's performance may

suffer.

iFogSim Network lifetime = 479 s/ 350 load,

Energy consumption = 0.85 J/ 500

nodes, Average delay = 36 ms/ 700

nodes, response time = 98 ms/ 400

nodes

[38] MHHO,

Layer fit

algorithm

In response to changes in the

system's workload or the

quantity of virtual machines, the

MHHO paradigm performs

admirably.

The model continues to

encounter difficulties when

dealing with higher quantities

of jobs or virtual machines,

which can lead to significant

iFogSim For 100 tasks and 20 VMs, Execution

cost = 17 x 106, Average makespan time

= 5s, Energy consumption = 71234

M. Parveentaj et al, International Journal of Advanced Research in Computer Science, 16 (2), March-April 2025, 5-13

© 2024-2027, IJARCS All Rights Reserved 11

increases in energy

consumption.

[39] OLB OLB’s real-time adaptability

makes it particularly well-suited

for time-sensitive applications

Improper allocation might

still occur under certain

conditions, which can reduce

overall system efficiency.

iFogSim For 4 cases, Latency = 7.11 ms,

Execution time= 7525 ms, Cost of

execution = 91609.27, Network usage =

13392 bytes, Energy consumption =

934162.95 kWh

[40] Fuzzy logic,

BLWJAYA

The use of fuzzy logic to

classify tasks ensures that tasks

are offloaded to the most

suitable compute node

If the fuzzy logic rules are

not finely tuned, it could lead

to misclassification, resulting

in suboptimal task offloading

iFogSim For consistent and high task_machine

heterogeneity: Service rate =1.12 E +

05, Resource utilization = 96.29,

Latency = 164.73, Energy

consumption= 262.82, Load balancing

rate = 261.83

[41] LBP The model minimizes workflow

rejections, fostering a more

efficient and scalable resource

management framework.

The effectiveness of the

model relies on the accurate

prediction of workflow loads

and available resources,

which could be challenging

in environments with highly

variable workloads.

Velociraptor Average variance = 21468.28,

Workflow completion rate =91.7%,

Average resource utilization = 67.9%

[42] LLM Using Docker containers to

replicate IoT devices with

different processing capacity

allows one to test several device

configurations without using

real hardware.

Notable issues such as

uneven job distribution,

inaccurate Big(O) forecasts,

and energy limits are

recognized.

Google Cloud

instance

O (n2): execution time = 5ms

[43] ESBL The platform easily supports

scalability as well as adaptation

for various kinds of IoT tasks.

Using cloud resources,

particularly at scale, may still

incur expenses, even while

the framework strives to

optimize resource utilization.

- Energy consumption = 36.81 kWh,

Number of node shutdowns = 795,

Execution time = 0.00198 s

Table 1 lists all the models together together with their
advantages, disadvantages, and performance records. Two
fundamental performance criteria—energy consumption and
execution time—are applied to evaluate several approaches.
To assess the energy consumption and time needed for
execution efficiency of several models, it investigated six
different approaches ESBL [43], Fuzzy Logic [40], OLB [39],
MHHO [38], Fog [37], and CHROA [34]. The impossibility
to create direct comparisons results from the fact that every
model presents various numbers for evaluating energy. In
order to address this challenge, they thus substitute textual
analysis for visual representation. Table 1 of the comparison
analysis demonstrates that ESBL can easily manage several
kinds of IoT tasks.

OLb consumes 934,162.95 kWh for 64 IoT and 4 fog
nodes, far more than ESBL's 36.81 kWh per 100 VMs.
Though all of the other models use less energy overall, the
ESBL model remains the most efficient when it comes to
scalable activities using standard VM setups. When it comes

to execution speed, the OLB model takes 7, 525 ms for 64 IoT
and 4 fog nodes; ESBL's 1.56 ms per 100 VMs is lightning
quick and clearly shows advantage here. GWO executes in
96.5 ms, far less than the ESBL's time. Figure 3 shows the
times needed for the execution of many models.

As OLB differs greatly from the other two models, it is not
displayed in the graphic to help to clarify the distinction.
Eliminating OLB reveals the relative execution speeds of
ESBL and GWO, therefore stressing the significant difference
in execution time between these two models and clarifying
their performance. Looking at these criteria taken together,
ESBL is obviously the best and most balanced choice. Its
exceptional performance in these domains qualifies it for
applications requiring quick processing and low power
consumption. Table 2 offers a succinct summary of the
literature review grounded in the chosen metrics. Most of the
publications concentrate on time and energy since their main
measurements are these.

Table II. Metrics used in the related papers

Metrics /

Methods

Energy

Consumption

Execution

Time

Processing

Cost

Latency Makespan

time

Resource

Utilization

Throughput Response

time

Over

head

GWO  ✓      ✓ 

Secure LBCO   ✓      
LB-ACM      ✓   

EPOS Fog    ✓     
SSA  ✓       
CEE    ✓   ✓  

CHROA ✓   ✓   ✓  ✓

DLB     ✓   ✓ ✓

MWL-DRA         
Fog ✓   ✓    ✓ 

MHHO ✓  ✓  ✓    
OLB ✓ ✓ ✓ ✓     

Fuzzy Logic ✓   ✓  ✓   
LBP      ✓   
LLM  ✓       
ESBL ✓ ✓       

M. Parveentaj et al, International Journal of Advanced Research in Computer Science, 16 (2), March-April 2025, 5-13

© 2024-2027, IJARCS All Rights Reserved 12

IV. CONCLUSION

Effective load balancing is mostly responsible for
improving the energy economy, scalability, and performance
of cloud-based IoT systems. They have examined several load
balancing techniques in this survey, each having advantages
depending on the particulars of an IoT context such as
resource availability, network condition, and real-time
processing need. Although more recent systems using modern
technologies handled the dynamic and heterogeneous
character of IoT tasks considerably better, previous methods
functioned effectively in centralized settings. Invest in
creating innovative algorithms investigating additional speed,
energy economy, and scalability far into the future.

V. REFERENCES

[1] G. Lampropoulos, K. Siakas,and T. Anastasiadis,
“Internet of things in the context of industry 4.0: An
overview,” International Journal of Entrepreneurial
Knowledge, vol.7, no. 1, 2019.

[2] A. Botta, W. De Donato, V. Persico, and A. Pescapé,
“Integration of cloud computing and internet of things: a
survey,” Future generation computer systems, vol. 56,
pp.684-700, 2016.

[3] P.P. Ray, “A survey of IoT cloud platforms,” Future
Computing and Informatics Journal, vol.1, pp.35-46,
2016.

[4] A. Thakur, and M.S. Goraya, “ A taxonomic survey on
load balancing in cloud,” Journal of Network and
Computer Applications, Vol. 98, pp. 43-57, 2017.

[5] M. Rostami, and S. Goli-Bidgoli, “An overview of QoS-
aware load balancing techniques in SDN-based IoT
networks,” Journal of Cloud Computing, vol.13, no.1,
p.89, 2024.

[6] D. Alsadie, “A Comprehensive Review of AI
Techniques for Resource Management in Fog
Computing: Trends, Challenges and Future Directions,”
IEEE Access, 2024.

[7] N.A. Angel, D. Ravindran, P.D.R. Vincent, K.
Srinivasan, and Y.C. Hu, “Recent advances in evolving
computing paradigms: Cloud, edge, and fog
technologies,” Sensors, vol. 22, no.1, p.196, 2021.

[8] Y. Lohumi, D. Gangodkar, P. Srivastava, M.Z. Khan, A.
Alahmadi, and A.H.Alahmadi, “Load Balancing in
Cloud Environment: A State-of-the-Art Review,” IEEE
Access, vol.11, pp.134517-134530, 2023.

[9] N. Devi, S. Dalal, K. Solanki, S. Dalal, U.K. Lilhore, S.
Simaiya, and N. Nuristani, “A systematic literature
review for load balancing and task scheduling techniques
in cloud computing,” Artificial Intelligence Review,
vol.57, no.10, p.276, 2024.

[10] S. Mohapatra, S. Mohanty, and K.S. Rekha, “Analysis of
different variants in round robin algorithms for load
balancing in cloud computing,” International Journal of
Computer Applications, vol. 69, no.22, pp.17-21, 2013.

[11] M. Kushwaha, B.L. Raina, and S.N. Singh, “Advanced
weighted round robin procedure for load balancing in
cloud computing environment,” In 2021 11th
International Conference on Cloud Computing, Data
Science & Engineering (Confluence) pp. 215-219. IEEE,
2021.

[12] L. Zhu, J. Cui, and G. Xiong, “Improved dynamic load
balancing algorithm based on Least-Connection
Scheduling,” In 2018 IEEE 4th Information Technology

and Mechatronics Engineering Conference (ITOEC) ,
pp. 1858-1862, IEEE, 2018.

[13] M.A. Alamin, M. K. Elbashir, and A.A. Osman, “A load
balancing algorithm to enhance the response time in
cloud computing,” Red Sea University Journal of Basic
and Applied Science, vol. 2, no.2, pp.473-490, 2017.

[14] O.A. Rahmeh, P. Johnson, and A. Taleb-Bendiab, “A
dynamic biased random sampling scheme for scalable
and reliable grid networks,” INFOCOMP journal of
computer science, vol. 7, no.4, pp.1-10, 2008.

[15] A. Thakur, and M.S. Goraya, “RAFL: A hybrid
metaheuristic based resource allocation framework for
load balancing in cloud computing
environment,” Simulation Modelling Practice and
Theory, vol.116, p.102485, 2022.

[16] F.M. Talaat, M.S. Saraya, A.I. Saleh, H.A. Ali, and S.H.
Ali, “A load balancing and optimization strategy (LBOS)
using reinforcement learning in fog computing
environment,” Journal of Ambient Intelligence and
Humanized Computing, vol. 11, no.11, pp. 4951-4966,
2020.

[17] S. Sethi, A. Sahu, and S.K. Jena, “Efficient load
balancing in cloud computing using fuzzy logic,” IOSR
Journal of Engineering, vol.2, no.7, pp.65-71, 2012.

[18] K. Nishant, P. Sharma, V. Krishna, C. Gupta, K.P. Singh,
and R. Rastogi, “Load balancing of nodes in cloud using
ant colony optimization,” In 2012 UKSim 14th
international conference on computer modelling and
simulation , pp. 3-8, 2012.

[19] K. Dasgupta, B. Mandal, P. Dutta, J. K. Mandal, and S.
Dam, “A genetic algorithm (ga) based load balancing
strategy for cloud computing,” Procedia Technology,
vol.10, pp.340-347, 2013.

[20] B. Mondal, and A. Choudhury, “Simulated annealing
(SA) based load balancing strategy for cloud
computing,” International Journal of Computer Science
and Information Technologies, vol. 6, no.4, pp.3307-
3312, 2015.

[21] S. Sharma, A.K. Luhach, and S.A.Sinha, “An optimal
load balancing technique for cloud computing
environment using bat algorithm,” Indian J Sci Technol,
vol. 9, no.28, pp.1-4, 2016.

[22] A.P. Florence, and V. Shanthi, “A load balancing model
using firefly algorithm in cloud computing,” Journal of
Computer Science, vol. 10, no.7, p.1156, 2014.

[23] M. Yakhchi, S.M. Ghafari, S.Yakhchi, M. Fazeli, and A.
Patooghy, “Proposing a load balancing method based on
Cuckoo Optimization Algorithm for energy management
in cloud computing infrastructures,” In 2015 6th
International Conference on Modeling, Simulation, and
Applied Optimization (ICMSAO) pp. 1-5, 2015.

[24] A. Ullah, N.M. Nawi, J. Uddin, S. Baseer, and A.H.
Rashed, “Artificial bee colony algorithm used for load
balancing in cloud computing,” IAES International
Journal of Artificial Intelligence, vol.8, no. 2, p.156,
2019.

[25] P. Neelima, and A.R.M. Reddy, “An efficient load
balancing system using adaptive dragonfly algorithm in
cloud computing,” Cluster Computing, vol. 23, no.4,
pp.2891-2899, 2020.

[26] H. Singh, S. Tyagi, and P. Kumar, “Cloud resource
mapping through crow search inspired metaheuristic
load balancing technique,” Computers & Electrical
Engineering, vol.93, p.107221, 2021.

[27] S.M. Ali, N. Kumaran, and G.N. Balaji, “A hybrid
elephant herding optimization and harmony search

M. Parveentaj et al, International Journal of Advanced Research in Computer Science, 16 (2), March-April 2025, 5-13

© 2024-2027, IJARCS All Rights Reserved 13

algorithm for potential load balancing in cloud
environments,” International Journal of Modeling,
Simulation, and Scientific Computing, vol. 13, no. 05,
p.2250042, 2022.

[28] L. Xingjun, S. Zhiwei, C. Hongping, and B.O.
Mohammed, “A new fuzzy‐based method for load
balancing in the cloud‐based Internet of things using a
grey wolf optimization algorithm,” International Journal
of Communication Systems, vol. 33, no. 8, p.e4370,
2020.

[29] W.Z. Zhang, I.A. Elgendy, M. Hammad, A.M. Iliyasu,
X. Du, M. Guizani, and A.A. Abd El-Latif, “Secure and
optimized load balancing for multitier IoT and edge-
cloud computing systems,” IEEE Internet of Things
Journal, vol.8, no.10, pp.8119-8132, 2020.

[30] N. Agrawal, “Dynamic load balancing assisted
optimized access control mechanism for edge‐fog‐cloud
network in Internet of Things
environment,” Concurrency and Computation: Practice
and Experience, vol.33, no.21, p.e6440, 2021.

[31] Z. Nezami, K. Zamanifar, K. Djemame, and E.,
Pournaras, “Decentralized edge-to-cloud load balancing:
Service placement for the Internet of Things,” IEEE
Access, vol. 9, pp.64983-65000, 2021.

[32] O.Y. Abdulhammed, “Load balancing of IoT tasks in the
cloud computing by using sparrow search algorithm,”
The Journal of Supercomputing, vol.78, no. 3, pp.3266-
3287, 2022.

[33] J. Li, X. Li, J. Yuan, and G. Li, “Load Balanced Data
Transmission Strategy Based on Cloud–Edge–End
Collaboration in the Internet of
Things,” Sustainability, vol.14, no.15, p.9602, 2022.

[34] I. Aqeel, I.M. Khormi, S.B. Khan, M. Shuaib, A.
Almusharraf, S. Alam, and N.A. Alkhaldi, “Load
Balancing Using Artificial Intelligence for Cloud-
Enabled Internet of Everything in Healthcare
Domain,” Sensors, vol. 23, no.11, p.5349, 2023.

[35] K.D.S. Devi, D. Sumathi, V. Vignesh, C. Anilkumar, K.
Kataraki, and S. Balakrishnan, “CLOUD load balancing
for storing the internet of things using deep load balancer

with enhanced security,” Measurement: Sensors, vol.28,
p.100818, 2023.

[36] Z. Shamsa, A. Rezaee, S. Adabi, and A.M. Rahmani, “A
decentralized prediction-based workflow load balancing
architecture for cloud/fog/IoT
environments,” Computing, vol.106, no.1, pp.201-239,
2023.

[37] M. Vijarania, S. Gupta, A. Agrawal, M.O. Adigun, S.A.
Ajagbe, and J.B. Awotunde, “Energy efficient load-
balancing mechanism in integrated IoT–fog–cloud
environment,” Electronics, vol.12, no.11, p.2543, 2023.

[38] I.Z. Yakubu, and M. Murali, “An efficient meta-heuristic
resource allocation with load balancing in IoT-Fog-cloud
computing environment,” Journal of Ambient
Intelligence and Humanized Computing, vol.14, no.3,
p.2981-2992, 2023.

[39] M.A. Ala’anzy, R. Zhanuzak, R. Akhmedov, N.
Mohamed, and J. Al-Jaroodi, “ Dynamic Load Balancing
for Enhanced Network Performance in IoT-Enabled
Smart Healthcare with Fog Computing,” IEEE Access,
2024.

[40] A. Mahapatra, S.K. Majhi, K. Mishra, R. Pradhan, D.C.
Rao, and S.K. Panda, “An energy-aware task offloading
and load balancing for latency-sensitive IoT applications
in the Fog-Cloud continuum,” IEEE Access, vol.12, pp.
14334 – 14349, 2024.

[41] M. Tishin, C.X. Mavromoustakis, and J.M. Batalla,
“Machine Learning methods in tasks load balancing
between IoT devices and the Cloud, IEEE Access,
vol.12, pp. 133726 – 133733, 2024.

[42] Z. Shamsa, A. Rezaee, S. Adabi, A.M. Rahimabadi, and
A.M. Rahmani, “A distributed load balancing method for
IoT/Fog/Cloud environments with volatile resource
support. Cluster Computing, vol.27, no. 4, pp. 4281 -
4320, 2024.

[43] N.R. Moparthi, G. Balakrishna, P. Chithaluru, M. Kolla,
and M. Kumar, “An improved energy-efficient cloud-
optimized load-balancing for IoT
frameworks. Heliyon, vol. 9, no.11, 2023.

