
Volume 2, No. 4, July-August 2011

International Journal of Advanced Research in Computer Science

RESEARCH PAPER

Available Online at www.ijarcs.info

© 2010, IJARCS All Rights Reserved 7

ISSN No. 0976-5697

Design and Analysis of a Reverse Hierarchical Graph Search Algorithm

Lopamudra Nayak*
Graduate Student, Department of Computer Science

Jackson State University
Jackson, MS, USA

lopa.nayak770@gmail.com

Natarajan Meghanathan
Associate Professor, Department of Computer Science

Jackson State University
Jackson, MS, USA

nmeghanathan@jsums.edu

Abstract: During the process of searching for an element in Directed Acyclic graphs (DAGs), traditional search algorithms like Depth First
Search (DFS) waste lot of time in backtracking. This paper presents an alternate search algorithm, known as the Reverse Hierarchical Search
(RHS) algorithm, for DAG/tree data structures. The RHS algorithm promises better performance over the DFS algorithm by avoiding path
retracing. This research puts focus on DAG/tree-like data structures with lineage elements. Based on the purpose the data structure solves,
hierarchical tree structures have related elements that are organized in a certain way. The knowledge of the purpose of the data structure helps in
creating a basic criterion for locating and adding new members. The RHS tree is based on searching for an element in a reverse hierarchical
order. All nodes that are found in the search path are added to the solution space. To avoid crowding the solution space with revisited nodes, any
previously visited node information is re-used and duplicity of nodes is prevented. This makes the RHS algorithm to be more scalable than DFS.
In terms of run-time complexity, RHS is a better performer than the DFS algorithm for linear tree/ DAG data structures.

Keywords: Hierarchical Search, Recursion, Directed Acyclic Graphs, Trees, Lineage Elements

I. INTRODUCTION

In the field of computer science, a data structure is a
particular way of storing and organizing data in
a computer so that it can be used efficiently. Data structures
are considered to be very critical for the efficiency of many
algorithms as well as to manage huge amounts of data,
including large databases and Internet indexing services.
Both data structures and algorithms form the key
components in software design and to develop highly
efficient and effective software [1]. It is critical to choose
the best algorithm and data structure for a particular task.
Selection of an unfit algorithm to start with, plausibly may
fail to produce optimal results irrespective of the number of
micro-level adjustments or patches that may be applied at
later stages. Selecting an algorithm usually involves a
careful analysis of the associated tradeoffs. While a
particular algorithm might be the best solution for a certain
type of data, it may perform notably sluggish as the dataset
changes. For instance, there is no single sorting algorithm
that can be identified as the most advantageous in all
scenarios. The deciding factor is the way the algorithm
would be used and the best approach lies in choosing the
solution that provides the best results most of the time, if not
always.

Different kinds of data structures are suited to different
kinds of applications, and some are highly specialized to
specific tasks. Data structures may be grouped into three
categories, based on the level of complexity as Primitive,
Composite and Abstract.

(a) Primitive data structures are defined as a data type
for which the programming language provides
built-in support. Examples of Primitive data
structures in programming languages include
boolean, char, double and float.

(b) Composite datatypes may be heterogeneous
combination of primitive data structures. For
example, the struct construct in C++ given below,

models an Account object holding dissimilar data
structures like integer, character and float.

struct Account {
 int account_number;
 char *first_name;
 char *last_name;
 float balance;
};

(c) Abstract datatypes are solely theoretical entities,
used to abridge the illustration of abstract
algorithms, to order and appraise data structures,
and to properly describe the type systems of
programming languages. Examples of abstract
datatypes are stack, tree, and queue.

There are two broad categories of data structures when
classified based on their linearity: linear data structures and
non-linear data structures. In a linear data structure, every
item is related or attached to the previous and next item in a
linear order (e.g. Arrays). In a non-linear data structure
every element or member is connected to multiple elements
in certain ways to mirror specific relationships (e.g. n-ary
tree) which puts the data items out of sequence [2].

Similar to choosing the correct algorithm for solving a
problem, selection of a data structure is equally crucial. A
linear data structure, like an array, is more likely to be
chosen for modeling simple real-life entities - like a list of
student names in a school register [3]. Modeling complex
entities such as hierarchical structures where each entity’s
relative placement affects others in more than one ways,
requires the use of a non-linear, spatial data structure like a
tree. For instance, a “family tree” displaying ancestral
relationships has children grouped under parents at a
particular level. The tree structure in this situation is able to
model the abstract yet real-life concept of a person playing
multiple roles in several relationships. Not only is the tree
data structure useful in organizing multiple data objects in
terms of hierarchical relationships, it is a potential tool for

Lopamudra Nayak et al, International Journal of Advanced Research in Computer Science, 2 (4), July-August, 2011,7-12

systematizing data objects based on keys as well. Several
areas where trees are put to practical use are narrated below.

(a) Trees can hold objects that are sorted by their keys
[4]. The nodes are ordered such that all keys in the
left sub-tree of a node are lower in value than the
current node, and all keys in the right sub-tree are
larger than the current node’s key.

(b) Trees can hold objects that are strictly ordered by
categories and located by sequences such as library
books. Modeling a library of books can be done
using a tree data structure since it can contain objects
located by keys in sequences.

(c) Trees find use in language processing programs to
represent phrase structure of sentences while
constructing a parsing tree [2]. For example, during
the process of compiling a Java program, the Java
compiler first checks the grammatical structure of
the source code and tries to build the parsing tree.
Upon successful completion, this parsing tree guides
the Java compiler to produce the executable.

(d) One instance of tree data structure, the B-tree, is
particularly well-suited for implementation of
databases. The challenge in database implementation
is search time overhead caused due to disk read
delays and inconsistencies caused by insertion or
deletion [4]. The B-tree maintains a sorted order of
records that enables sequential traversal. The number
of disk reads is minimized by using a hierarchical
index. Insertions and deletions are faster in a B-tree
due to use of partially full blocks. Further, a B-tree
minimizes the non-use of the interior nodes by
ensuring optimal usage. Apart from databases, B-
Trees are also used in file systems to provide random
access to a particular section in the file.

The rest of the paper is organized as follows: Section 2
establishes the foundation by delving into several well-
known search algorithms and their performance analysis;
thereby, identifying any scope of improvement and choosing
a suitable tree model to aid in the implementation of the
proposed Reverse Hierarchical Search (RHS) algorithm.
Section 3 explains the RHS algorithm, its algorithmic
complexity and discusses the data model. Section 4
concludes the paper.

II. LITERATURE REVIEW OF TREE SEARCH
ALGORITHMS AND THEIR ANALYSIS

This section presents a review of the related work available
in the literature on search algorithms in the domain of tree
data structures and investigates any scope for improvement.

A. The Depth First Search Algorithm
Depth First Search (DFS) is a tree or graph traversal

algorithm optimized for faster searching [6]. The search
typically commences at the root of the tree and continues to
explore each branch till the leaf nodes, before backtracking.
As soon as the search reaches the leaf node/dead end, the
control returns to the most recent node that has not been
explored. DFS is closely related to preorder traversal of a
tree. A preorder traversal simply visits each node before its
children. In order to convert the preorder traversal into a
graph traversal algorithm, the “child” node is replaced by
“neighbor” node. Further, in order to optimize the algorithm

and prevent infinite loops, one would restrict the number of
visits to each vertex. In order to enforce this restriction,
marks are used to keep track of the visited vertices. This
search may be used to build a spanning tree with certain
useful properties.

The Depth First Search (DFS) algorithm begins with
initializing a set of markers in order to identify the pre-
visited vertices. Upon choosing a starting vertex ‘x’, a tree T
is initialized to x, and Depth First Search(x) algorithm is
invoked. The order of traversal of the vertices beginning
from a vertex having multiple neighbors makes little
difference. The graph shown in Figure 1 illustrates the
application of the DFS algorithm.

Figure1. Graph Used for Applying DFS

Assuming the left edges in the graph are picked prior to

the right edges while performing a DFS, commencing at
vertex ‘A’, for a search that presumably memorizes pre-
visited nodes (in order not to repeat them), the nodes will be
ordered as A, B, D, F, E, C and G. The result of this search
is a structure known as the Trémaux tree. Performing the
same search without any knowledge of pre-visited nodes
accounts for a different order of nodes : A, B, D, F, E, A, B,
D, F, E etc. with infinite loops caught in the A, B, D, F, E
cycle and inability to reach nodes C or G.

During tree traversal, for space complexity evaluation,
the memory needed in DFS is the largest when the search
reaches the maximum tree depth for the first time.
Assuming, a branching factor ‘b’ for each node, when a
node at depth ‘d’ is inspected, the total number of
nodes/vertices collected in memory is a combination of
unexpanded nodes up to depth ‘d’ and the current node
being studied. With b-1 number of unexpanded nodes at
each level, the total amount of memory that is required is
computed as d *(b -1) +1 i.e. O(|V|) , if the entire graph is
traversed without repetition. To summarize, the space
complexity of Depth First Search is a linear function of the
branching factor for each node and this makes DFS more
favorable over Breadth First Search that has an exponential
function. For evaluating time complexity, the paper takes
into consideration the time needed in searching a node. In
order to search a node located at the leftmost location at a
depth d in a tree results in the total number of examined
nodes to just being just d +1. On the other hand, if one finds
the node at the extreme right location at depth d, then the
total number of inspected nodes comprises of all the nodes
in the tree and it is calculated as: 1 + b + b2 + b3 +….+ bd =
(bd+1 – 1) / (b – 1). In an average case scenario, the total
number of examined nodes is evaluated as [(d + 1) / 2] +
[(bd+1 – 1) / (b – 1)] ≈ [b (bd + d)/2(b – 1)]. Asymptotically

Lopamudra Nayak et al, International Journal of Advanced Research in Computer Science, 2 (4), July-August, 2011,7-12

speaking, the run-time complexity is evaluated as O(bd

B. Iterative Deepening Depth First Search Algorithm

) with
branching factor b and depth d.

Applying the DFS to traditional search problems in the
field of Artificial Intelligence happens to be a potential
stress test. The exceptionally large size of the graph results
in non-termination issues that are based on the infinite path
length in the search tree. This seems to be an inherent lacuna
in the algorithm. Besides, due to the limitation in the
availability of memory, applying a data structure that
records all pre-visited vertices will impose practical
hindrance. In this scenario, the search time remains linear in
the number of extended vertices and edges (may not be
same as the size of the entire graph as some vertices might
have been searched multiple times, while others may not at
all be). In a situation where the depth limit is not known
beforehand, a variation of the DFS algorithm may be
applied to overcome the problem of infinite looping and in-
accessible nodes, known as the Iterative deepening Depth
First Search (IDDFS) [5]. The core idea is to run a depth-
limited search over and over again, with each successive
iteration incrementing the depth limit until one arrives at the
depth of the shallowest goal state. IDDFS is viewed as a
hybrid between Depth First Search and Breadth First Search,
respectively inheriting the space-efficiency as well as
completeness attributes. It is a preferred choice when the
path cost is a non-decreasing function of the depth of the
node.

Assuming ‘b’ as the branching factor and ‘d’ as the depth
of the most superficial goal, the space complexity of the
IDDFS algorithm is defined by O(b*d). The time
complexity of IDDFS in well-balanced trees is same as
Depth First Search i.e. O(bd

ddd bbbbddbd ++++−+++= −−)1()2(2 23........)1()1(

). As is observed, iterative
deepening search indulges in visiting states multiple times,
the nodes on the lowest level are expanded once, those
located in the penultimate layer to bottom level are
expanded twice, and so on so forth. Gradually gravitating
towards the root of the search tree yields an expansion of
d + 1 times [5]. Computation of the total number of
expansions in an iterative deepening search results in the
following formulae:

∑=
−+

d

i
ibid

0
)1(

Assuming a scenario where b = 10 and d = 5, the total
number of expansions is calculated as: 6 + 50 + 400 + 3000
+ 20000 + 100000 = 123,456.

To summarize, an iteratively deepening search beginning
from depth value of one through d enlarges about 11% more
nodes than a traditional breadth-first or depth-limited search
to depth d, while b is equal to ten. It is observed that higher
the branching factor, the lower the overhead of repeatedly
expanded states, but even when the branching factor is 2,
iterative deepening search only takes about twice as long as
a complete breadth-first search. This means that the time
complexity of iterative deepening is still)(dbO , and the
space complexity is O(b*d). IDDFS has an upper hand in
space complexity while the time complexity suffers badly as
depth of the tree increases. It is a preferred option for games
where the requirement is to find shortest paths to a problem.
However, the algorithm faces major bottleneck when it has
to solve trees involving long search paths. As the value of

depth (d) increases, the cost involved in terms of time
increases multiple folds [6].

C. Scope for Improvement
As observed in the previous sections, popular tree search

algorithms (including DFS and IDDFS) use heuristic-based
tree pruning techniques like “backtracking” that consume a
significant amount of search time at the expense of
efficiency [5]. Backtracking is defined as a general method
for exploring all (or some) solutions to a computational
problem that incrementally builds nominees to the solutions.
Each partial nominee n is discarded ("backtracks") as soon
as it is determined that n possibly cannot be completed to
reach a valid solution [5].

The DFS algorithm is based on vertical search path that
explores available sub-trees; traversing and re-traversing
(manifested as backtracking) the nodes until the target node
is found. As depicted in Figure 2, a search for the target
node requires navigation through at least thirteen nodes of
which three are re-traversed. In Figure 2, node 1 represents
the root node while 2 through 12 are the intermediate nodes.
Node 10 represents the target node. The total time spent in
reaching the target node calculated using equation 1, given
that the depth of the tree is 3 and branching factor is 2 is
computed as: 4 + 3*2 + 2*4 = 18 time units.

Figure 2. Schematic Representation of a Depth First Search Tree

From manual inspection, it can be identified that the

successful path traversals leading to the target node is a
straight path from the root as shown in Figure 3. A
comparison of both these scenarios yields a performance
ratio of 0.22 (computed as a ratio of time units used without
backtracking to time units used with backtracking)
explaining the penalty that the DFS algorithm pays for
relying on backtracking.

Figure 3. Path of Successful Tree Traversal without Backtracking

III. DESIGN AND ANALYSIS OF THE REVERSE
HIERARCHICAL SEARCH (RHS) ALGORITHM

This section presents the general idea of the Reverse
Hierarchical Search (RHS) algorithm followed by a
discussion of the complexity of the algorithm. The section
also enumerates the process of selecting a suitable tree
model to establish the algorithm and analyze the data model.

Lopamudra Nayak et al, International Journal of Advanced Research in Computer Science, 2 (4), July-August, 2011,7-12

A. General Idea
The contribution of this paper is the design and

development of a tree search algorithm hereafter referred to
as Reverse Hierarchical Search (RHS) algorithm. The
proposed optimization will provide a novel graph traversal
algorithm for better time and space complexity as well as
completeness for tree data structures. The proposed RHS
algorithm is an uninformed [5] search similar to the normal
DFS. However, unlike the DFS algorithm, which travels
downstream from the root to leaf nodes, the RHS algorithm
keeps a tab on backtracking by limiting the depth of search
from individual nodes to the root. This enforced restriction
of the search space boundary (i.e. upstream node till root)
prevents indefinitely deep paths during traversals. The DFS
algorithm begins the search vertically downwards in pursuit
of the target node. Until the search element is reached, the
algorithm backtracks (self repetitions without further
advancement) to the penultimate junction nodes. For a
complete binary tree of depth n, the worst-case search time
complexity would be O(2n -1). Usually, in tree structures the
root is a single element node while the maximum number of
elements occurs at the nth level. Therefore, a search
commencing at the level “n” would represent a logical
initiative in reducing the volume of search by 2(n-1) elements
(accounting for members at the nth

B. Selection of a Suitable Tree Model

 level).
Nevertheless, the proposed novel search algorithm is not

limited to binary trees and can very well be adapted for non-
binary versions. Since the search terminates at the root, no
backtracking will be necessary and all the child-parent
nodes following a reverse hierarchy are added up to the
solution space. This saves the users from revisiting the same
path for further target searches. It is noteworthy that every
single node that is traversed once gets into the domain of the
solution space. In this approach, special emphasis will be
given for optimization of the algorithm for tree structures
with lineage elements.

The studies will be based on a search model currently in
use for student enrollment in most academic programs.
Before registering for an advanced course a student has to
establish his/her proficiency in the basic course curriculum
referred to as “pre-requisites”. At the present time, some
universities including Jackson State University (JSU)
employ a manual transcript analyses that ensures that the
student has satisfactory performance in previous classes on a
case-by-case basis.

Figure 4. Pre-requisite Tree for Undergraduate Courses in Jackson State

University CSC Department

Designing the RHS algorithm for the checking the pre-
requisites will serve a three-fold purpose such as: (i)
Assessment of validity/utility of the proposed modified DFS
algorithm, (ii) Precise determination of student’s eligibility,
and (iii) Efficient and economic usage of university’s
resources by substituting the manual practice with an
automated process.

C. Study of the Data Model
The pre-requisite tree (depicted in Figure 4) when

observed closely is a directly acyclic graph (DAG) due to
child nodes being shared among parents. The pre-requisite
DAG is used to access information about the enrollment
requirements for the courses. This DAG is a connected
network of nodes (represented by individual courses) related
to each other with a parent-child connection.

The left-most node is the root with the arrow pointing
toward its children. The concept of one course having
multiple pre-requisites is well modeled in the DAG. For
optimization purposes, the courses have been segregated
into four different years of undergraduate study (viz.,
freshman, sophomore, junior and senior). Each node in the
tree is labeled with the code for the classes.

D. Informal Description of RHS
An informal description of the RHS algorithm is

presented here:
1. Establish the vertex where the search should
commence and assign the maximum search depth

2. Verify if the current vertex is the Goal State
• If no: Go to Step 3
• If yes: return

3. Verify if the current vertex is within the maximum
search depth

• If no: Do nothing
• If yes:

 Expand the vertex and save all of
its predecessors in a stack
 Call RHS recursively for all
vertices of the stack and go back to
Step 2

E. Formal Description of RHS

A Goal State is the final state after which traversal stops.
A vertex having no un-traversed edges is said to be in Goal
state.

The formal pseudo code for the proposed algorithm is
presented here, which will be subjected to preliminary
testing and search time complexity computation.
RHS (node, goal, depth)
{
 if (node = goal)
 return node;
 push_stack(node);
 while (stack is not empty) { ……….Step (1)
 stack_counter ++;
 If (depth > 0) {
 nodeList_recvd := expand (node)
 While(nodeList_recvd is not empty) {
 node = nodeList_recvd [next node]
 RHS (node, goal, depth-1) … Step (2)
 }
 }

Lopamudra Nayak et al, International Journal of Advanced Research in Computer Science, 2 (4), July-August, 2011,7-12

 Else
 // no operation
 }
}
Expand (node) .………………… Step (3)
{ i = 0
 while (node is not root) {
 i++
 if (depth > 0)
 { For each edge e {
 nodeList[i] := node.Parent(); // Fetch all parents of
current node
}
 }
 }
 Return nodeList;
}

F. Asymptotic Complexity of RHS Algorithm
The computation of the run-time complexity of an

algorithm is an important aspect for performance evaluation.
The estimation of the run-time complexity of the RHS
algorithm is narrated in this section. With reference to the
steps narrated in the formal description of the algorithm in
the previous section, for an input of size N (equivalent to the
number of pre-requisite courses that exist for the desired
course), step 1 is executed log (N) times. Similar to step 1,
step 2 is executed log (N) times and so is step 3. Therefore,
the total number of iterations needed to compute the RHS
algorithm is: log (N) * log (N) + log (N) = log (N2

)1(−b

) + log (N)
= log (N), ignoring the first term in the expression, which
becomes negligible as size of N increases. A logarithmic
run-time complexity for the RHS is considerably well lower
than the linear run-time complexity for popular algorithms
like the DFS.

Evaluation of space complexity of the algorithm presents
an estimate of the memory requirement for running the
algorithm. With memory devices becoming cheaper day by
day, space complexity results can bear moderately lower
performance. During tree traversal, the memory needed in
the original DFS is high when one reaches to the root of the
tree. A branching factor ‘b’ for each node refers to average
number of branches at any level. When a tree with depth d is
inspected, the total number of nodes/vertices collected in
memory is a combination of the expanded nodes up to depth
‘d’ and the current node being studied. There being
number of expanded nodes at each level, the total amount of
memory that is required is computed as

2/)1(**)1(
)1)......2()1((*)1(

1.).........1(*)1()1(*

+−=
−+−+−=

−−+−

ddb
dddb

bdbd

= 2* db (ignoring constant terms) = O(bd)

G. Algorithm Application
Based on the requirements during student registration, a

couple of scenarios have been isolated to evaluate the
performance of the algorithm in a node-based model (see
Figures 5 and 6).

Scenario 1: Transcript analysis for registration of a single
course (i.e. CSC216) depicted on a node based model is

shown in Figure 8. Computing the processing time for this
scenario gives the following results: Log2 (N) = log2 (7) =
2.80735 time units

Figure 5. Transcript Analysis for a Single Course in Node Based Model

Scenario 2: Simultaneous transcript analysis for two

courses (i.e. CSC216 and CSC450) yields a dataset of size N
(N=10). Plugging the values of this scenario in the time-
complexity equation derived in the previous section yields a
computation time of 3.321 time units (Log2(10)).

Figure 6. Transcript Analysis for Two Courses in Node Based Model

IV. CONCLUSIONS

This paper presents the design and development of an
alternate search algorithm based on the existing DFS
algorithm known as Reverse Hierarchical Search (RHS)
algorithm for tree data structures. During the process of
searching for a node, the general DFS algorithm relies on
backtracking to a previous node and beginning the search in
a new sub-tree, until and unless the search element is found.
The solution space in DFS that maintains the list of
traversed nodes may contain repeated nodes if the routes
have been revisited. In a scenario where the tree holds a
large data set, the solution space can become quite heavy.
The space and run-time complexity grows at the rate of O
(N) for each in case of explicit graphs (for implicit graphs,
the growth rate is exponential). The research carried out in
this paper on various graphs and their run-time complexities
reveals that backtracking is mostly responsible for degrading
the performance of DFS.

Lopamudra Nayak et al, International Journal of Advanced Research in Computer Science, 2 (4), July-August, 2011,7-12

Every element in the tree is indexed and positioned in a
specific place in RHS algorithm. While in the DFS
algorithm elements are thrown into the tree in a random
fashion, the RHS algorithm relies on re-structuring the tree
for optimization purposes. Every graph has a certain purpose
and based on that the rearrangement is done. Once the
criterion of re-structuring is set, every new element that
comes in has a specific destination. The proposed RHS
algorithm is based on a search process that begins its search
from the leaf element at the nth level of the tree and not the
root. In lineage tree structures, the nodes at subsequent
levels are related to each other through parent child
relationships. The parent elements found along the search
path from the nth

V. ACKNOWLEDGMENTS

 level to the root are added to the solution
space following reverse hierarchy. Any other searches that
follow a common path reuse the information in the solution
space, improving the overall efficiency of the algorithm.
The RHS algorithm is evaluated to have an asymptotic run
time complexity of O(log (N)) and space complexity of
O(N) for an N-node graph. Thus, the RHS algorithm is a
valuable addition to search for ancestor-descendant
relationships [7] in trees and directed-acyclic graphs.

This research is partly funded through the U. S. National
Science Foundation (NSF) grants EPS-0556308 on
Modeling and Simulation of Complex Systems and DUE-
0941959 on Incorporating Systems Security and Software
Security in Senior Projects. The views and conclusions in
this document are those of the authors and should not be
interpreted as necessarily representing the official policies,
either expressed or implied, of the funding agency.

VI. RFERENCES

[1] T. H. Cormen, C. E. Leiserson, R. L. Rivest and C.
Stein, Introduction to Algorithms, 3rd

[2] A. W. Appel and J. Palsberg, Modern Compiler
Implementation in Java, Cambridge, MA: MIT Press,
1998.

 Edition,
Cambridge, MA: MIT Press, September 2009.

[3] N. Gelfand, M. T. Goodrich and R. Tammasia,
“Teaching Data Structure Design Patterns,”
Proceedings of the 29th

[4] R. Bayer, “Binary B-Trees for Virtual Memory,”
Proceedings of ACM SIGFIDET Workshop on Data
Description, Access and Control, pp. 219-235, San
Diego, CA, USA, 1971.

 SIGCSE Technical Symposium
on Computer Science Education, vol. 30 (pp. 331-335),
Providence, RI, USA, 1998.

[5] A. Reinefeld and T. A. Marsland, “Enhanced Iterative
Deepening Search,” IEEE Transactions on Pattern
Analysis and Machine Intelligence, vol. 7, no. 16, pp.
701-710, 1994.

[6] R. Tarjan, “Depth First Search and Linear Graph
Algorithms,” Proceedings of the 12th

[7] S. Baskiyar and N. Meghanathan, “Binary Codes for
Fast Determination of Ancestor-Descendant
Relationship in Trees and Directed A-cyclic Graphs,”
International Journal of Computers and Applications,
vol. 10, no. 1, pp. 67-71, March 2003.

 Annual IEEE
Symposium on Switching and Automata Theory, pp.
114-121, East Lansing, MI, USA, 1971.

	Introduction
	In the field of computer science, a data structure is a particular way of storing and organizing data in a computer so that it can be used efficiently. Data structures are considered to be very critical for the efficiency of many algorithms as well as...
	Different kinds of data structures are suited to different kinds of applications, and some are highly specialized to specific tasks. Data structures may be grouped into three categories, based on the level of complexity as Primitive, Composite and Abs...
	Literature Review of Tree Search Algorithms and their Analysis
	This section presents a review of the related work available in the literature on search algorithms in the domain of tree data structures and investigates any scope for improvement.
	The Depth First Search Algorithm
	Iterative Deepening Depth First Search Algorithm
	Scope for Improvement

	Design and Analysis of the Reverse Hierarchical Search (RHS) Algorithm
	General Idea
	Selection of a Suitable Tree Model
	Study of the Data Model
	Informal Description of RHS
	Formal Description of RHS
	Asymptotic Complexity of RHS Algorithm
	Algorithm Application

	Conclusions
	Acknowledgments
	Rferences
	[1] T. H. Cormen, C. E. Leiserson, R. L. Rivest and C. Stein, Introduction to Algorithms, 3PrdP Edition, Cambridge, MA: MIT Press, September 2009.
	[2] A. W. Appel and J. Palsberg, Modern Compiler Implementation in Java, Cambridge, MA: MIT Press, 1998.
	[3] N. Gelfand, M. T. Goodrich and R. Tammasia, “Teaching Data Structure Design Patterns,” Proceedings of the 29PthP SIGCSE Technical Symposium on Computer Science Education, vol. 30 (pp. 331-335), Providence, RI, USA, 1998.
	[4] R. Bayer, “Binary B-Trees for Virtual Memory,” Proceedings of ACM SIGFIDET Workshop on Data Description, Access and Control, pp. 219-235, San Diego, CA, USA, 1971.
	[5] A. Reinefeld and T. A. Marsland, “Enhanced Iterative Deepening Search,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 7, no. 16, pp. 701-710, 1994.
	[6] R. Tarjan, “Depth First Search and Linear Graph Algorithms,” Proceedings of the 12PthP Annual IEEE Symposium on Switching and Automata Theory, pp. 114-121, East Lansing, MI, USA, 1971.

