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Abstract: Acute lymphoblastic leukemia is a very important cancer in childhood but quite prominent in later years of life for the genetic defects in 

lymphoid progenitors, which are hallmarks of the disease. In children, ALL mostly affects those aged between 2 and 6 years old and, against the 

background of contemporary biology knowledge and treatment approaches, is associated with more than 80% cure rates. However, approximately 

20% of children with ALL relapse; therefore, there is a huge need for better risk identification and treatment optimization. In adults, ALL mainly 

affects B-cell precursors and is treated with chemotherapy and, in some cases, stem cell transplantation. 

 

An accurate and early diagnosis of ALL is of key importance but difficult to realize due to morphological similarities between normal cells and 

leukemic cells. This study, therefore, proposes a CNN model to improve diagnostic accuracy. Furthermore, it exploits the capabilities of CNN in 

feature extraction with Adamax Optimizer and the Categorical Cross-Entropy Loss Function to deal with imbalances and noise in the dataset. 

RESNET50-CNN has achieved 98.63% accuracy in classification and is hence a very strong tool in ALL detection and classification. 

 

Keywords: Acute Lymphoblastic Leukemia, ALL, Convolutional Neural Network, CNN, RESNET50, Adamax, diagnosis, pediatric oncological 

chemotherapy.

I. INTRODUCTION 

The most fatal of the different types of cancer is leukemia, 
which results from various factors causing the malignant 
growth of immature white blood cells in one's bone marrow. 
This type of blood-related malignancy can be categorized into 
two forms: acute and chronic. While the former progresses at 
a slow rate if left untreated, the latter type of acute leukemia 
generally gives the patient a mere survival duration of three 
months. Acute lymphoblastic leukemia (ALL) is a subgroup 
of acute leukemia important to children, affecting about 25% 
of childhood cancer. There have been considerable 
developments in the treatment of all over the past five decades; 
first-line therapy yielded initial complete response rates above 
70% [1]. Thus, early diagnosis of ALL becomes significant. 
Diagnosis usually depends on morphological observations 
showing a high percentage of B-lymphoblast cells in the bone 
marrow. However, it is a very important yet difficult thing to 
differentiate leukemic lymphoblasts from normal B-lymphoid 
precursors.  

In the past few years, an interesting tool for diagnosing 
diseases with deep learning technology has developed [2]. 
Deep learning, mainly via CNN, has bestowed vast potential 

because it offers very good self-learning, adaptability, and 
generalization capacity. Unlike the traditional ways of doing 
image recognition, which require a manual process of 
extracting image features, CNNs can classify images 
autonomously with data input in raw forms [3] [4].  

Here, we have introduced the use of models, such as the 
ResNet50 and EfficientNet-B3, for diagnosing acute 
lymphoblastic leukemia and distinguishing leukemic B-
lymphoblast cells from normal B-lymphoid precursors. 
ResNet50 is highly acknowledged for implementing a 
significantly deep architecture and can have great dominance 
over the vanishing gradient problem due to residual learning. 
On the other side, EfficientNet-B3 is part of the EfficientNet 
family, providing a systematic way of scaling up model 
dimensions, achieving better performance while maintaining 
computational efficiency as per. This work contributes to the 
following: 

▪ Experiments with ResNet50 and EfficientNet-B3 
models for the classification of malignant and 
normal cells for the diagnosis of ALL. 

▪ Application of data augmentation for the purpose 
of combating the class imbalance problem and 
improving model performance. 

▪ High classification accuracy.  
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▪ The model architectures, loss functions, and 
optimizers to be used will be well thought out and 
explained in detail. 

▪ Experimental results show the efficiency of the 
proposed models with extensive experiments by 
comparing them with existing methods. 

The next section details the dataset, data processing 
methods, model construction, definition, loss function, and 
optimizer. The overview of the experimental process, the 
results of the proposed method, and a comparison with other 
models are shown in the third section. The last section 
summarizes the study. 

II. LITERATURE REVIEW 

Diagnosis and classification of ALL have been attempted 
in the past years with the use of advanced techniques of deep 
learning, more specifically, methods using convolutional 
neural networks together with hybrid models. One notable 
work by Ahmed et al. (2023) proposed hybrid approaches for 
ALL diagnosis using the fusion of CNN features and had an 
accuracy as high as 98.85% [6]. This approach integrates 
multiple deep learning models for enhancing diagnostic 
performance. Again, Rehman et al. (2018) explored the 
classification of ALL using deep learning methodologies and 
obtained an accuracy of 97.78% [7]. The present study 
underlines the potential of deep learning frameworks for 
accurate differential diagnosis between leukemia and non-
leukemia cells. Bhuiyan et al. succeeded in a comparative 
analysis for automatic ALL detection from images with an 
accuracy of 99.05% in 2019 [8]. This research demonstrates 
the effectiveness of automated systems in enhancing diagnosis 
accuracy. Jiang et al. proposed an ensemble model performing 
integration between vision transformers and CNNs for ALL 
diagnosis with an accuracy of 99.03% in 2021 [9].This is an 
innovative way in which the strengths of both types are 
brought together to achieve higher accuracy in diagnosis. 

 
A more recent study by Hasanaath et al. (2024) used 

ensemble features from multiple developed deep CNN models 
for the detection of ALL, although it had a slightly lower 
accuracy of 91.63%, reflective of the challenges associated 
with integrating those models [10]. Das and Meher proposed 
an efficient deep CNN-based method for the detection and 
classification of ALL, achieving an accuracy of up to 97.18% 
[11]. Their work therefore highlights that optimization of 
CNN architectures is necessary to have better diagnostic 
performance. 

 
Prellberg and Kramer (2020) implemented CNNs for the 

classification of ALL from microscopic images, obtaining an 
accuracy of 88.91%, comparatively lower than the findings in 
other studies but able to establish that CNNs have scope in 
wide medical image analysis [12]. On the other hand, Mohd 
Safuan et al. attempted to determine white blood cell 
biomarkers for the detection of ALL using deep CNNs that 
reached an accuracy of 99.13% [13]. These study results 
underscore the potential for models based on biomarkers to 
improve diagnostic accuracy. In this direction, Saeed et al. 
(2022) proposed a deep learning-based approach to ALL 
diagnosis that reached the highest reported accuracy to date of 
99.25% [14].This puts their work into a history of incremental 
progress in efforts to apply deep learning techniques in a way 
that achieves accuracy in medical diagnosis. 

 
Most recently, Smith et al. issued a transformer-based deep 

learning model to detect ALL with an accuracy of 98.7%, 

which is rather recent, dating from 2024 [15]. This research 
has been able to identify the potential of transformers in the 
capture of long-range dependencies in image data, providing 
a complementary approach to traditional CNNs. Their work 
places much value on how deep learning methodologies are 
rapidly evolving and their applications within medical 
diagnostics at large. Apart from such studies, Kumar et al. 
(2023) developed another deep learning framework that 
integrated multi-scale CNN approaches to detect ALL, 
attaining an accuracy of 98.65% [16]. This has, therefore, 
necessitated the use of multiscale feature extraction methods 
that could enhance the sensitivity and specificity of the 
diagnosis model in this study. 

 
Another study by Chan et al. (2024) investigated the case 

of ALL classification with strategies for augmenting the 
training data using generative adversarial networks and 
improved their model performance to 98.95% accuracy [17]. 
It has been an ambitious step within the field, proving that 
GANs could become very effective in addressing data scarcity 
and ensuring the resilience of diagnostic models. Results for 
deep learning and hybrid models for ALL diagnosis have been 
quite positive, with different studies achieving high accuracy. 
The accuracy rates fall in the range of 88.91% to 99.25%. 
These few developments may indicate that there could be a 
great future lying ahead for AI-driven methods that have 
increased accuracy and efficiency at their core in the field of 
leukemia diagnosis. . 

III. MATERIALS AND METHODS 

A. Dataset 

The Challenge dataset on acute lymphoblastic leukemia 
individually maximizes location information at The Cancer 
Imaging Archive and is an invaluable resource for research in 
the field of medical image analysis in pediatric oncology. 
Figure-1, A set of 15,135 microscopic images was extracted 
from 118 patients, of which 7272 images are of leukemic B-
lymphoblast cells and 3389 images are of normal cell images. 
This dataset is also a comprehensive source for ALL (most 
common childhood cancer)-related studies. Images in this 
dataset are carefully segmented to obtain two classes: normal 
cells and leukemia blasts. Such segmentation is extremely 
important in correctly identifying and distinguishing between 
these cell types under the microscope, where it has always 
proved quite a challenge because of their morphological 
similarities. The noise of staining and illumination errors 
while collecting the images has been removed, and the images 
are labeled as normal or ALL cells by oncologists [18]. 

 

 
 

Figure 1: Classifying images as normal and ALL cells 



Jahnavi B S et al, International Journal of Advanced Research in Computer Science, 15(4), July-August 2024, 35-43 

© 2023-2025, IJARCS All Rights Reserved       37 

B. Data Preprocessing 

The main aim will be to preprocess the raw image data into 
a format usable for training a deep learning model, its 
validation, and the testing of its evaluation. For this, a versatile 
tool provided by the Keras library makes a number of the key 
pre-processing steps fairly easy. First, this standardizes the 
size of the input images by resizing them to a set dimension, 
normally some square pixels. This standardization will ensure 
that all the input dimensions are uniform and hence can feed 
into any convolutional neural network, which is currently the 
preferred architecture for any image-related tasks. The image 
of normal and ALL cells is shown in Figure 2.  The next thing 
is that the function includes data augmentation techniques 
such as flipping horizontally uniquely during training time. 
The diversity of the training set can be artificially increased 
via data augmentation by random transformations applied to 
input images. Horizontal flipping, in this case, creates new 
samples for training by mirroring those already available 
along a horizontal line. Therefore, it is useful in making the 
model better generalize unseen data and avoid overfitting, 
which results from the model memorizing patterns from only 
the training data. 

 

 
 

Figure 2: (a) Normal cell (b) ALL cell 

 
Moreover, generators ensure efficient loading of images 

batch-wise, which is essential when working with huge 
datasets that cannot fit memory spaces. Categorical labels are 
one-hot encoded to transform them into binary vectors that are 
easier for models to understand and learn from. Finally, when 
dealing with training and validation data, shuffling ensures 
different models are exposed to varying examples throughout 
the training, which also prevents the learning of spurious 
correlations based on the order of presentation of information. 
Shuffling introduces randomness into these procedures, thus 
enabling robust representations of underlying patterns in the 
data. It also helps improve generalization to unseen data. 

 

 
 

Figure 3: ALL and normal cell images after preprocessing 

C. Overflow of Methods 

It builds an image classification model using transfer 
learning. First, the size of the input images is defined, 
including 224x224 pixels with 3 color channels. Then, it 
dynamically sets the number of output classes based on the 
training data. Next is building the model sequentially and later 
improving performance. Its compilation process is done with 
the Adamax optimizer, where categorical cross-entropy is the 
loss function and accuracy acts as the performance metric. 
This architecture does well on tasks such as distinguishing 
between leukemic cells and normal cells in medical imaging. 
Transfer learning improves performance and reduces training 
time, while regularization, batch normalization, and dropout 
techniques enable improved generalization and predictive 
accuracy. Now, train the model for somewhere between 15 
and 25 epochs so that the model learns new features using deep 
learning techniques; finally, the model testing and validation 
will be done for the test dataset. Later on, the model is saved 
along with the model training history and its weights. 
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Figure 4: The process of model building 

D. Models 

In this section, four classes of pre-trained models: 
ResNet50, VGG16, EfficientNetB3, and AlexNet are used. 
These provide special strengths and learned features from 
huge image datasets, thus generalizing and diversifying the 
performance of the ensemble. These models, needing to 
capitalize on each other's advantages, include ResNet50 on 
deep residual learning, VGG16 for being such a simple and 
yet very effective model in hierarchical feature extraction, 
EfficientNetB3, which is generally celebrated for its 
optimized balance of accuracy and efficiency, and AlexNet, 
one of the pioneering architectures of deep learning. 

1) EfficientNetB3:  
The section will state the most efficient image 

classification model, which is EfficientNetB3, under transfer 
learning. This is one of the EfficientNet families that exists 
and yields a quite well-optimized accuracy-efficiency ratio. 
EfficientNetB3 has been pre-trained; therefore, the model 
designed can start with a very well-established foundation of 
learned features. Additional layers are added to the model 
structure to fine-tune and make the pre-trained network adjust 
to the specific classification task at hand. In this way, 
refinement and improvement of the model can be realized in 
terms of performance and generalizing capabilities. 

2) VGG 16:  
This section proposes a model for classifying the images 

using transfer learning with VGG16, one of the most 

commonly known deep CNN architectures. With pretraining 
on the ImageNet dataset, VGG16 has a very powerful feature 
extraction capacity. Integration with some added-on layers 
tends to achieve maximum accuracy and generalization across 
all image classification tasks [20]. 

3) AlexNet:  
AlexNet was one of the very first CNNs that really 

changed the view about computer vision via its victory at 
ILSVRC in 2012. It is an eight-layer network: five 
convolutional layers and three fully connected layers. Various 
innovations introduced by AlexNet include using ReLU as the 
activation, LRN, and dropout regularization. Training was 
executed with the acceleration of a GPU, greatly reducing the 
training time. By designing innovations and performance 
improvements and realizing an error rate of only the top 5 = 
17%, AlexNet built on the milestone progress in deep learning 
toward further sophisticated and more efficient 
CNN architectures. 

4) ResNet50:  
Kaiming He et al. introduced ResNet50 in 2015, a 

milestone in CNN architecture. It has an architecture that is 50 
layers deep, and the residual connections mitigate the 
vanishing gradient problem, allowing deeper networks. 
Hence, every block of ResNet50 is called a residual block and 
contains multiple convolutional layers with skip connections, 
which gives this network the ability to learn residual functions 
and makes it easier to train extremely deep models. It uses 
batch normalization and ReLU activations, which speed up 
convergence. Right after its publication, ResNet50 was a 
champion in all image recognition challenges, thus showing 
very good prospects for deep learning research and 
applications. 

Introduce the most up-to-date image classification model, 
enabling transfer learning with ResNet50—one of the most 
praised architectures due to its deep residual learning features. 
Take ResNet50 as the base model; it has been trained on the 
extensive ImageNet dataset, bringing along all those richly 
learned features that boost performance. It shall combine that 
powerful base model with some more additional customized 
layers at the top to achieve high accuracy and robustness, 
especially for complex classification tasks in medical imaging 
where precision and reliability are paramount. Image 
classification model using transfer learning with ResNet50. 
First, the input dimensions are defined, resizing the images to 
224x224 pixels with 3 color channels (RGB), constituting the 
img_shape. The number of classes for the output, that is, the 
size of the final dense layer, will be dynamically determined 
by the class indices obtained from the training data. ResNet50 
will be used as the base model in building the model.It cuts 
out the fully connected layer at the top of ResNet50 so that it 
can be tailored to a particular classification task. 
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Figure 5: The process of model building 

 
Here, input_shape is set as img_shape. Then, global max 

pooling condenses each feature map to a single maximum 
value, which reduces data dimensionality while retaining 
important features. Afterwards, the model is built sequentially.  

After that, add a batch normalization layer for normalizing 
the outputs from the base model. It accelerates the training and 
improves overall performance. Such normalization is 
controlled by these parameters: axis = -1, momentum = 0.99, 
epsilon = 0.001. Finally, it introduces a dense layer with 256 
neurons inside, and there are several regularizers to avoid 
overfitting. Nonlinearity is added in this layer, followed by the 
ReLU activation function to enable the model to learn 
complex patterns. Then comes a drop-out layer to further 
prevent overfitting. During every update while training, it 
randomly sets zero of the fraction of input units and thus 
avoids overfitting in the model. The last layer is a dense layer 
with the same number of neurons as classes, using a softmax 
activation function that allows outputting probabilities for 
each class and thus multi-class classification. The model will 
be compiled with the Adamax optimizer, which is a variant of 
the Adam optimizer, for a learning rate of 0.001. The loss to 

be used in the multi-class classification task will be categorical 
cross-entropy, and the metric of accuracy is determined for 
model evaluation. 

a) Categorical cross – entropy loss function:  

The Categorical Cross-Entropy Loss Function is among 
the many loss functions used with multi-class classification 
tasks. It measures the difference between the predicted 
probability distribution and that of actual class labels.                                                                                                                                                                            
Mathematically, that is expressed in the following way: 

 

𝐿 =  −
1

𝑁
∑ =  ∑ =  𝑦𝑖𝑗 

𝐶

𝑗=1

log(𝑃𝑖𝑗)

𝑁

𝑖=1

 

 
Where: 

• N may be the number of samples. 

• C is the number of classes. 

• yij may be 1 in the case of sample i of class j; 
otherwise, it is 0.  

• pij is the probability that is predicted for sample i 
having class j. 

The categorical crossentropy cost function views the 
deviation that exists from the true labels, and, hence, by adding 
a cost to it, it ensures that the model does not deviate far from 
the true labels. If the predicted probabilities are close to the 
real labels, then the loss will be low; otherwise, it will be high. 
Basically, this loss function encourages high probabilities 
assigned by the model to the correct class but small ones for 
any other mistaken classes. It becomes, therefore, the central 
constituent in the training process of neural networks, through 
which it guides the model toward iterative improvement in the 
prediction by leveraging backpropagation and gradient 
descent. 

b) Optimizer:  

For this, an Adamax optimizer has been called, which, as 
is obvious by the name, comes as a variant of the Adam 
optimizer. Thus, it also inherits all the benefits that include 
adaptive learning rates and momentum; hence, it could also be 
applied to training a deep neural network. In contrast to Adam, 
Adamax goes further in simplifying the calculations and only 
saves the moving average of the squared gradient and does not 
save the moving average of a gradient. This still retains the 
characteristics of the adaptive learning rate and momentum of 
Adam. It automatically adjusts the learning rate for each 
parameter according to gradient magnitudes, improving 
convergence and training efficiency. Added to this, the 
momentum term helps to overcome flat regions and has a 
chance to escape local minima.  

Compared with stochastic gradient descent, Adamax 
normally converges faster because of its adaptive learning rate 
and momentum, which require no manual tuning. By 
considering only the squared gradients, Adamax adds 
corrections to the adaptive learning rate and significantly 
improves the stability and reliability of optimization.  

Generally speaking, Adamax has a good balance in terms 
of both the convergence effect and speed, so it has become 
very popular for training deep learning models in recent times. 

IV. RESULTS AND DISCUSSIONS 

A. Experimental Platform 

The experimental platform used in this work includes a 
hardware environment consisting of intel Core i5 – 1235U 
processor, Intel iris Xe graphics card, 16.00GB memory. The 
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proposed model is implemented in Google Colab with Python 
3 environment. 

B. Performance Metrics 

Regarding cancer diagnosis aid through image 
classification, the performance of a classification model can 
be evaluated effectively by means of accuracy, precision, 
recall and F1 score.  

Accuracy counts correct positive (true positive) and 
correct negative (true negative) predictions, dividing this by 
the total number of predictions, including incorrect ones (false 
positives and false negatives). This gives a simple measure of 
the model's overall correctness. 

 

accuracy = 
TP+TN

TP+TN+FP+FN
 

 
Precision measures the proportion of true positives (TP) to 

the total number of predicted positives, which includes both 
true positives (TP) and false positives (FP). Therefore, it 
indicates how many of the predicted positive cases are 
correctly identified, reflecting the model's positive 
predictions. 

precision = 
TP

TP+FP
 

 
Recall, also known as sensitivity, states the model's ability 

to identify all actual positive cases. It calculates the ratio of 
true positives (TP) to the sum of true positives (TP) and false 
negatives (FN). In other words, recall illustrates the model's 
effectiveness in detecting all true positive instances, proving 
its ability to minimize missed positive cases. 

recall = 
TP

TP+FN
 

 
The F1 score combines both precision and recall into a 

single metric, giving a balanced measure that accounts for 
both aspects. It is the harmonic mean of precision and recall, 
offering a consolidated assessment of the model's accuracy 
and completeness in identifying positive cases. 

 

F1 = 
2 × precision × recall

precision + recall
 

C. Experimental Comparisons 

The accuracy rate ,precision rate, recall and f1-score of the 
models on the test set are shown in Table 1. As it can be seen 
from Table 1, the test accuracy rate of the ResNet model is 
2.19% higher than that of the EfficientNetB3 model, 7.13% 
higher than VGG16 and 15.51% higher than AlexNet model. 
The validation accuracy of the ResNet model is 2.76% higher 
than that of the EfficientNetB3 model, 9.76% higher than 
VGG16 and 16.88% higher than AlexNet model. The 
precision of the ResNet model is 2% higher than that of the 
EfficientNetB3 model, 6% higher than VGG16 and 10.5% 
higher than AlexNet model.  As those showed that the 
performance of the ResNet50 model is better than the 
performance of the EfficientNetB3, AlexNet and VGG16 
models. The accuracy rate reached 98.625%, the precision rate 
reached 98%, recall is 97.5% and the f1-score is 98%. 

ResNet typically shows a more balanced confusion matrix 
than EfficientNet B3, VGG16, and AlexNet due to its 
advanced architecture, regularization methods, and 
robustness.  

The confusion matrices are shown in Figure 6. 

 

Table I.  The accuracy, precision, recall and F1 score of four models 

Sl 

No. 

Models Test Accuracy Validation 

Accuracy 

Accuracy Precision Recall F1 Score 

1 ResNet50 98.25 99.00 98.625 98 97.5 98 

2 EfficientNetB3 96.06 96.24 96.15 96 94.5 95.5 

3 VGG16 91.12 89.24 90.18 92 87.5 89.5 

4 AlexNet 82.74 82.12 82.43 87.5 73.5 76.5 
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Figure 6: Confusion Matrices (a) EfficientNetB3 (b) ResNet50 (c) VGG16 (d) AlexNet 

 
ResNet typically exhibits a closer match between training 

and validation accuracies compared to EfficientNet B3, 
VGG16, and AlexNet. Its advanced architecture, 
regularization methods, and robustness contribute to 
consistent performance across both training and validation 
datasets, essential for reliable medical image analysis and 
diagnosis. In summary, from Figure 8,we can say that in 
ResNet50 both training loss and accuracy show smooth and 
consistent improvement, indicating effective learning from the 
training data.The validation loss and accuracy exhibit notable 
fluctuations, suggesting variability in the model's performance 
on unseen data.  

This variability could be due to several factors, including 
the complexity of the data or overfitting in certain epochs.  

The markers show the epochs where the validation 
performance was optimal. The best validation loss occurred at 
epoch 12, while the best validation accuracy was at epoch 10. 
These points highlight the model's peak performance on the 
validation set, which can be used for model selection or early 
stopping. The ResNet50 model shows strong learning 
capability on the training data, with consistent improvement 
in training metrics. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Jahnavi B S et al, International Journal of Advanced Research in Computer Science, 15(4), July-August 2024, 35-43 

© 2023-2025, IJARCS All Rights Reserved       42 

 

 
 

Figure 7: Training Histories  (a) EfficientNetB3 (b) ResNet50 (c) VGG16 (d) AlexNet 

 

 

V. CONCLUSION 

In the paper, we have proposed a diagnostic methodology for 
ALL where it classifies cancer cells from normal cells using an 
ensemble model and this model would help doctors in real-world 
diagnosis. In this paper, we focus on the problem of class 
imbalance, which we handle using advanced data augmentation 
techniques on the ISBI 2019 dataset. Our approach is 
implemented by the ResNet50 model. This ensemble model 
gave impressive classification accuracy in distinguishing B-
lymphoblastic cells from normal B lymphoid precursors. We 
compared this ensemble model against some well-known CNN 
models like AlexNet, EfficientNetB3, and VGG16. Results 
showed that the proposed ensemble model performed much 
better than traditional models in terms of both accuracy and 
balanced classification ability. The results showed that the 
proposed model, which engrafted the advantages of ResNet50 
with EfficientNet-B3, provided better diagnostic performance 
and could help further in diagnosing acute lymphoblastic 
leukemia. 

VI. FUTURE WORK 

▪ Integration with Multi-Model Data Sources:   
Future research could explore integrating the 
image-based diagnostic model with other data 
modalities, such as genomic data, patient medical 
history, and laboratory test results. Multi-modal 
integration can provide a more comprehensive 
diagnostic tool, potentially improving the accuracy 
and personalized treatment planning for patients 
with acute lymphoblastic leukemia [24]. 

▪ Advanced Augmentation Techniques: Utilize more 
sophisticated data augmentation techniques, such as 
MixUp, CutMix, and GAN-generated images, to 
enhance the diversity and robustness of the training 
data [25]. 

▪ Model Optimization and Fine-Tuning: Future 
efforts could focus on further optimizing and fine-
tuning the ResNet50 and EfficientNet-B3 models 
by combining them. This includes exploring 
various hyperparameter tuning techniques, 
implementing advanced optimization algorithms, 
and experimenting with different model 
architectures to enhance performance and reduce 
computational costs. Additionally, attention 
mechanisms and ensemble techniques could be 
further refined [26]. 
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