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Abstract: The Task Technology Fit (TTF) model is a key framework in information systems research that examines the relationship 

between user task needs and technological capabilities. Structural Equation Modeling (SEM) and Bayesian Structural Equation 

Modeling (BSEM) are effective tools for analyzing the TTF model. SEM reveals complex relationships between observed and latent 

variables, while BSEM is particularly useful for dynamic analyses, incorporating prior information and updating the model in 

sequential steps. This study compared the performance of SEM, BSEM, and sequential Bayesian SEM in analyzing the TTF model, 

using Normal and Beta prior distributions. The Bayesian Information Criterion (BIC) assessed model fit, and the Root Mean Square 

Error (RMSE) evaluated coefficient accuracy. The results indicate that sequential BSEM effectively analyzes models like TTF in 

sequential conditions. The Beta distribution, known for its stability, is more suitable for sequential Bayesian models. This study 

introduces a new analytical framework to aid future research in information systems and sequential Bayesian analysis. 
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I. INTRODUCTION 

The rapid growth of information and communication 

technology, along with the use of analytical models to evaluate 

the performance of IT systems in organizations and 

communities, has made this practice increasingly common. 

Goodhue and Thompson [1] introduced the Task  Technology 

Fit (TTF) model, one of the most popular models in this area. 

The TTF model argues that technology can improve 

performance only when there is a strong match between the 

tasks users need to accomplish and the technology's capabilities. 

It also examines how well technology supports users' tasks and 

identifies the conditions under which technology boosts 

efficiency and productivity. 

 

One of the most widely used methods to analyze TTF is 

Structural Equation Modeling (SEM) through mathematical 

models. SEM tests hypothesized patterns of directional and 

nondirectional relationships among a set of observed 

(measured) and unobserved (latent) variables [2]. 

The general expression for the SEM (1) is as follows: 

 

                           𝜂 =  𝐵𝜂 +  𝛤𝜉 +  𝜁                                      (1) 

 

Where η is the vector of latent dependent variables, ξ is the 

vector of latent independent variables, B is the coefficient 

matrix representing relationships among latent dependent 

variables, Γ is the coefficient matrix for the effects of latent 

independent variables on latent dependent variables, and ζ is the 

vector of structural disturbances. 

Recently, Bayesian Structural Equation Modeling (BSEM) 

has gained increased attention. The approach allows for the 

incorporation of prior knowledge and its update as new data 

becomes available. This is particularly useful when data are 

collected continuously over time. The Bayesian approach is 

well recognized in the statistics literature as an attractive 

approach to analyzing a wide variety of models [3][5]. 

The traditional equation for BSEM is based on Bayes' 

theorem, where prior distributions and likelihood functions are 

combined to estimate posterior distributions of parameters in a 

SEM. (2) 

 

                       𝑃(Θ | 𝑌)  ∝ 𝑃(𝑌 | Θ) 𝑃(Θ)                          (2) 

 

Figure 1. The Task Technology Fit Model 
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Where 𝑃(Θ | 𝑌)  is the posterior distribution of the 

parameters (Θ) given the observed data (Y), 𝑃(𝑌 | Θ)  is the 

likelihood function, representing how the observed data are 

generated given the model parameters, 𝑃(Θ)  is the prior 

distribution, encapsulating prior beliefs or information about 

the parameters before observing the data, and  ∝  implies 

proportionality, as the equation is normalized to ensure the 

posterior is a valid probability distribution [4]. 

A key challenge in Bayesian analysis is selecting the 

appropriate prior distribution for the model parameters. The 

Normal distribution and Beta distribution are two common 

options. Due to its simplicity and symmetrical properties, 

Normal distribution is often the default choice. However, the 

Beta Distribution is more flexible and is better suited for 

modeling parameters with bounded values. 

This study proposes a novel framework for analyzing the 

TTF model by comparing methods such as SEM, Bayesian 

SEM, and sequential Bayesian SEM. The data are used 

comprehensively and sequentially. We evaluate the framework 

by assessing Normal and Beta prior distributions for model fit 

with Bayesian Information Criterion (BIC) and parameter 

estimate accuracy with Root Mean Square Error (RMSE). 

This research used 200 real data samples from Alessandro et 

al.[10]. Due to insufficient data for BSEM, ten simulated 

datasets of 2,000 samples each were created based on estimates 

from a real data SEM model to assess their similarity to the real 

data. 

The dataset analysis involved two phases: static analysis 

using SEM and BSEM on 2,000 samples, and sequential 

analysis dividing the dataset into two parts of 1,000 samples 

each. The posterior distributions from the first dataset served as 

priors for the BSEM model on the second dataset. 

This paper presents a novel approach to analyzing the TTF 

model, comparing Normal and Beta prior distributions in SEM 

and BSEM. It emphasizes the benefits of a sequential Bayesian 

methodology for sequential data analysis, aiming to help 

researchers adopt more effective tools for TTF modeling. 

II. DATA CREATION 

This study uses an international reference article [10] to 

model TTF and assess the performance of BSEM using a 

provided dataset of key variables. 

A. REAL DATA 

The reference article provides a dataset of 200 samples with 

key variables related to the TTF model, capturing key variables 

such as Task Technology Fit (TTF), Task Orientation (TO), 

Perceived Usefulness (PU), Perceived Ease of Use (PEOU), 

Future Learning Intentions (FLI), and Behavioral Intention 

(BI). It includes observed variables: comp1 to comp5 for TTF, 

oppform1 to oppform3 for TO, ut1 to ut6 for PU, fac1 to fac6 

for PEOU, int1 to int3 for BI, and fut1 to fut3 for FLI. However, 

this sample size is too small for BSEM, which needs a larger 

sample for accurate estimates and effective model evaluation, 

particularly in sequential data analysis or prior distribution 

comparisons. 

B. SYNTHETIC DATA 

To address the limitations of the original dataset size, we 

generated ten synthetic datasets, each containing 2,000 samples. 

This approach ensured that the datasets accurately reflected the 

original data while introducing variability for analytical rigor. 

The methodology is outlined below: 

a) Synthetic datasets are generated using SEMs to define 

relationships between latent and observed variables. 

b) Parameters for SEMs, including path coefficients, 

variances, and covariances, are estimated from the 

original data. 

c) Synthetic datasets are evaluated for alignment with 

SEM and real data using statistical fit indices. 

Comparative Fit Index (CFI) assesses model fit against 

a baseline model. The TLI evaluates model fit while 

accounting for complexity. High index values show 

that the synthetic datasets accurately replicate the 

original data's structure and relationships [8]. 

d) Various SEM configurations are tested, and the best 

model is selected based on statistical fit and theoretical 

validity. 

e) Ten synthetic datasets are created with the selected 

SEM to match the original data. (shown in Figure 2) 

 

 

The data generation process provides a strong foundation 

for Bayesian analyses in this study. By aligning synthetic 

datasets with the original data's statistical characteristics, it 

ensures reliability in evaluations. This generated data allows for 

a thorough assessment of model performance under static and 

sequential conditions, essential for advanced methods. It also 

facilitates a comparison of prior distributions, specifically 

Figure 2. Selected Structural Equation Model (SEM) 
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Normal and Beta, supporting meaningful insights and research 

advancement. 

III. PRIOR DISTRIBUTIONS CHARACTERISTICS 

This study focuses on analyzing the characteristics and 

performance of the Normal and Beta prior distributions in 

BSEM. Choosing an appropriate prior distribution is critical to 

the accuracy of coefficient estimates and model fit in Bayesian 

models [6]. These two distributions are also utilized as priors 

for analyzing the TTF model, and the results are compared. This 

section aims to identify each distribution's strengths and 

weaknesses and assess their impact on Bayesian model 

performance under static conditions. 

A. FEATURES OF DISTRIBUTIONS 

The Normal distribution, recognized for its simplicity and 

symmetry, is a key tool in statistical modeling, essential in many 

applications. The Normal distribution serves as a benchmark in 

this study, given its common use as a default prior in Bayesian 

methods, enabling robust comparisons with other prior 

distributions. This choice emphasizes the distribution's 

importance and ensures a meaningful evaluation of its 

effectiveness in the study. 

The Beta distribution is ideal for modeling variables in the 

[0,1] range, making it suitable for probabilities or ratios. Its 

flexible shape allows for precise modeling of diverse behaviors, 

making it a strong choice for predicting parameters within 

bounded intervals and ensuring alignment with theoretical and 

practical needs [8]. 

IV. EVALUATION OF METHODS 

Two indices were selected to compare the distributions. 

BIC is a model selection tool. This criterion evaluates model fit, 

where lower values indicate better accuracy and less 

complexity. The BIC favors models that explain the data well 

while minimizing unnecessary parameters [7]. 

RMSE is a key metric for assessing prediction accuracy. 

RMSE evaluates the accuracy of coefficients. A lower RMSE 

signifies greater accuracy in estimates. 

The evaluation and comparison were based on three 

scenarios: The average indices across conditions were 

analyzed.  The lowest BIC and RMSE values were analyzed. 

The highest index values were analyzed. This approach 

provides a thorough evaluation of models and distributions 

from multiple perspectives. 

V. EXPERIMENTS 

A. Comparative Evaluation of Traditional SEM and 

Bayesian SEM 

In this section evaluated and compared the performance of 

traditional SEM and Bayesian SEM through static analysis. It 

investigated the impact of prior distributions (Normal and Beta) 

in BSEM compared to traditional SEM, using a dataset of 2,000 

samples. 

Traditional SEM: This method analyzed 2,000 sample data 

points without prior distributions. This analysis uses Maximum 

Likelihood Estimation (MLE) to calculate model coefficients. 

Bayesian SEM: This method used two types of prior 

distributions to estimate model coefficients. A standard Normal 

distribution (mean zero, variance one) served as the prior for the 

model coefficients. The Beta distribution was defined with 

suitable parameters for the coefficient range, and its flexibility 

was used in the analysis. 

1) Analysis of Results 

These experiments highlight key observations on Normal and 

Beta priors in Bayesian modeling. The average BIC was lower 

for the Normal prior, indicating its better balance of model fit 

and complexity (Table I). In the worst case (the most 

challenging or least favorable scenario), Normal priors showed 

a better BIC than Beta priors (Table II). In the best case (the 

most ideal or favorable scenario), Normal priors showed the 

best performance, highlighting their robustness (Table III).  

The Normal prior generally showed lower RMSE values than 

the Beta prior, indicating more accurate coefficient estimations. 

The Beta prior, while competitive, generally showed higher 

RMSE values, indicating lower precision in its estimations. 

 
Table I. Compared Average of Traditional SEM and BSEM 

 Traditional 
SEM 

Normal 
BSEM 

Beta 
BSEM 

BIC 60320.718 59251.32 59964.91 

RMSE 0.7054685 1.204484 1.217048 

 
Table II. Compared Worst Case of Traditional SEM and BSEM 

 Traditional 
SEM 

Normal 
BSEM 

Beta 
BSEM 

BIC 61404.35 61989.76 62686.21 

RMSE 0.7739375 1.209107 1.221524 
 

Table III. Compared Best Case of Traditional SEM and BSEM 

 Traditional 
SEM 

Normal 
BSEM 

Beta 
BSEM 

BIC 59053.02 54208.67 55080.59 

RMSE 0.67207 1.200621 1.215127 
 

In summary, traditional SEM demonstrated greater accuracy 

in coefficient estimation than the Bayesian approach. The 

Normal prior consistently outperformed the Beta prior in key 

metrics, achieving lower BIC and RMSE values. These results 

highlight the reliability of the Normal prior in Bayesian 

modeling and the precision of the traditional SEM method. 
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B. Comparison of Normal and Beta Priors in Sequential 

BSEM 

Sequential BSEM is an innovative approach to analyzing 

data that becomes available sequentially. This method is 

beneficial in cases where data are entered into the model in 

multiple stages, and there is a need to update the coefficients 

and model fit at each stage. In this research, the generated 

synthetic data (2000 samples) were divided into two sequential 

subsets, and BSEM was executed using two types of prior 

distributions: Normal prior and Beta prior.

 
Table IV. Compared Average of Normal and Beta Priors in Sequential BSEM 

 

 
Table V. Compared Worst Case of Normal and Beta Priors in Sequential BSEM 

 

Table VI. Compared Best Case of Normal and Beta Priors in Sequential BSEM 

The main objective was to assess the performance of these 

distributions under sequential conditions and to compare their 

accuracy and stability at each stage. 

 

1) EXPERIMENTAL DESIGN 

The 2000-sample dataset was divided into two equal subsets 

(1000 samples each): 

Stage 1: The first 1000 samples were entered into the model 

to estimate the coefficients and evaluate the model fit. 

Stage 2: The second 1000 samples were added to the model, 

but in this stage, the prior information was obtained from the 

posterior of Stage 1 to update the coefficients and model fit. 

This method also used two types of prior distributions to 

estimate model coefficients. 

Normal Distribution: In the first stage, a standard Normal 

distribution (mean = 0, variance = 1) was used as the prior. In 

the second stage, the Normal distribution parameters were 

updated using the values obtained from the posterior of Stage 1. 

Beta Distribution: In the first stage, Beta distribution (alpha 

= 1, beta = 1) was used as the prior. In the second stage, the 

updated coefficient values from the posterior of the first stage 

were used to redefine the Beta distribution. 

2) Analysis of Results 

Table IV,Table V, andTable VI show the sequential analysis 

of RMSE and BIC indices between Stage 1 and Stage 2 reveals 

insights into the behavior of Normal and Beta priors under 

sequential conditions. 

The Normal prior's performance was nearly the same in both 

stages for RMSE and BIC. The lack of change indicates that the 

Normal prior has limited adaptability in sequential processes, 

hindering its ability to model evolving patterns. 

The Beta prior improved significantly from Stage 1 to Stage 

2, especially in RMSE, achieving greater accuracy. These 

results show the Beta prior's adaptability during updates, 

improving its effectiveness in capturing sequential changes. 

The sequential results show that the Normal prior maintains 

stability but does not effectively leverage sequential processes 

for improvement. In contrast, the Beta prior demonstrates 

significant progress, making it more suitable for sequential 

Bayesian modeling, where adaptability is essential. 

VI. CONCLUSION 

This study compares Normal and Beta priors in Bayesian 

modeling, evaluating their performance in static and sequential 

conditions through comprehensive experiments. The findings 

reveal distinct strengths and limitations, offering insights for 

selecting priors in different contexts. 

The Normal prior excelled in static settings, achieving the 

lowest BIC and RMSE values, and demonstrating robustness 

for stability-focused models. However, it showed static 

 Stage 1 
Normal 

Stage 2 
Normal 

Stage 1 
Beta 

Stage 2 
Beta 

BIC 29897.6185 29642.8891 30243.0026 29642.9019 

RMSE 1.204482 1.204737 1.217512 1.204763 

 Stage 1 
Normal 

Stage 2 
Normal 

Stage 1 
Beta 

Stage 2 
Beta 

BIC 31236.769 31043.611 31552.329 31043.625 

RMSE 1.208771 1.209317 1.221049 1.209324 

 Stage 1 
Normal 

Stage 2 
Normal 

Stage 1 
Beta 

Stage 2 
Beta 

BIC 27394.07 27083.669 27812.868 27083.664 

RMSE 1.201072 1.19992 1.215512 1.199917 
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performance in sequential processes, indicating a lack of 

adaptability to evolving data structures. 

The Beta prior showed strong adaptability in sequential 

processes, significantly improving RMSE across stages. This 

highlights its effectiveness in modeling changes over time. 

While it performed slightly worse than the Normal prior in static 

conditions, its ability to improve in sequential contexts makes it 

a valuable choice for analysis. Beta improves with more 

datasets, increasing its adaptability in modeling sequential 

processes. 

In conclusion, the findings emphasize the need to align prior 

selection with the modeling context. The Normal prior is best 

for static modeling, while the Beta prior suits sequential 

processes. These results suggest future exploration of hybrid 

approaches that merge the stability of the Normal prior with the 

adaptability of the Beta prior, opening new avenues in Bayesian 

modeling. 
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