Lung Cancer Forecasting Using Hybrid Optimization Technique
Main Article Content
Abstract
Lungs are body's oxygen delivery system, controlling the in and out of breath. They also act as air filters, decreasing the potential for dust or germs to enter the lungs. The lungs have natural defences to keep them safe. Nonetheless, they are insufficient to wholly avert the development of a number of lung illnesses. The lungs are vulnerable to infection, inflammation, and possibly the development of a malignant tumor. In this study, we used ML methods to create accurate models for forecasting lung cancer occurrence and progression, so that those at high risk may receive treatment sooner rather than later. In this paper, we propose a hybrid LSTM that outperforms the state-of-the-art models using standard metrics as precision, F-Measure, recall, & accuracy. In particular, experimental assessment demonstrated that the suggested model was superior with a 98.3% accuracy, F-Measure, precision, recall.
Downloads
Article Details
COPYRIGHT
Submission of a manuscript implies: that the work described has not been published before, that it is not under consideration for publication elsewhere; that if and when the manuscript is accepted for publication, the authors agree to automatic transfer of the copyright to the publisher.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work
- The journal allows the author(s) to retain publishing rights without restrictions.
- The journal allows the author(s) to hold the copyright without restrictions.