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Abstract: Software-Defined Networking (SDN) has enabled the creation of sophisticated, adaptable, and customizable network management 

solutions. It enables the centralized management and flexible adjustment of routing by utilizing its decoupled architecture. Therefore, efficient 

routing is essential in SDN to improve network performance, scalability, and efficiency. While conventional models primarily emphasize 

heuristic and metaheuristic methods, recent progress has incorporated Machine Learning (ML) techniques into some of these models providing 

adaptive and intelligent solutions to routing challenges. These ML-enhanced models specifically target problems related to delay, traffic 

congestion and efficient use of resources. This survey provides a comprehensive analysis of different routing strategies in SDN with a specific 

emphasis on the subset of approaches that incorporate ML techniques. We evaluate the influence of ML on network performance, emphasizing 

their benefits and constraints, and examine the difficulties and future prospects in using ML for SDN routing. The survey concludes with 

suggestions for enhancing routing efficiency and network performance by employing advanced techniques selectively. 

 

Keywords: SDN, Optimal routing, Latency, ML, Network Performance, Scalability 

 

INTRODUCTION 
 
The data plane and the control plane are physically 

separated in Software-Defined Networking (SDN), 
which is a revolutionary method of designing and 
managing networks [1]. This decoupling allows for a 
more adaptable and programmable network 
architecture, which overcomes the shortcomings of 
conventional network models. SDN is underpinned by 
several core principles:  

Separation of Control and Data Planes: Traditional 
network devices combine control logic with data 
forwarding capabilities, which can limit flexibility and 
complicate management. SDN separates these 
functions, centralizing control in a software-based SDN 
controller while network devices (switches and routers) 
focus solely on packet forwarding. This separation 
enables more efficient network management and 
dynamic configuration [2]. 

Centralized Control: As the network's central 
processing unit (CPU), the SDN controller keeps an 
overview of the entire network at all times. It takes 
broad policy directives and breaks them down into 
specific instructions that the data plane hardware can 
follow. With centralized control, managers may make 
changes once and have them applied to the whole 
network [3]. 

Network Abstraction: SDN hides the complexity 
of the underlying network architecture by offering a 
logical representation of the network. This level of 
abstraction makes it possible to build new network 
services and apps without having in-depth 
understanding of the underlying physical network, 
which in turn makes network programming easier. [4]. 

 
 

I. ARCHITECTURE OF SDN 
 
There are three primary levels in the SDN design: 

the data plane, the application plane, and the control 
plane. Services and programs that run on networks and 
make use of their resources are part of the Application 
Layer. By means of northbound APIs, applications 
communicate with the SDN controller in order to solicit 
policies and services related to the network. Located in 
the control layer, the SDN controller is in charge of 
making high-level decisions regarding the network 
according to the policies specified by applications. 

The controller maintains a global network view 
and communicates with data plane devices via 
southbound APIs to enforce the desired network 
behaviors. Physical network devices, such switches and 
routers, make up the data plane layer. They are 
responsible for forwarding data depending on 
instructions and rules received from the SDN 
controller. Data plane devices are simplified focusing 
primarily on packet processing rather than complex 
control logic [5]. Figure 1 depicts the fundamental 
architecture of SDN and Table 1 briefly explain 
components of SDN and their purposes. 

A. Optimal routing in SDN 

Data packets must be able to traverse a network 
from one node to another, and routing is the technique 
by which this is accomplished [6]. The data plane and 
control plane are physically separated in SDNs, which 
allows for real-time path modifications in response to 
changing circumstances and network policies, as well 
as more flexible and dynamic routing. 

However, Routing in SDN presents several 
intricate challenges that affect network efficiency and 
performance. One significant issue is dynamic routing 
where the need to adapt to fluctuating traffic patterns 
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and network conditions can strain the SDN controller 
potentially leading to performance bottlenecks and 
increased latency. Scalability further compounds this 
challenge as the controller must handle a growing 

volume of routing information and frequent updates 
across a large number of data plane devices which can 
result in substantial communication overhead [7]. 

 

Figure 1. Architecture of UWSN 

 

Table I. Transmission  Components and Functions of SDN Architecture 

Layers Component Function 

Application plane Network Service Applications The SDN controller facilitates 

communication with network 

infrastructure, providing services with 

an abstracted global view, enabling 

them to achieve their objectives. 

Business Services SDN controllers provide business 

functions and network interaction. 

Security Services Interact with the SDN controller to 

secure the network. 

Other Services Other applications that use the SDN 

controller's network capabilities. 

Control plane SDN Controller Network center that directs data plane 

flows. Converts application commands 

to data plane communication protocol. 

Data plane Network Forwarding Elements 

(Switches) 

Send incoming flows using flow table 

routes. Network traffic processing and 

forwarding in real time. 

Management plane Network Setup Configures network parameters. 

Securely isolated from control, 

application, and data planes to prevent 

network attacks. 

Configuration Management Maintains secure and efficient network 

configuration. Externally 

unprogrammable to prevent 

unauthorized access. 

Interfaces North-Bound Interface (NBI) Accesses network resources from 

applications. Though undefined, it 

may include role-based application 

authorization and authentication. 

South-Bound Interface (SBI) Links the SDN controller to network 
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forwarders. Open Flow (OF) is widely 

used in SDN networks. 

Conflict management Orchestrator Solves application-specific network 

behavior rules. Integrates into the 

controller, management plane, or as a 

separate application to manage 

complex network control tasks. 

 
 

Additionally, ensuring routing performance and efficiency 
involves addressing latency concerns and optimizing 
resource utilization through effective load balancing. To 
fully utilize SDN and achieve optimal network performance, 
it is essential to address certain routing challenges. 

To address the complexities of routing in SDN, 
heuristic and metaheuristic algorithms offer effective 
solutions for optimizing routing paths and improving 
network performance [8]. Heuristic algorithms use 
problem-specific knowledge to find good-enough 
solutions within a reasonable time frame. For instance, 
algorithms such as Dijkstra's [8, 9] and Bellman-Ford 
[10, 11] are often employed for their simplicity and 
efficiency in finding shortest paths or optimizing 
specific metrics like latency or cost. However, as 
networks become more complex, these traditional 
heuristics may struggle to find optimal solutions due to 
their computational limitations. This is where 
metaheuristic algorithms come into play. 

Metaheuristics such as Genetic Algorithms (GAs), 
Simulated Annealing (SA) and Tabu search offer more 
sophisticated approaches to explore a larger solution 
space and avoid local optima. By using mechanisms 
inspired by natural processes or complex systems, 
metaheuristics can adaptively refine solutions by 
handling dynamic changes in network conditions and 
constraints effectively. These algorithms provide a 
flexible framework for addressing various optimization 
objectives in SDN including load balancing, traffic 
engineering, and fault tolerance thereby enhancing the 
overall routing performance and network efficiency. 

Natural selection and evolution are the driving 
forces behind GA. In order to evolve a population of 
possible solutions over generations, they employ 
operations such as mutation, selection, and crossover 
[12].  The annealing process, used in metallurgy to 
stabilize a material by heating and cooling it gradually, 
is an inspiration for SA. It departs from local optima 
and investigates a larger solution space using 
probabilistic methods [13]. To prevent re-exploring 
solutions that have already been investigated, Tabu 
Search employs local search strategies that incorporate 
memory structures. It uses a tabu list to remember 
previous actions and avoid repeating them [14]. 
 

B. Integration of Machine Learning with Metaheuristics 
 
Combining machine learning (ML) with 

metaheuristic algorithms is a powerful way to tackle 
complex optimization problems in SDNs. This blend 
brings together the best of both worlds, greatly 
improving the performance and adaptability of these 
algorithms. Here is how ML can enhance metaheuristic 
algorithms: 

• ML models can dynamically adjust key parameters of 
metaheuristics, such as mutation rates in GAs or 
cooling schedules in Simulated Annealing SA based on 

real-time data. This adaptive tuning improves the 
efficiency of the search process and accelerates 
convergence towards optimal solutions [15]. 

• ML algorithms can predict future network states and 
traffic patterns. By incorporating these predictions 
metaheuristic algorithms can adjust routing paths and 
resource allocations, optimizing performance and 
reducing latency before issues arise [16]. 

• ML models can offer more nuanced evaluations of 
potential solutions. By integrating sophisticated metrics 
and analysis, these models provide a more 
comprehensive assessment of solution quality, 
improving the accuracy of optimization outcomes [17]. 

• ML algorithms can identify patterns and correlations 
within large datasets, guiding metaheuristic searches 
more effectively. This capability helps in recognizing 
promising solution areas and focusing the search 
process, thus improving optimization efficiency. 

C. A Comprehensive Approach to Machine Learning-

Driven Routing in SDNs 
Step 1 (Collecting Data): First, gather detailed 
information about network traffic. Track how much 
traffic there is, what types are coming through, and 
when they peak—whether that’s hourly, daily, weekly, 
or monthly. Attention to busy times, average traffic 
loads, and any changes due to special events or seasons. 
This will give you a solid understanding of past 
network behavior and help spot any trends. Also, keep 
an eye on current traffic in real-time to make quick 
routing decisions. 
Step 2 (Data pre-processing): Next, tidy up the 
collected data. Remove any noise, outliers or 
incomplete records to ensure data is accurate. 
Normalize the data to make sure everything is on the 
same scale or format. Extract important features like 
peak traffic times and performance metrics. This will 
help create useful inputs for the ML models [18]. 
Step 3 (Training the Models): Use of historical data to 
label different outcomes, like the best routing paths or 
points of congestion. Train the supervised machine 
learning models like regression, decision trees, or NNs 
using this labeled data to predict network conditions 
and routing decisions. Also the use of clustering 
algorithms to uncover patterns or anomalies in data. For 
real-time decisions, apply Reinforcement Learning 
(RL) so models can learn from network feedback and 
improve over time [19].  
Step 4 (Integrating Real-Time Data): Combine real-
time data with trained models to keep predictions and 
decisions up-to-date. Regularly update models with the 
latest data to keep them sharp, which might mean 
retraining or tweaking them as new information comes 
in. 
Step 5 (Predicting and Analyzing): Use of time-series 
analysis and predictive models to forecast future traffic 
and potential congestion points. This will help manage 
the network proactively and plan for capacity needs. Set 
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up anomaly detection to spot unusual patterns or 
potential issues quickly like unexpected traffic spikes 
or equipment problems. 
Step 6 (Making Routing Decisions): Create routing 
algorithms that use ML models’ predictions to find the 
best paths for traffic. These algorithms should be able 
to adjust routes in real-time to avoid congestion and 
keep traffic flowing smoothly. Adaptive routing 
mechanisms will help the network respond quickly to 
changes and maintain top performance. 

By following these steps, SDN environments can 
leverage the power of ML to enhance predictive 
routing, improve network performance, and ensure 
reliable QoS for various applications and traffic types. 

The remaining section are organized as follows. 
Section II delves into the review on protocols for and 
the integration of ML to some of the protocols. Section 
III measures its performance evaluation and Section IV 
concludes the whole survey and paves the way for 
future researches. 

II. SURVEY ON THE USAGE OF SOFTWARE-DEFINED 

NETWORKS FOR IMPROVING ROUTING PROTOCOLS 

IN VARIOUS NETWORK MODELS 
 
In SDNs, the centralization of control functions 

can impact network efficiency and overall 
performance, potentially affecting data transmission 
and management. To address these challenges, routing 
protocols have been developed to optimize control 
node selection and data flow. These protocols enhance 
network reliability and performance by minimizing 
control overhead and ensuring efficient data routing 
through well-defined paths. This section reviews 
several routing protocols in SDNs. 

Bano et al. [20] proposed a careful and progressive 
migration of Wireless Mesh Networks (WMNs) to 
SDNs, which would result in a strong routing 
architecture for both types of networks, called Soft-
Mesh. The primary intention was to address various 
routing challenges in WMNs, such as scalability, 
reliability and network management issues by 
integrating SDN architecture. This integration 
facilitates network management and routing while 
ensuring full interoperability with existing IP devices 
to mitigate technical, operational and economic 
problems. Soft-Mesh enhanced the architecture of SDN 
nodes by enabling them to cohabit with legacy IP-based 
nodes. The architecture modified SDN nodes to react to 
network topology changes dynamically without 
frequent controller queries. The overarching goal of 
Soft-Mesh was to ease the migration of WMNs from 
conventional to SDN-enhanced routing by providing an 
affordable and frictionless solution for interoperability 
between SDN and legacy nodes.  

Duong [21] developed the Load Balancing 
Routing under Constraints of Quality of Transmission 
(LBRCQT) algorithm to tackle the dual challenges of 
load balancing and maintaining Quality of 
Transmission (QoT) in Wireless Mesh Networks 
(WMNs). The algorithm was implemented at the SDN 
controller, uses a centralized approach to select the best 
routes based on real-time QoT and traffic load data. The 
network is organized into three layers: infrastructure 
for packet switching, control for routing and signaling, 
and application layer, with the open-flow protocol 
managing communication between these layers. 

LBRCQT improves WMN performance by efficiently 
balancing traffic, enhancing QoT and reducing end-to-
end delays through dynamic route management. 

Alidadi et al. [22] presented a Path Selection with 
Low Complexity (PSLC) algorithm to tackle the 
challenges of bandwidth-restricted routing in SDN-
based Multi-Protocol Label Switching (SDN-MPLS) 
by balancing network load, route length and energy 
savings while maintaining low complexity. The SDN 
architecture enhanced MPLS-TE by incorporating 
SDN controller, Path Computing Element (PCE) to 
calculate and manage routing tables for SDN 
forwarding components, Path Computing Client 
(PCC). PCCs sent measuring traffic metrics to the PCE 
after performing packet forwarding. PCE then used this 
data to dynamically adjust routing tables and respond 
to changing traffic conditions. Finally, the PSLC 
algorithm utilized data from the PCE node and link 
weights to effectively manage constrained bandwidth 
routes. 

Qian et al. [23] developed an advanced downlink 
routing control strategy for LoRaWAN that combines 
SDN with an improved Auto-Regressive Integrated 
Moving Average (ARIMA) model. Incorporating 
Savitzky-Golay (S-G) filtering to manage data 
volatility and a sliding window method for pre-
processing, this strategy utilized SDN to efficiently 
monitor network traffic and regulate routing. The 
approach enhanced bandwidth usage and optimizes 
route selection, resulting in reduced packet loss and 
transmission delay, and improved reliability and 
performance of LoRaWAN networks. 

The State-Action Reward-State-Action (SARSA) 
based Delay-aware Route Selection (SDRS) algorithm 
was studied by Shi et al. [24] for power distribution 
Internet of Things (PD-IoT) networks that enable 
wireless Power Line Communications (PLC) through 
SDN. Problems with route selection in dynamic 
networks, such as those caused by electromagnetic 
interference, imprecise global status information, and 
the combination of PLC and wireless communications, 
were the motivation for this approach. SDRS 
functioned admirably in the presence of both weak and 
heavy electromagnetic interference, greatly decreasing 
transmission delay and improving dependability. 

Samadi et al. [25] introduced an Intelligent 
Energy-Aware Routing system for Mobile IoT 
Networks (IERMIoT) to improve network lifespan and 
minimize energy waste through centralized 
management of mobile nodes using SDN. This 
approach involved creating clusters of nodes within the 
network and employing an intelligent evolutionary 
algorithm to optimize the number and distribution of 
these clusters dynamically. By centralizing energy-
intensive tasks to a central controller and implementing 
a loyalty mechanism to maintain cluster stability, 
IERMIoT effectively manages the dynamic topology 
changes due to node mobility, reduces energy 
consumption and improves overall network 
performance.  

In this study, the notable evaluated performance 
metrics are End-to-End (ETE) Delay, Throughput, 
Energy Consumption, call blocking ratio (CBR), 
Packet Delivery Ratio (PDR), Packet Loss Rate (PLR), 
Bandwidth Occupancy rate (BOR), Routing overhead 
(RO) and Latency. These metrics are critical for 
assessing the efficiency and effectiveness of the 
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network under various conditions and scenarios. Table 
2 compares usage of SDNs for improving routing 
protocols in various network models in terms of their 
advantages, limitations and performance metrics. 

 

III. SURVEY ON ROUTING IMPROVEMENTS OF 

SOFTWARE-DEFINED NETWORKS 
 
Because SDNs separate the control plane and data 

plane, they enable dynamic configuration and 
centralized network management, which is a 
revolutionary step in networking. Traditional routing 
approaches in SDNs usually have problems with 
scalability, adaptation, and optimizing performance, 
even though they have certain benefits. This section 
explores various improvements in SDN routing, 
focusing on innovative approaches and methodologies 
designed to enhance network performance, optimize 
routing strategies and address the inherent limitations 
of conventional routing protocols in dynamic and 
complex network environments. 

Li et al. [26] investigated a Fuzzy-based Rapid and 
Efficient Routing algorithm with guaranteed Latency-
Throughput (FRLR) for managing traffic flows in 
SDN. FRLR seeks to take advantage of SDN by 
guaranteeing good QoS and energy efficiency, while 
also separating the control and data planes to improve 
network management. FRLR uses fuzzy logic to 
classify traffic flows based on their latency 
requirements and resource demands, which helps in 
efficiently managing and allocating network resources. 
It made routing adjustments based on current network 
conditions. It also identifies critical links to minimize 
interference and maintain performance. This algorithm 
ensured path latency by maximizing the utilization of 
link bandwidth. 

Zhou et al. [27] developed the Asynchronous 
Advantage Actor-Critic (A3C) QoS-aware Routing 
Optimization Mechanism (AQROM) to enhance 
Quality of Service (QoS) and dynamic routing in 
SDNs. AQROM improved network QoS and cut down 
training time by adjusting routing strategies in real-
time. It was inspired by the A3C method which allows 
for high-dimensional input and output sets and can 
handle both discrete and continuous states and actions. 
This algorithm improved network QoS by dynamically 
updating the reward function based on optimization 
objectives, independent of network topology and traffic 
patterns.  

Santana et al. [28] developed a piecewise 
stationary Bayesian Multi-Armed Bandit (MAB) 
approach, Reactive Upper Confidence Bound (React-
UCB) for optimal routing of information in SDNs. 
React-UCB was employed with various enhanced 
features to opt bidirectional route having lowest delay. 
React-UCB skilfully addressed sudden shifts in reward 
distributions through several methods. It embraced an 
optimistic approach in uncertain situations, prioritized 
recent feedback by diminishing the importance of older 
rewards, reset previously acquired data when changes 
in path delay distributions were detected, and utilized 
reward correlations to facilitate learning across various 
paths. These combined strategies effectively minimized 
the agent's accumulated regret and enhanced the 
efficiency of network resource operations. 

Pathan et al. [29] proposed a Multi-Objective 

Integer Linear Programming (MILP) approach to 
optimize routing in SDN-enabled data centre networks. 
They developed two greedy algorithms. Priority-based 
Energy Minimization Algorithm (PEMA) was to 
enhance flow priority and reduce energy consumption 
and Priority-based Even Load Distribution Algorithm 
(PEDL) to balance data loads while maximizing flow 
priority. Their results demonstrated that this approach 
improved network performance for varying flow rates 
and dynamic flow needs. 

Riveros-Rojas et al. [30] developed a solution 
based approach for addressing Routing and Device 
Assignment (RDA) issues in SDN using MILP and 
Genetic Algorithm (GA). The MILP model optimized 
SDN by minimizing blocked flows and energy usage. 
It worked out the best paths between nodes and 
assigned devices based on their usage to find the most 
efficient configurations. The GA then took these MILP 
solutions and fine-tuned them by exploring a broader 
range of SDN devices. Using non-binary permutation 
coding, GA iteratively improved these configurations 
through selection, crossover and mutation thereby 
enhancing energy saving and reducing blocked flows. 

Zhang et al. [31] developed a holistic SDN 
deterministic network (HSDDN) to provide a real-time, 
reliable communication for industrial environments 
using combined SDN and TSN to achieve deterministic 
network behavior with both wired and wireless modes. 
Additionally, a SD-PHY was employed to provide a 
flexible and efficient backscatter communication 
system which supports various protocols through 
dynamic signal modulation and low-power operation. 
Finally, Tabu search for routing and scheduling with 
dual-stages (TSRS-DS) algorithm was introduced to 
solve co-design problem. During joint routing and 
scheduling optimization phase of TSRS-DS, Tabu 
search was utilized to mitigate combinatorial 
optimization issues. 

Bouzidi et al. [32] introduced a Deep Q-Network 
and Traffic Prediction based routing optimization 
(DTPRO) approach through Neural Networks (NN) in 
SDN to dynamically predict traffic congestion and 
optimize routing. The DTPRO architecture consisted of 
four planes: Data, Control, Management, and 
Knowledge. It improved SDN by adding a Knowledge 
Plane (KP) that leveraged AI and telemetry data for 
smarter network management. The KP used ML to 
optimize routing and predict congestion while enabling 
proactive traffic control. 

Kim et al. [34] devised a routing optimization 
method for SDNs using Deep Reinforcement Learning 
(DRL) with a Deep Deterministic Policy Gradient 
(DDPG) algorithm to understand the relationship 
between switch traffic loads and network performance. 
Also, to minimize end-to-end delay and packet loss, the 
Aggregated Traffic Volume Matrix (ATVM) was used 
to select the optimal set of link weights. The SDN 
controller determined the routing paths based on these 
link weights and configured the flow rules on SDN-
enabled switches. The DRL learning process employed 
an M/M/1/K queue model to address network 
performance degradation issues. 

Godfrey et al. [35] illustrated a Multi-Objective 
Routing Protocol using a RL algorithm with Dynamic 
Objective Selection (DOS-RL) to optimize energy 
consumption in IoT networks and adapt to sudden 
network changes in SDWSN-IoT. This approach 
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utilized Q-learning to dynamically select and optimize 
objectives based on real-time system states and 
confidence in Q-values. Additionally, a Correlated 
Multi-Objective Markov Decision Process 
(CMOMDP) was applied to integrate multiple related 
objectives such as energy efficiency, load balancing 
and reliability into a dynamic reward function. The 
results indicated that this method improved network 
performance by balancing competing objectives and 
adaptively selecting the most pertinent optimization 
criteria. 

Ke et al. [36] presented Q-learning Widest-Path 
Routing Algorithm (Q-WPRA) based on RL for SDN 
to determine the optimal path for transmission. This 
algorithm comprised of three stages. Path searching and 
loop phase executed the recognition of the complete 
transmission path and also prevented returning and 
looping. The purpose of the maximum bandwidth 
reward function was to dynamically update and 
optimize the transmission path based on the reward 
value. Finally, widest-path verification was responsible 
to ensure that the selected transmission path provides 
the maximum available bandwidth. 

Gunavathie et al. [37] introduced a ML-driven 
Proactive Re-routing System (MLPRS) designed to 
improve Quality of Service (QoS) and dynamic load 
distribution in real-time SDN topologies. This 
approach involved continuous monitoring of traffic 
loads along network paths and triggering flow 
redirection when congestion was detected. Utilizing 
ML, the system categorized applications and assigned 
priorities to facilitate re-routing. Results indicated a 
substantial decrease in Round Trip Time (RTT) with 

the implementation of this method. 
In this study, the notable evaluated performance 

metrics are Jitter, Bandwidth, End-to-End (ETE) 
Delay, Throughput, Energy Consumption, call 
blocking ratio (CBR), Packet Delivery Ratio (PDR), 
Packet Loss Rate (PLR), Link utilization (LU), Flow 
success rate (FSR), Bandwidth Occupancy rate (BOR), 
Routing overhead, Round Trip Time (RTT) and 
Latency. These metrics are critical for assessing the 
efficiency and effectiveness of the network under 
various conditions and scenarios.  

Table 3 compares improved routing protocols in 
SDNs in terms of their advantages, limitations and 
performance metrics. 

IV. PERFORMANCE EVALUATION  
The performance evaluation of routing protocols 

for SDNs is discussed in this section, with a focus on 
two distinct studies. The protocols were tested under 
various simulation environments to determine their 
efficiency in real-world applications. 

A. Using SDN for Improving Routing Protocols in 

Various Network Models 
This evaluation was conducted using delay and 

throughput as the key metrics. Figure 2 shows the 
comparison of delay performance of various models 
that utilize SDN for improved routing protocols. It is 
clear that LBRCQT [21] outperforms other models 
with minimal delay. Lower delay indicates quicker 
responses and faster processing, which generally 
results in better performance for real-time applications 
and systems.

 

Table II. Comparative Study of Cluster-oriented Routing Protocols in UWSNs 
Ref No. Protocols Advantages Limitations Environment Major performance metrics 

[20]  Soft-Mesh Inexpensive 

Implementation 

 Mininet-WiFi Throughput=10mbps,  

ETE delay = 7 ms, 

PDR = 10% 

RO = 70 Mbps 

[21]  LBRCQT Blocking 

probability of data 

packets are reduced 

 OMNeT++, INET 

2.0 

PDR = 95% 

ETE delay = 1.3ms 

Throughput = 247 mbps 

[22]  SDN-

MPLS, 

PCC, PCE, 

PSLC 

Easy monitoring 

and maintenance of 

network. 

 PAYTON simulator CBR=0.17 

route length=4.03 

flow=500 

CPU time=5s 

[23]  ARIMA, 

LLDP 

Better data 

transmission 

reliability 

 Mininet PLR= 15% 

Delay = 0.12s 

BOR= 70% 

[24]  MPSRCS,S

DRS 

Real-time 

Interaction between 

the environments 

  Delay= 0.87s 

Retransmission Ratio =0.06 

[25]  IERMIoT, 

GA, PSO, 

ICA, GWO, 

WOA 

Increased steady-

state duration 

 MATLAB Energy Consumption =0.5J, 

Network stability = 1900 s, 

Network coverage = 125, 

PDR=85% 

Routing overhead = 0.38 
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Table III. Comparative Study of Cluster-oriented Routing Protocols in UWSNs 

Ref No. Protocols Advantages Limitations Environment Major performance metrics 

[20]  FRLR Usage of critical 

links saves 

resources for future 

Energy 

consumption 

increases when 

traffic flow 

increases 

MATLAB 

R2019a 

Throughput 10.2 gbps 

Jitter=0.005 ms, 

Energy consumption =1000W, 

Latency (Delay) = 0.024 ms 

[21]  AQROM 

 

Reduced training 

time & memory 

resources 

Adjustment of 

learning rates is 

still 

inconvenient 

OMNeT ++ Latency= 3.456s 

PLR=57.701% 

Throughout= 5.882 kbps 

[22]  React-

UCB, 

MAB 

Low computational 

complexity 

It is a 

centralized 

structure 

Mininet For 400 arms, Execution time 

= 22.46ms 

[23]  MILP, 

PEMA, 

PEDL 

Prevent single 

node bottlenecks. 

Struggles to 

manage in the 

case of link 

breakdown or 

path congestion 

C++ Energy savings =35% 

Load distribution = 5.8 

FSR= 60% 

[24]  MILP, GA Highly suitable for 

dynamic and high-

traffic network 

environments 

Implementation 

is 

computationally 

intensive 

IBM ILOG 

CPLEX version 

12.6 

Energy consumption =2700 

W, Blockage rate =10 

[25]  HSDDN, 

TSRS-DS 

Custom interface 

simplifies control 

and monitoring 

 OMNET++ Average Runtime=2 s 

 

[26]  DTPRO, 

DQN, NN, 

ML 

Defines all paths in 

one action 

Not fit for 

distributed 

SDN 

controllers 

OpenvSwitch Latency = 1.2 ms, 

Delay = 1.25 ms, 

PLR = 0.12%, 

LU = 6 mbps, Throughput = 

8.1 mbps 

[27]  RL, 

Q-

Learning 

STP 

Network controlled 

remotely via web 

 Raspberry pi B+ PDR=0.99% 

[28]  DRL, 

DDPG, 

ATVM, 

M/M/1/K 

Offline training 

avoids 

performance 

degradation 

 Python networkX For 150 flows, Throughput=10 

mbps 

Delay=2.4 s 

[29]  DOS-RL, 

Q-

Learning 

CMOMDP 

Incorporates 

multiple QoS 

metrics 

Time 

complexity 

depends on 

state space 

NS-3 AI module For 60 nodes, PDR=0.92 

Energy consumption for 1% 

received packets = 0.91  

Delay = 2.4 ms  

[30]  Q-WPRA, 

RL 

Prevents path loops 

effectively 

No significant 

performance 

improvement 

Mininet Bandwidth= 3.82 mbps, 

Overhead time = 0.022 s 

[31]  MLPRS Flows are updated 

every minute 

enabling dynamic 

load balancing 

 Mininet For 250 packets, Throughput = 

31.05 gbps 

Bandwidth= 33.33 gbps, RTT 

(Delay) = 0.486 ms 

 
Figure 3 depicts the comparison of throughput 

performance of various models that utilize SDN for 
improved routing protocols. From the above analyses, 
it is obvious that LBRCQT [21] again performed well. 
It is because it transfers reduced number of data packets 
with minimum network traffic.  

Therefore, it is evident that the LBRCQT [21] 
performed better in every possible way. This evaluation 

indicates that [21] is the efficient protocol making it 
more suitable for improving routing using SDN 
architecture. 

B. Routing Improvements of SDN 
This evaluation was conducted using throughput 

and bandwidth as the key metrics. Figure 4 
demonstrates the performance analysis of improved 
routing SDN models based on their throughput. It 
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shows that MLPRS [37] outperformed other protocols 
with an exceptional increase in throughput ensuring 
higher data transfer rates. However, [26] also 
performed well achieving the second-highest 
throughput due to its optimized routing strategies. It is 
important to note that AQROM [27] is omitted in this 
evaluation due to its very low throughput value, which 
is literally in kbps. 

Figure 5 illustrates the performance analysis of 
routing protocols based on their bandwidth. In this 
metric, MLPRS [37] again demonstrated superior 
performance showing a significantly higher bandwidth 
compared to other protocols. This indicates that 
MLPRS can handle larger volumes of data transmission 
more efficiently. From Fig.6, it is concluding that 
MLPRS archived less delay even if it transmits more 
packets than other protocols.   

The model presented in MLPRS significantly 
outperformed other protocols across both metrics. It not 
only maximized throughput, crucial for high-speed data 
transfer in SDNs but also achieved the highest 
bandwidth, ensuring efficient data transmission 
capacity. The superior performance of MLPRS can be 
attributed to its innovative bandwidth management 
techniques and dynamic routing strategies that optimize 
resource usage and adapt to network conditions. 

Comparing both the studies, MLPRS focuses on 
real-time SDN topologies and directly addresses real-
time network congestion and improves latency whereas 
LBRCQT [21] is more focused on balancing load and 
maintaining QoT. MLPRS employs continuous traffic 
monitoring and ML categorization, offering a more 
adaptive and flexible solution for dynamic network 
conditions. LBRCQT [21] while effective uses a 
centralized approach that may not be as responsive to 
sudden changes in network traffic.  

 

 
 

Figure 2. Performance analysis delay in various 
network models 

 

 
 

Figure 3. Performance analysis throughput of 

various network models which uses SDN for 
improving routing protocols 

 

 
 

Figure 4. Performance analysis of improved routing 
SDN models based on throughput 

 

 
 

Figure 5. Performance analysis of improved routing 
SDN models based on bandwidth 

 

 
Figure 6. Performance analysis of improved routing 

SDN models based on delay 
 
Therefore, this comprehensive evaluation indicates 

that MLPRS [37] is the most effective protocol, 
offering a well-rounded solution. This makes it the best 
choice for SDN applications ensuring both high-speed 
and high-capacity data transmission. 

 

V. CONCLUSION 
 
In this paper, a comprehensive review was 

conducted to examine various optimal routing 
protocols in SDNs with a focus on models 
incorporating ML techniques. The efficiency of each 
protocol was assessed based on its advantages, 
limitations, simulation environment, and performance 
metrics achieved. From this analysis, it was found that 
the model leveraging ML for adaptive routing 
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performed exceptionally well compared to other 
protocols. This was due to its ability to dynamically 
adjust routing decisions and optimize network 
performance with lower overhead and more efficient 
path selection. However, a notable issue with the 
current ML-based routing model was its higher latency 
that attributed to the complexity of adapting to real-
time changes and the extensive processing required for 
decision-making. Additionally, the model did not fully 
address challenges related to data transfer efficiency 
within SDNs, which affects overall packet delivery 
rates and network throughput. Future research will 
focus on refining the ML-based routing model to 
reduce latency, enhance packet delivery rates, and 
improve overall network performance in SDNs. 
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