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Abstract:  Incorporating IoT devices such as smart appliances, routers, sensors, and cellphones into a singular network is the novel concept behind 

the Internet of Things. Cloud computing manages the storage and the processing of data produced by these IoT devices which require extensive 

amounts of data. The cloud also enables real time analysis of data that allows fast decision-making. In settings that require the integration of Cloud 

Computing and Internet of Things like Cloud-IoT, making the most out of the infrastructure with effective load balancing techniques becomes 

critical. These techniques serve the purpose of drowning out the faults, increasing throughput, and lowering execution and response time while 

also ensuring that there is fair workload distribution. With the intent of balancing the distinct and complex features of IoT, this articles aims to 

provide a summary on the various techniques of load balancing within a cloud environment, covering both centralized techniques as well as more 

advanced ones. This study digs deeper into the performance metrics and challenges, as well as application scenarios of all solutions, including 

energy usage, execution period, scalability, and workflow adaptability. Lastly, we present a comparison of the leading load sharing algorithm's 

effectiveness on a few tested IoT cloud systems. 
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I. INTRODUCTION 

The quick development of IoT devices—such as smart 
homes, healthcare, transportation, and industrial 
automation—has affected many different sectors [1].   The 
enormous volumes of data these devices generate call for real-
time storing and processing.   Growing in relevance inside IoT 
systems as a tool to achieve these goals, cloud computing 
offers scalable, flexible, reasonably priced solutions.   Cloud 
computing has the architecture needed to handle enormous 
amounts of data.   Combining the Internet of Things (IoT) with 
cloud computing generates a strong synergy that opens various 
applications to access advanced analytics, remote 
management, and real-time data processing [2].   Once 
gathered and sent by IoT devices, a great volume of data is 
processed, examined, and kept on the cloud.   Apart from 
providing the processing capability required for complex 
operations, cloud platforms are scalable and elastic—qualities 
crucial for enabling the exponential growth of IoT devices [3].  
Among the most urgent issues with IoT-cloud systems, 
though, are reducing latency, preserving dependability, and 
keeping resource use low.   Dealing with these problems 
depends much on using effective load balancing techniques.  

  Load balancing aims to enhance efficiency, prevent 
straining any one computing resource, and guarantee that all 
of the resources of a system are used to their best [4].   It 
guarantees that none of one server or node becomes a 
bottleneck so that Cloud-IoT applications run effectively and 
without problems.   Effective load balancing guarantees 
scalability and endurance of cloud-based IoT systems as well 
as improves Quality of Service (QoS) [5].  This is a must-have 
since growing demand for consistent IoT solutions spans 
many different fields.   Over years, many load-balancing 
techniques have been developed to address these problems.   
These algorithms employ task scheduling, resource allocation, 

and dynamic load distribution [6] among other tactics to meet 
their performance criteria.  Furthermore, changes in 
optimization algorithms and artificial intelligence (AI) have 
opened extra opportunities for creating more sophisticated and 
flexible load balancing techniques.   These advancements aim 
to keep up with the growing complexity and size of IoT-cloud 
systems thereby ensuring their usefulness in practical 
applications. 

 Moreover, edge computing as well as fog computing have 
become indispensable additional tools to overcome the limits 
of centralized cloud-IoT systems.   An all-encompassing 
architecture, fog computing assigns resources to smart devices 
sequentially via the cloud.   It not only stretches the cloud but 
also actively incorporates IoT-using networks [7].  Figures 1 
shows the load balancing process. 

 The parts that follow address algorithms, metrics 
influencing load balancing, challenges in load balancing 
implementation in Cloud-IoT environments.   Understanding 
the function of load balancing in distributed systems depends 
on some basic ideas that maximize performance, scalability, 
and effective use of resources.  

. 

1.1 Factors Influencing Load Balancing 

Many significant steps are taken to evaluate load-
balancing systems' general performance and effectiveness [8]. 

• Response Time (RT)- It is the period of time needed 
for a request to advance from submission to system 
first response. In time-sensitive applications, such IoT-
dependent healthcare systems, a reduced response time 
usually denotes better efficiency. 

• Throughput (TP)- Measuring the overall number of 
chores completed during a given period of time yields. 
Higher throughput assures that resources are being 
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used more wisely and shows that the system can 
properly handle tasks. 

• Scalability- It is also a crucial factor since it shows that 
the system can control unanticipated workload 
variations without performance deterioration. With a 
scalable load balancing method, which can adapt to 
various needs, one can maintain constant performance 
in always changing surroundings. 

• Resource Utilization (RU)- It is important since it 
gauges the efficiency of memory, storage, processing 
capability, and processing power consumption. 
Effective resource use is essential for both enhancing 
system performance and lowering energy consumption 
in environments sensitive to energy use, such IoT-
cloud ecosystems. 

• Makespan (MS)- Another important consideration is 
the general time required to finish any chore.   
Munising makespan is essential for applications with 
limited deadlines since it accelerates the execution of 
tasks. 

• Associated Overhead (AO)- It considers additional 
costs including task migration, algorithm running time, 
and communication delays, all of which must be 
avoided if the goal is to improve the operational 
effectiveness of the system. Using techniques that cut 
computational overhead without compromising 
performance is more long-term sustainable and 
efficient. 

• Energy Efficiency (EE) - Environmentally friendly 
computing is context, EE, is becoming ever more 
crucial.   Effective load balancing systems aim to 
maximize energy consumption without compromising 
system performance, therefore enabling the 
sustainability of big-scale cloud environments. 

• Service Level Agreement (SLA)- It gauges the 
system's conformity to accepted criteria of service 
quality including availability, response time, and 
prioritizing. Minimizing SLA deviations helps to 
maintain users' trust and satisfy contractual 
obligations. 

• Processing Cost– An important component is whether 
load balancing techniques are practical. Included in 
this group are running costs like extra software 
overhead, device upkeep, and energy consumption. 
Effective algorithms seek to increase job effectiveness 
while avoiding resource waste, therefore helping to 
control expenses. Thanks to cost-effective load 
balancing, which also ensures system durability, 
cloud-based IoT solutions are becoming accessible and 
reasonably priced for businesses. . 

These criteria taken together provide a thorough 
framework for evaluating load-balancing methods' handling 
of problems including varying workloads, various resources, 
and economy of cost-effectiveness. 

1.2 Challenges in Load Balancing for IoT-Cloud 
Environments 

The features of IoT networks cause several challenges that 
load balancing systems must overcome.   Creating effective 
solutions calls for a complete awareness of these issues [9].  

• The performance of cloud systems is greatly affected 
by workload patterns, which are defined by changing 
needs, unpredictable traffic behavior, and various 
applications.  To manage these differences and ensure 
smooth operations, effective techniques are required. 

•  The geographical dispersion of data centers in the 
cloud—typically found in far-off locations—cause 
transmission delays. Technologies like fog computing 
and edge computing are absolutely essential to address 
this since they help to lower latency by evaluating data 
closer to its source. Although fog and edge devices 
have few resources, it can be difficult to effectively 
control them. 

• Load balancing techniques are much shaped by 
financial and cost factors.   All methods have as their 
shared objectives reducing running expenses and 
optimizing the use of the resources at hand by removing 
pointless idle. 

• Given the often-changing character of applications and   
the consequent need for continuous monitoring, cloud 
services must also be elastic and scalable. Maintaining 
proper load distribution can be challenging depending 
on the level of monitoring. 

• Compliance with SLAs is an extra vital component 
since breached SLAs undermine the quality of cloud 
service providers. It is imperative to strike a mix 
between throughput, energy consumption, makespan, 
cost, and service quality. 

• While in some situations Virtual Machine (VM) 
migrations might maximize resources, if done too often 
they could compromise service quality. The temporal 
complexity of frequent virtual machine migrations rises 
due to the enormous volume of work involved in data 
migration including copy pages of memory to the 
destination system. 

• Load balancing's success mostly depends on the 
resources' availability. The existence of limited 
resources-induced bottlenecks can compromise the 
system's efficiency in managing tasks. Data centers 
also much worry about their energy use. Effective load 
balancing can lower power consumption by 
transferring VMs from hosts with high workloads to 
those with lesser loads. 

1.3 Algorithms used in Load Balancing            

In order to achieve efficient workload distribution in cloud 
and IoT-based systems, algorithms with a variety of 
approaches for workload allocation, resource optimization, 
and system performance improvement have been developed. 
Generic categorization into static, dynamic, and hybrid 
approaches is possible because to the fundamental ideas of 
these algorithms. The algorithms utilized for load balancing 
are displayed in Figure 2. 

A. Static Load Balancing Algorithms 

Since they distribute work according to pre-defined 
criteria [8], static algorithms are faster than dynamic ones and 
easier to implement. Among such methods are Weighted 
Round Robin (WRR) [11] and Round Robin (RR) [10]. 

B. Dynamic Load Balancing Algorithms 
Dynamic algorithms modify the allocation of tasks in real-

time based on the current condition of the system. They 
perform more effectively when faced with ambiguous 
obligations. These techniques include Least Connection (LC) 
[12], Equally Spread Current Execution (ESCE) [13] and 
Biased Random Sampling (BRS) [14].   

C. Hybrid Load Balancing Algorithms 
Hybrid algorithms leverage the optimal characteristics of 

both dynamic and static methodologies through their 
integration. One technique is PSO-DA, which denotes Particle 
Swarm Optimization combined with a Dragonfly Algorithm 
[15].  
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D. Artificial Intelligence and Machine Learning 
Algorithms 

Combining artificial intelligence and machine learning is 
helping new approaches enhance load balancing. Two such 
are algorithms grounded on fuzzy logic [17] and 
Reinforcement Learning (RL) [16].  

E. Metaheuristic Algorithms 
A main reason metaheuristic algorithms are becoming 

more and more popular is their ability to find almost ideal 
answers to challenging issues.   Such algorithms derive from 
biological processes previously reported in the physical 
sciences based on nature [17].    

 
. 

Figure 1.  Structure of load balancing

  

Figure 2.  Algorithms used in load balancing 

 

This include Ant Colony Optimization (ACO) [18], Genetic 

Algorithm (GA) [19], Simulated Annealing (SA) [20], Bat 

Algorithm (BA) [21], Firefly Algorithm (FA) [22], Cuckoo 

Search Algorithm (CSA) [23], Artificial Bee Colony (ABC) 

[24], Dragonfly Algorithm (DA) [25], Crow Search 

Algorithm (CSA) [26] and various hybrid algorithms such as 

HEHO-HAS [27].Because of its own respective benefits and 

drawbacks, every one of these algorithms is appropriate for a 

certain job.   Through load-balancing solutions tailored for 

cloud and IoT systems, these algorithms address scalability, 

latency, energy efficiency, and cost-effectiveness. This 

survey aims to provide a summary of the subject and focuses 

on modern load balancing algorithms created for IoT 

installations in the cloud.   By means of classification and 

evaluation of current approaches, this study reveals their 

advantages and drawbacks, therefore shedding light on the 

present situation of the subject by class.  
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 The following is the configuration of the surviving elements:   

Emphasizing the techniques and applications of load 

balancing algorithms created for IoT cloud systems, Section 

II provides a literature review on them.   In Section III, it 

contrasts and contrasts different survey forms highlighting 

both their advantages and drawbacks as well as their 

similarities.   By analyzing significant performance indicators 

and their impact on general system efficiency, Section IV 

evaluates the effectiveness of the approaches.   Section V at 

the conclusion of the survey offers a synopsis of the key ideas 

and recommendations for future research directions in this 

discipline. 

II. SURVEY ON LOAD BALANCING ALGORITHMS 

FOR CLOUD BASED IOT ENVIRONMENTS 

Xingjun et al. [28] showed using a Grey Wolf 
Optimization (GWO) technique to disperse the burden in 
cloud-based IoT environments, hence lowering reaction time 
and improving system performance.   Inspired by the social 
structure and hunting behavior of grey wolves, the approach 
follows how virtual machines (prey) are given tasks (wolves) 
depending on their load condition.   Using fuzzy logic, which 
assigns linguistic values—such as high, low, or moderate—to 
activities depending on CPU performance and virtual machine 
load guarantees efficient task allocation.  By matching 
resource-constrained virtual machines with non-used 
workloads, the method maximizes load distribution.  
Considering both response time and load imbalance, the 
fitness function of the algorithm aims to lower response time 
while yet attaining a balanced load among VM. 

 Zhang et al. [29] introduced a multiuser, execute many 
jobs, multitier Mobile-Edge Cloud Computing (MEC) system 
design, so optimizing processing time and energy utilization.   
Computation responsibilities are dynamically dispersed in this 
three-tier architecture among Mobile Devices (MDUs), edge 
servers or tiny Base Stations (BSs), and a central cloud server. 
The system integrates an orthogonal frequency-based 
communication model and a computation-based model to 
enable local or offload of activities and lowers interference. 
Load balancing among BSs is accomplished by use of a central 
control manager to allocate MDUs according to resource 
usage and computational demands.   The concept addresses 
security issues by including an AES encryption method 
augmented with cryptographic keys based on ECG data.  This 
method preserves important data during offloading.   
Recasting the optimization problem as a binary linear one 
allows them to use a secure Load Balancing and 
Computational Offloading (LBCO) technique ensuring 
efficient offloading options with minimum complexity. 

 Agarwal et al. [30] constructed a Load Balancing-
Assisted Access Control Mechanism (LB-ACM) inside a 
multilayer Edge-Fog-Cloud network design in order to 
provide load balancing and safe access control in IoT 
environments.  This architecture addresses excessive latency, 
network congestion, and unlawful access among other 
problems.  The design consists of three layers: the IoT sensors, 
the edge, and the cloud.   At the edge layer, abnormalities from 
IoT sensor generated data are pre-processed.   Dynamic load 
balancing and periodic network architecture refreshment by 
the fog layer helps before filtered data is sent to the cloud.  
Comprising VMs, firewalls, and Access Control Lists (ACLs), 
the cloud layer ensures safe access and effective resource use.  
Regarding the first load processing and distribution, the LB-
ACM's fog and edge layers take front stage.  Regarding the 
cloud layer, it keeps unwanted people out and manages traffic 

effectively using a three-tiered access control system 
comprising virtual machine-level authentication, ACLs, and 
firewalls. 

 Nezami et al. [31] developed a distributed multi-agent 
system known Electronic Point of Sale Fog (EPOS Fog) to 
effectively position IoT services over the edge-to---cloud 
continuum.  This approach balances loads and slow reaction 
times in IoT environments.   EPOS Fog seeks to Minimize the 
Variance in usage across network nodes (MIN-VAR) and the 
Cost of service execution (MIN-COST) with its two-objective 
optimization method.   The technology lets local agents design 
service placement strategies based on workload criteria and 
proximity of resources.  Using the I-EPOS method for group 
decision-making, they might also cooperate to maximize 
worldwide placement. 

 Abdulhammed et al. [32] suggested a two-stage technique 
for healthcare systems based on the IoT using the Sparrow 
Search Algorithm (SSA), therefore solving the load balancing 
issue in cloud computing.   This approach moves healthcare 
from standard in-hospital techniques toward real-time remote 
monitoring by using IoT wearable devices linked via wireless 
networks.   Between sensors and task queues, an IoT gateway 
serves as a link; these devices collect and forward patient 
data—including blood pressure and temperature—to it.   The 
system manages the enormous volumes of data using cloud 
computing, therefore relieving some of the demand on the 
infrastructure of the Internet.   The system depends critically 
on task queues, VMs, cloud brokers, and VM managers.   
Maintaining focused attention on tasks, maintaining sufficient 
resources, and liaising with the cloud broker—who assigns 
tasks to VM—using the SSA—are responsibilities of the VM 
manager.   By weighing their fitness value—derived from 
metrics including execution speed, storage use, and CPU 
use—the SSA decides how best to divide work among VMs. 

 Li et al. [33] developed a load-balanced data-layered 
transmission strategy inside a cooperative Cloud-Edge-End 
(CEE) IoT architecture in order to address the several and 
diverse data processing requirements of IoT applications.  The 
design divides the edge layer into two sections: the intelligent 
edge device level and the edge infrastructure layer, therefore 
increasing data routing efficiency.   By assigning jobs to the 
suitable levels depending on data type, flow size, and available 
resources, the classification of data transmission into real-
time, near-real-time, and non-real-time guarantees that 
heterogeneous devices may communicate effortlessly.   A 
central control module dynamically controls resource 
allocation and hierarchical data routing to maximize system 
performance, hence perhaps using Software-Defined 
Networking (SDN).  Furthermore balanced in this module are 
packet delivery rates, energy usage, and latency.  

 Aqeel et al. [34] used the Chaos-based Horse Ride 
Optimization Algorithm (CHROA) method to develop a load-
balancing and energy-saving strategy for IoE systems housed 
in the cloud.   IoT networks as well as cloud computing are 
included into the system design.  Under this system, data is 
transferred from cluster members to the cloud via cluster 
heads while clusters are generated using CHROA.   Using the 
notion of chaos and hierarchical behavior in horse herds, the 
CHROA algorithm balances the exploration and exploitation 
phase so enhancing global optimization.   Apache Flume and 
Apache Spark respectively handle real-time data input and 
processing while storage is under control by the Hadoop 
Distributed File System (HDFS). 

 Using a Deep Load Balancer (DLB) to control the 
enormous volumes of data generated by IoT devices in the 
cloud, the authors Devi et al. [35] proposed a method for IoT 
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data storage in the cloud.   By combining a real-time 
scheduling approach and deep learning techniques such as 
Restricted Boltzmann Machines (RBM) and Deep Belief 
Networks (DBN), the model minimizes latency and 
maximizes load balancing.   The three key components of the 
DLB approach are Dynamic Scheduler (DS), which chooses 
which servers are most suitable to perform the task; Deep 
Classifier (DC), which decides whether cloud servers are fit 
for the task; Loud Resource Monitor (CRM), which preserves 
cloud resources.   The DLB approach works well since it 
maximizes and normalizes resource characteristics, therefore 
improving resource allocation and reducing latency.   The 
model also underlines the need of evenly spreading workload 
among VMs in the cloud in order to maximize general load 
distribution, Energy Consumption (EC), and task execution 
time (ET). 

 Shamsa et al. [36] developed the Multiple Workflow 
Scheduling with a Load-Balancing Approach and Dynamic 
Resources Allocation (MWL-DRA) paradigm to control 
several workflow scheduling in hybrid cloud, fog, and IoT 
settings.   It consists of layers one through four: Workflow 
Generator Layer (WGL), Fog Computing Layer (FCL), 
Resource Analyzer Layer (RAL) and Cloud Computing Layer 
(CCL).  By means of fog nodes, the intermediary level with 
moderate processing capacity bridges the WGL with the IoT 
devices producing particular resource requirements.   Part of 
the CCL are powerful computers situated in data centers 
capable of handling large processing and vast data storage.   At 
the core of this design, the RAL manages the cellular, regional, 
and system levels of load balancing; it is in charge of 
analyzing and assessing events from the other layers, therefore 
generating workload projections, and allocating resources.  
Using Kruchten's 4+1 model—which incorporates a scenario 
view for requirement identification in addition to process, 
logical, physical, and developmental viewpoints—the 
framework is further detailed  Essential components of RAL 
designed to dynamically allocate resources and maximize 
workflow scheduling are the Data Logger, Models Trainer, 
Status Predictor, LBP Maker, and Load Balancer.  Including 
ATAM-based evaluation into the design helps one assess 
quality characteristics including performance, scalability, and 
dependability. 

 Vijarania et al. [37] proposed a combined fog-computing 
model for efficient energy management and load balancing in 
an IoT-fog-cloud environment to address problems including 
increasing congestion in fog devices, decreasing performance 
of fog gateways, and delayed transmission links generated by 
the fast expansion of IoT devices.  By giving fog nodes top 
precedence over cloud nodes, the three- stage architecture of 
the model allowed for the optimization of resource usage, 
decrease of latency, and energy economy. 

 Yakubu and Murali [38] presented the Modified Harris 
Hawks Optimization (MHHO) method and the layer fit 
strategy to control resources and distributing tasks in IoT-Fog-
Cloud environments.  The Layer Fit Method guarantees 
effective distribution of the fog as well as cloud layer with 
workloads by ranking jobs according to delays like processing 
and transmission time.   Processing work with a higher priority 
and forwarding lower priority activities to the cloud helps one 
avoid the resources of the fog from becoming overwhelmed.  
The MHHO algorithm enhances the fundamental HHO by 
using a load-balancing mechanism for equitable distribution 
of resources and including an enhanced energy update strategy 
to avoid local optima.   Resource administrators monitor the 
active capacity of every level in the model architecture—edge 
devices, BSs, fog devices, and cloud resources.  

 Ala'anzy et al. [39] created the Optimized Load Balancing 
(OLB) method to enhance network performance in healthcare 
systems depending on the IoT.  IoT devices track patients' 
vitals in real time; fog nodes process data in real time near 
BSs; the cloud layer keeps data for use later on.  OLB employs 
an array-based strategy to efficiently manage and update 
traffic and computational loads, therefore significantly 
lowering superfluous computations and increasing scalability.  

 Using a fuzzy logic approach, Mahapatra et al. [40] 
developed a three-tiered IoT, fog, and cloud architecture to 
maximize the load balancing and job scheduling in computer 
systems.  User request generation from scattered smart devices 
comes from the IoT layer; intermediary networking nodes and 
clusters of Fog nodes supplied by a Fog Controller (FC) come 
from the Fog layer; and resource-intensive job hosting in data 
centers comes from the Cloud layer.  The system sorts 
activities into high, medium, and low priority using fuzzy 
logic after weighing elements such task length, start time, and 
delay limits.   While high-priority tasks are passed over 
effective nodes in the fog or the cloud to lower delay, low-
priority tasks are managed locally.  Apart from a Binary 
Linear-Weight JAYA (BLWJAYA) algorithm for effective 
task scheduling, a compatibility-based work offloading 
technique employing cosine similarity for fair load allocation 
between fog nodes was also developed. 

 Shamsa et al. [41] were able to maximize resource 
management in IoT-cloud-fog computing systems and prevent 
either over- or underuse of the resources by tackling the 
critical problem of allocating resource workloads equitably.   
A Load Balancing Plan (LBP) looking at resources to 
maximize usage among Data Centers (DCs), Fog Points (FPs), 
and IoT nodes achieves this.   Thirdly, the model consists of 
the System Management Component (SMC), the Region 
Management Component (RMC), and the Cell Management 
Component (CMC), in that sequence.  The SMC divides the 
system into grid cells of uniform size, generates a Cellular 
Coordinates Map (CCM) for effective administration, and 
assigns resources to their matching cells.   The RMC creates 
Long Short-Term Memory (LSTM) algorithms to estimate 
workload patterns and generates the LBP so that tasks from 
Overloaded Cells (OLCs) may be transferred to Underloaded 
Cells (ULCs).  It then examines system events.   To keep 
everything in balance, the CMC last but not least handles local 
scheduling, process distribution, and cell-level load balancing. 

 With an eye toward enhancing task offloading between 
devices, fog, and cloud servers, Tishin et al. [42] proposed ML 
for use in load balancing in IoT systems.  It shows how 
supervised and reinforcement learning may be employed as 
well as how Natural Language Processing (NLP) and Large 
Language Models (LLMs) may be used to forecast runtime 
complexity like Big(O) using examples of network traffic 
analysis and job scheduling.  By matching tasks to suitable 
devices, assessing device capabilities, and hence ensuring 
effective resource utilization and task allocation, the LLM 
model guarantees.  

 Moparthi et al. [43] introduced an energy-efficient load-
balancing system to address problems including resource 
restrictions, changing workloads, and energy usage in IoT-
based cloud environments.  IoT sensors gather varied data, 
process it using edge-computing technologies, and then 
forward some data to the cloud for analysis. One of its main 
characteristics is the Energy Sensitive Balancing Load 
(ESBL) algorithm, which considers metrics like CPU use, 
power consumption, memory usage, and SLA violations to 
optimize workload distribution. IoT sensors. The ESBL 
algorithm assures effective job allocation across VM, 
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therefore lowering operational expenses and energy 
consumption and increasing resource economy and 
scalability. 

III.    COMPARATIVE ANALYSIS 

The evaluation of the aforementioned literature 
comparison is presented in this section.  

Table I.  Comparative analysis of different load-balancing models 

Ref No. Techniques Merits Demerits Environment 

used 

Performance Metrics 

[28]  GWO The model improves system 

performance, balances load, and 

reduces reaction time, all of 

which contribute to an 

improved user experience and 

meetability of service level 

agreements. 

Because of the model's 

iterative optimization 

process, it may induce higher 

energy consumption. 

CloudSim Degree of load imbalance = 0.95/ 1000 

tasks, Runtime = 96.5/ 400 tasks 

[29]  MEC, Secure 

LBCO, AES 

By reducing data transmission 

and optimizing resource 

allocation, integrating load 

balancing with security lowers 

communication costs. 

While offloading, the model 

works with static MDUs, but 

performance could suffer if 

MDUs are constantly 

switching across sBSs. 

MATLAB System cost (energy and time to execute 

tasks) = 11x106 / 10 tasks 

[30]  LB-ACM The approach enhances system 

efficiency by minimizing 

needless strain on resources and 

optimizing CPU consumption in 

the cloud network. 

Packet loss can happen in 

surroundings that are 

constantly changing. 

Amazon Web 

Service (AWS) 

CPU utilization = 26%, Average 

Network packets in = 6845 count, 

Average Network Packets Out = 6472 

count 

[31]  EPOS Fog As the number of agents 

increases within the network's 

fixed capacity, the model's 

performance remains good, 

demonstrating its ability to scale 

in dispersed contexts. 

The most error-prone cases 

involve beta service 

distribution, which shows 

that workload allocation 

might impact the model's 

performance. 

Google cluster 

trace 

For BA topology: Load balance 

improvement = 0.13, Normalized error 

=0.9, Utilization variance = 0.17. For 

WS topology: Load balance 

improvement = 0.15, Normalized error 

=0.88, Utilization variance = 0.73. For 

ER topology: Load balance 

improvement = 0.172, Normalized error 

=0.73, Utilization variance = 0.198. 

[32]  SSA The possibility of overloading is 

decreased because the model 

makes optimal use of the VMs. 

In extremely changing 

contexts, when job durations 

and virtual machine 

capabilities fluctuate 

erratically, the system's 

adaptability may be 

compromised. 

CloudSim For 500 task, Degree of imbalance = 

177.7675, processing time=899.8979 

ms, Makespan time =23.05 ms, 

[33]  CEE Reducing computing 

complexity, improving QoS, 

and supporting varied IoT 

scenarios are all achieved using 

this method. 

Due to its absence of CEE 

IoT layer-specific data 

forwarding models and its 

use of a random method to 

pick target nodes, the system 

produces outcomes that are 

less than objective. 

MATLAB 

R2020b 

For 15 edge infrastructure, Cumulative 

delivery rate = 0.878/50 MB, System 

throughput = 579 Mbps/ 20000 packets, 

(For medium load) Average delay = 1 

ms/ 320 kb 

[34]  CHROA, 

HDFS 

The suggested architecture 

provides real-time, low-latency 

services, allowing for efficient 

machine-to-machine 

interactions; this is particularly 

true in healthcare applications. 

Particularly in large-scale 

deployments, the suggested 

methodologies' practical 

consequences and real-world 

applications are 

fully unaddressed. 

MATLAB Average throughput = 70.122 kbps, 

End-to-End (ETE) delay = 0.0643 s, 

Normalized overhead = 0.4069, 

Network lifetime = 510.256 s, Total 

energy consumption = 5.1289 J 

[35]  DLB, CRM, 

RBM, DBN, 

DC, DS 

By assessing available cloud 

resources before to assigning 

tasks, the approach ensures 

secure task allocation. 

There has been no 

investigation into how 

external variables, such as 

network latency, could 

impact performance. 

CloudSim For 50 VMs, Response time = 0.36 ms, 

makespan = 0.709 ms, Overhead = 0.75, 

migration time = 0.09 ms 

[36]  MWL-DRA Job scheduling is very 

successful with few 

unscheduled jobs, which is a 

sign of good task management. 

. 

In cases when there is a 

sudden increase in workload 

or when IoT or fog nodes 

fail, the approach might not 

be able to cope well.  

MATLAB Average time steps = 1210.5, standard 

deviation = 15.45, Max time steps = 

190, Minimum time steps = 81, 

Skewness = 0.11, kurtosis = 0.522 

[37]  Fog 

computing 

By dividing up work across the 

cloud and fog layers, the 

technique decreases 

computational and transmission 

delays, leading to more efficient 

operations and quicker reaction 

times. 

Under conditions of very 

high data flow, the 

algorithm's performance may 

suffer. 

iFogSim Network lifetime = 479 s/ 350 load, 

Energy consumption = 0.85 J/ 500 

nodes, Average delay = 36 ms/ 700 

nodes, response time = 98 ms/ 400 

nodes 

[38]  MHHO, 

Layer fit 

algorithm 

In response to changes in the 

system's workload or the 

quantity of virtual machines, the 

MHHO paradigm performs 

admirably. 

The model continues to 

encounter difficulties when 

dealing with higher quantities 

of jobs or virtual machines, 

which can lead to significant 

iFogSim For 100 tasks and 20 VMs, Execution 

cost = 17 x 106, Average makespan time 

= 5s, Energy consumption = 71234 
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increases in energy 

consumption. 

[39]  OLB OLB’s real-time adaptability 

makes it particularly well-suited 

for time-sensitive applications 

Improper allocation might 

still occur under certain 

conditions, which can reduce 

overall system efficiency. 

iFogSim For 4 cases, Latency = 7.11 ms, 

Execution time= 7525 ms, Cost of 

execution = 91609.27, Network usage = 

13392 bytes, Energy consumption = 

934162.95 kWh 

[40]  Fuzzy logic, 

BLWJAYA 

The use of fuzzy logic to 

classify tasks ensures that tasks 

are offloaded to the most 

suitable compute node 

If the fuzzy logic rules are 

not finely tuned, it could lead 

to misclassification, resulting 

in suboptimal task offloading 

iFogSim For consistent and high task_machine 

heterogeneity: Service rate =1.12 E + 

05, Resource utilization = 96.29, 

Latency = 164.73, Energy 

consumption= 262.82, Load balancing 

rate = 261.83 

[41]  LBP The model minimizes workflow 

rejections, fostering a more 

efficient and scalable resource 

management framework. 

The effectiveness of the 

model relies on the accurate 

prediction of workflow loads 

and available resources, 

which could be challenging 

in environments with highly 

variable workloads. 

Velociraptor Average variance = 21468.28, 

Workflow completion rate =91.7%, 

Average resource utilization = 67.9% 

[42]   LLM Using Docker containers to 

replicate IoT devices with 

different processing capacity 

allows one to test several device 

configurations without using 

real hardware. 

Notable issues such as 

uneven job distribution, 

inaccurate Big(O) forecasts, 

and energy limits are 

recognized. 

Google Cloud 

instance 

O (n2): execution time = 5ms 

[43]  ESBL The platform easily supports 

scalability as well as adaptation 

for various kinds of IoT tasks. 

Using cloud resources, 

particularly at scale, may still 

incur expenses, even while 

the framework strives to 

optimize resource utilization. 

-   Energy consumption = 36.81 kWh, 

Number of node shutdowns = 795, 

Execution time = 0.00198 s 

 
 

Table 1 lists all the models together together with their 
advantages, disadvantages, and performance records.  Two 
fundamental performance criteria—energy consumption and 
execution time—are applied to evaluate several approaches.   
To assess the energy consumption and time needed for 
execution efficiency of several models, it investigated six 
different approaches ESBL [43], Fuzzy Logic [40], OLB [39], 
MHHO [38], Fog [37], and CHROA [34].   The impossibility 
to create direct comparisons results from the fact that every 
model presents various numbers for evaluating energy.   In 
order to address this challenge, they thus substitute textual 
analysis for visual representation.   Table 1 of the comparison 
analysis demonstrates that ESBL can easily manage several 
kinds of IoT tasks.    

OLb consumes 934,162.95 kWh for 64 IoT and 4 fog 
nodes, far more than ESBL's 36.81 kWh per 100 VMs.   
Though all of the other models use less energy overall, the 
ESBL model remains the most efficient when it comes to 
scalable activities using standard VM setups. When it comes 

to execution speed, the OLB model takes 7, 525 ms for 64 IoT 
and 4 fog nodes; ESBL's 1.56 ms per 100 VMs is lightning 
quick and clearly shows advantage here.  GWO executes in 
96.5 ms, far less than the ESBL's time.  Figure 3 shows the 
times needed for the execution of many models.   

As OLB differs greatly from the other two models, it is not 
displayed in the graphic to help to clarify the distinction.   
Eliminating OLB reveals the relative execution speeds of 
ESBL and GWO, therefore stressing the significant difference 
in execution time between these two models and clarifying 
their performance.   Looking at these criteria taken together, 
ESBL is obviously the best and most balanced choice.   Its 
exceptional performance in these domains qualifies it for 
applications requiring quick processing and low power 
consumption. Table 2 offers a succinct summary of the 
literature review grounded in the chosen metrics.   Most of the 
publications concentrate on time and energy since their main 
measurements are these.  

Table II.  Metrics used in the related papers  

Metrics / 

Methods   

Energy 

Consumption 

Execution 

Time 

Processing 

Cost 

Latency Makespan 

time 

Resource 

Utilization 

Throughput Response 

time 

Over 

head  

GWO  ✓      ✓  

Secure LBCO   ✓       
LB-ACM      ✓    

EPOS Fog    ✓      
SSA  ✓        
CEE    ✓   ✓   

CHROA ✓   ✓   ✓  ✓ 

DLB     ✓   ✓ ✓ 

MWL-DRA          
Fog ✓   ✓    ✓  

MHHO ✓  ✓  ✓     
OLB ✓ ✓ ✓ ✓      

Fuzzy Logic ✓   ✓  ✓    
LBP      ✓    
LLM  ✓        
ESBL ✓ ✓        
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IV. CONCLUSION 

Effective load balancing is mostly responsible for 
improving the energy economy, scalability, and performance 
of cloud-based IoT systems. They have examined several load 
balancing techniques in this survey, each having advantages 
depending on the particulars of an IoT context such as 
resource availability, network condition, and real-time 
processing need. Although more recent systems using modern 
technologies handled the dynamic and heterogeneous 
character of IoT tasks considerably better, previous methods 
functioned effectively in centralized settings. Invest in 
creating innovative algorithms investigating additional speed, 
energy economy, and scalability far into the future. 
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