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Abstract: During the process of searching for an element in Directed Acyclic graphs (DAGs), traditional search algorithms like Depth First 
Search (DFS) waste lot of time in backtracking. This paper presents an alternate search algorithm, known as the Reverse Hierarchical Search 
(RHS) algorithm, for DAG/tree data structures. The RHS algorithm promises better performance over the DFS algorithm by avoiding path 
retracing. This research puts focus on DAG/tree-like data structures with lineage elements. Based on the purpose the data structure solves, 
hierarchical tree structures have related elements that are organized in a certain way. The knowledge of the purpose of the data structure helps in 
creating a basic criterion for locating and adding new members. The RHS tree is based on searching for an element in a reverse hierarchical 
order. All nodes that are found in the search path are added to the solution space. To avoid crowding the solution space with revisited nodes, any 
previously visited node information is re-used and duplicity of nodes is prevented. This makes the RHS algorithm to be more scalable than DFS. 
In terms of run-time complexity, RHS is a better performer than the DFS algorithm for linear tree/ DAG data structures. 
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I. INTRODUCTION 

In the field of computer science, a data structure is a 
particular way of storing and organizing data in 
a computer so that it can be used efficiently. Data structures 
are considered to be very critical for the efficiency of many 
algorithms as well as to manage huge amounts of data, 
including large databases and Internet indexing services. 
Both data structures and algorithms form the key 
components in software design and to develop highly 
efficient and effective software [1]. It is critical to choose 
the best algorithm and data structure for a particular task. 
Selection of an unfit algorithm to start with, plausibly may 
fail to produce optimal results irrespective of the number of 
micro-level adjustments or patches that may be applied at 
later stages. Selecting an algorithm usually involves a 
careful analysis of the associated tradeoffs. While a 
particular algorithm might be the best solution for a certain 
type of data, it may perform notably sluggish as the dataset 
changes. For instance, there is no single sorting algorithm 
that can be identified as the most advantageous in all 
scenarios. The deciding factor is the way the algorithm 
would be used and the best approach lies in choosing the 
solution that provides the best results most of the time, if not 
always. 

Different kinds of data structures are suited to different 
kinds of applications, and some are highly specialized to 
specific tasks. Data structures may be grouped into three 
categories, based on the level of complexity as Primitive, 
Composite and Abstract. 

(a) Primitive data structures are defined as a data type 
for which the programming language provides 
built-in support. Examples of Primitive data 
structures in programming languages include 
boolean, char, double and float.  

(b) Composite datatypes may be heterogeneous 
combination of primitive data structures. For 
example, the struct construct in C++ given below, 

models an Account object holding dissimilar data 
structures like integer, character and float. 

struct Account { 
   int account_number; 
   char *first_name; 
   char *last_name; 
   float balance; 
}; 

(c) Abstract datatypes are solely theoretical entities, 
used to abridge the illustration of abstract 
algorithms, to order and appraise data structures, 
and to properly describe the type systems of 
programming languages. Examples of abstract 
datatypes are stack, tree, and queue. 

There are two broad categories of data structures when 
classified based on their linearity: linear data structures and 
non-linear data structures. In a linear data structure, every 
item is related or attached to the previous and next item in a 
linear order (e.g. Arrays). In a non-linear data structure 
every element or member is connected to multiple elements 
in certain ways to mirror specific relationships (e.g. n-ary 
tree) which puts the data items out of sequence [2].   

Similar to choosing the correct algorithm for solving a 
problem, selection of a data structure is equally crucial. A 
linear data structure, like an array, is more likely to be 
chosen for modeling simple real-life entities - like a list of 
student names in a school register [3]. Modeling complex 
entities such as hierarchical structures where each entity’s 
relative placement affects others in more than one ways, 
requires the use of a non-linear, spatial data structure like a 
tree. For instance, a “family tree” displaying ancestral 
relationships has children grouped under parents at a 
particular level. The tree structure in this situation is able to 
model the abstract yet real-life concept of a person playing 
multiple roles in several relationships. Not only is the tree 
data structure useful in organizing multiple data objects in 
terms of hierarchical relationships, it is a potential tool for 



Lopamudra Nayak et al, International Journal of Advanced Research in Computer Science, 2 (4), July-August, 2011,7-12 
 

 

systematizing data objects based on keys as well. Several 
areas where trees are put to practical use are narrated below. 

(a) Trees can hold objects that are sorted by their keys 
[4]. The nodes are ordered such that all keys in the 
left sub-tree of a node are lower in value than the 
current node, and all keys in the right sub-tree are 
larger than the current node’s key.  

(b) Trees can hold objects that are strictly ordered by 
categories and located by sequences such as library 
books. Modeling a library of books can be done 
using a tree data structure since it can contain objects 
located by keys in sequences.  

(c) Trees find use in language processing programs to 
represent phrase structure of sentences while 
constructing a parsing tree [2]. For example, during 
the process of compiling a Java program, the Java 
compiler first checks the grammatical structure of 
the source code and tries to build the parsing tree. 
Upon successful completion, this parsing tree guides 
the Java compiler to produce the executable. 

(d) One instance of tree data structure, the B-tree, is 
particularly well-suited for implementation of 
databases. The challenge in database implementation 
is search time overhead caused due to disk read 
delays and inconsistencies caused by insertion or 
deletion [4]. The B-tree maintains a sorted order of 
records that enables sequential traversal. The number 
of disk reads is minimized by using a hierarchical 
index. Insertions and deletions are faster in a B-tree 
due to use of partially full blocks. Further, a B-tree 
minimizes the non-use of the interior nodes by 
ensuring optimal usage. Apart from databases, B-
Trees are also used in file systems to provide random 
access to a particular section in the file. 

The rest of the paper is organized as follows: Section 2 
establishes the foundation by delving into several well-
known search algorithms and their performance analysis; 
thereby, identifying any scope of improvement and choosing 
a suitable tree model to aid in the implementation of the 
proposed Reverse Hierarchical Search (RHS) algorithm. 
Section 3 explains the RHS algorithm, its algorithmic 
complexity and discusses the data model. Section 4 
concludes the paper.    

II. LITERATURE REVIEW OF TREE SEARCH 
ALGORITHMS AND THEIR ANALYSIS 

This section presents a review of the related work available 
in the literature on search algorithms in the domain of tree 
data structures and investigates any scope for improvement. 

A. The Depth First Search Algorithm 
Depth First Search (DFS) is a tree or graph traversal 

algorithm optimized for faster searching [6]. The search 
typically commences at the root of the tree and continues to 
explore each branch till the leaf nodes, before backtracking. 
As soon as the search reaches the leaf node/dead end, the 
control returns to the most recent node that has not been 
explored. DFS is closely related to preorder traversal of a 
tree. A preorder traversal simply visits each node before its 
children. In order to convert the preorder traversal into a 
graph traversal algorithm, the “child” node is replaced by 
“neighbor” node. Further, in order to optimize the algorithm 

and prevent infinite loops, one would restrict the number of 
visits to each vertex. In order to enforce this restriction, 
marks are used to keep track of the visited vertices. This 
search may be used to build a spanning tree with certain 
useful properties. 

The Depth First Search (DFS) algorithm begins with 
initializing a set of markers in order to identify the pre-
visited vertices. Upon choosing a starting vertex ‘x’, a tree T 
is initialized to x, and Depth First Search(x) algorithm is 
invoked. The order of traversal of the vertices beginning 
from a vertex having multiple neighbors makes little 
difference.  The graph shown in Figure 1 illustrates the 
application of the DFS algorithm. 
 

 
Figure1. Graph Used for Applying DFS 

 
Assuming the left edges in the graph are picked prior to 

the right edges while performing a DFS, commencing at 
vertex ‘A’, for a search that presumably memorizes pre-
visited nodes (in order not to repeat them), the nodes will be 
ordered as A, B, D, F, E, C and G. The result of this search 
is a structure known as the Trémaux tree. Performing the 
same search without any knowledge of pre-visited nodes 
accounts for a different order of nodes : A, B, D, F, E, A, B, 
D, F, E etc. with infinite loops caught in the A, B, D, F, E 
cycle and inability to reach nodes C or G. 

During tree traversal, for space complexity evaluation, 
the memory needed in DFS is the largest when the search 
reaches the maximum tree depth for the first time. 
Assuming, a branching factor ‘b’ for each node, when a 
node at depth ‘d’ is inspected, the total number of 
nodes/vertices collected in memory is a combination of 
unexpanded nodes up to depth ‘d’ and the current node 
being studied. With b-1 number of unexpanded nodes at 
each level, the total amount of memory that is required is 
computed as d *(b -1) +1 i.e. O(|V|) , if the entire graph is 
traversed without repetition. To summarize, the space 
complexity of Depth First Search is a linear function of the 
branching factor for each node and this makes DFS more 
favorable over Breadth First Search that has an exponential 
function. For evaluating time complexity, the paper takes 
into consideration the time needed in searching a node. In 
order to search a node located at the leftmost location at a 
depth d in a tree results in the total number of examined 
nodes to just being just d +1. On the other hand, if one finds 
the node at the extreme right location at depth d, then the 
total number of inspected nodes comprises of all the nodes 
in the tree and it is calculated as: 1 + b + b2 + b3 +….+ bd = 
(bd+1 – 1) / (b – 1). In an average case scenario, the total 
number of examined nodes is evaluated as [(d + 1) / 2] + 
[(bd+1 – 1) / (b – 1)] ≈ [b (bd + d)/2(b – 1)]. Asymptotically 
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speaking, the run-time complexity is evaluated as O(bd

B. Iterative Deepening Depth First Search Algorithm 

) with 
branching factor b and depth d. 

Applying the DFS to traditional search problems in the 
field of Artificial Intelligence happens to be a potential 
stress test. The exceptionally large size of the graph results 
in non-termination issues that are based on the infinite path 
length in the search tree. This seems to be an inherent lacuna 
in the algorithm. Besides, due to the limitation in the 
availability of memory, applying a data structure that 
records all pre-visited vertices will impose practical 
hindrance. In this scenario, the search time remains linear in 
the number of extended vertices and edges (may not be 
same as the size of the entire graph as some vertices might 
have been searched multiple times, while others may not at 
all be). In a situation where the depth limit is not known 
beforehand, a variation of the DFS algorithm may be 
applied to overcome the problem of infinite looping and in-
accessible nodes, known as the Iterative deepening Depth 
First Search (IDDFS) [5]. The core idea is to run a depth-
limited search over and over again, with each successive 
iteration incrementing the depth limit until one arrives at the 
depth of the shallowest goal state. IDDFS is viewed as a 
hybrid between Depth First Search and Breadth First Search, 
respectively inheriting the space-efficiency as well as 
completeness attributes. It is a preferred choice when the 
path cost is a non-decreasing function of the depth of the 
node. 

Assuming ‘b’ as the branching factor and ‘d’ as the depth 
of the most superficial goal, the space complexity of the 
IDDFS algorithm is defined by O(b*d). The time 
complexity of IDDFS in well-balanced trees is same as 
Depth First Search i.e. O(bd

ddd bbbbddbd ++++−+++= −− )1()2(2 23........)1()1(

). As is observed, iterative 
deepening search indulges in visiting states multiple times, 
the nodes on the lowest level are expanded once, those 
located in the penultimate layer to bottom level are 
expanded twice, and so on so forth. Gradually gravitating 
towards the root of the search tree yields an expansion of 
d + 1 times [5].  Computation of the total number of 
expansions in an iterative deepening search results in the 
following formulae: 

 

∑=
−+

d

i
ibid

0
)1(  

Assuming a scenario where b = 10 and d = 5, the total 
number of expansions is calculated as: 6 + 50 + 400 + 3000 
+ 20000 + 100000 = 123,456. 

To summarize, an iteratively deepening search beginning 
from depth value of one through d enlarges about 11% more 
nodes than a traditional breadth-first or depth-limited search 
to depth d, while b is equal to ten. It is observed that higher 
the branching factor, the lower the overhead of repeatedly 
expanded states, but even when the branching factor is 2, 
iterative deepening search only takes about twice as long as 
a complete breadth-first search. This means that the time 
complexity of iterative deepening is still )( dbO , and the 
space complexity is O(b*d). IDDFS has an upper hand in 
space complexity while the time complexity suffers badly as 
depth of the tree increases. It is a preferred option for games 
where the requirement is to find shortest paths to a problem. 
However, the algorithm faces major bottleneck when it has 
to solve trees involving long search paths. As the value of 

depth (d) increases, the cost involved in terms of time 
increases multiple folds [6].  

C. Scope for Improvement 
As observed in the previous sections, popular tree search 

algorithms (including DFS and IDDFS) use heuristic-based 
tree pruning techniques like “backtracking” that consume a 
significant amount of search time at the expense of 
efficiency [5]. Backtracking is defined as a general method 
for exploring all (or some) solutions to a computational 
problem that incrementally builds nominees to the solutions. 
Each partial nominee n is discarded ("backtracks") as soon 
as it is determined that n possibly cannot be completed to 
reach a valid solution [5]. 

The DFS algorithm is based on vertical search path that 
explores available sub-trees; traversing and re-traversing 
(manifested as backtracking) the nodes until the target node 
is found. As depicted in Figure 2, a search for the target 
node requires navigation through at least thirteen nodes of 
which three are re-traversed. In Figure 2, node 1 represents 
the root node while 2 through 12 are the intermediate nodes. 
Node 10 represents the target node. The total time spent in 
reaching the target node calculated using equation 1, given 
that the depth of the tree is 3 and branching factor is 2 is 
computed as: 4 + 3*2 + 2*4 = 18 time units.  

 

 
Figure 2. Schematic Representation of a Depth First Search Tree 

 
From manual inspection, it can be identified that the 

successful path traversals leading to the target node is a 
straight path from the root as shown in Figure 3. A 
comparison of both these scenarios yields a performance 
ratio of 0.22 (computed as a ratio of time units used without 
backtracking to time units used with backtracking) 
explaining the penalty that the DFS algorithm pays for 
relying on backtracking.  

 

 
Figure 3. Path of Successful Tree Traversal without Backtracking 

III. DESIGN AND ANALYSIS OF THE REVERSE 
HIERARCHICAL SEARCH (RHS) ALGORITHM 

This section presents the general idea of the Reverse 
Hierarchical Search (RHS) algorithm followed by a 
discussion of the complexity of the algorithm. The section 
also enumerates the process of selecting a suitable tree 
model to establish the algorithm and analyze the data model. 
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A. General Idea 
The contribution of this paper is the design and 

development of a tree search algorithm hereafter referred to 
as Reverse Hierarchical Search (RHS) algorithm. The 
proposed optimization will provide a novel graph traversal 
algorithm for better time and space complexity as well as 
completeness for tree data structures. The proposed RHS 
algorithm is an uninformed [5] search similar to the normal 
DFS. However, unlike the DFS algorithm, which travels 
downstream from the root to leaf nodes, the RHS algorithm 
keeps a tab on backtracking by limiting the depth of search 
from individual nodes to the root. This enforced restriction 
of the search space boundary (i.e. upstream node till root) 
prevents indefinitely deep paths during traversals. The DFS 
algorithm begins the search vertically downwards in pursuit 
of the target node. Until the search element is reached, the 
algorithm backtracks (self repetitions without further 
advancement) to the penultimate junction nodes. For a 
complete binary tree of depth n, the worst-case search time 
complexity would be O(2n -1). Usually, in tree structures the 
root is a single element node while the maximum number of 
elements occurs at the nth level. Therefore, a search 
commencing at the level “n” would represent a logical 
initiative in reducing the volume of search by 2(n-1) elements 
(accounting for members at the nth

B. Selection of a Suitable Tree Model 

 level).                                                                                                                                    
Nevertheless, the proposed novel search algorithm is not 

limited to binary trees and can very well be adapted for non-
binary versions. Since the search terminates at the root, no 
backtracking will be necessary and all the child-parent 
nodes following a reverse hierarchy are added up to the 
solution space. This saves the users from revisiting the same 
path for further target searches. It is noteworthy that every 
single node that is traversed once gets into the domain of the 
solution space. In this approach, special emphasis will be 
given for optimization of the algorithm for tree structures 
with lineage elements.  

The studies will be based on a search model currently in 
use for student enrollment in most academic programs. 
Before registering for an advanced course a student has to 
establish his/her proficiency in the basic course curriculum 
referred to as “pre-requisites”. At the present time, some 
universities including Jackson State University (JSU) 
employ a manual transcript analyses that ensures that the 
student has satisfactory performance in previous classes on a 
case-by-case basis.  
 

 
Figure 4. Pre-requisite Tree for Undergraduate Courses in Jackson State 

University CSC Department 

Designing the RHS algorithm for the checking the pre-
requisites will serve a three-fold purpose such as: (i) 
Assessment of validity/utility of the proposed modified DFS 
algorithm, (ii) Precise determination of student’s eligibility, 
and (iii) Efficient and economic usage of university’s 
resources by substituting the manual practice with an 
automated process.  

C. Study of the Data Model 
The pre-requisite tree (depicted in Figure 4) when 

observed closely is a directly acyclic graph (DAG) due to 
child nodes being shared among parents. The pre-requisite 
DAG is used to access information about the enrollment 
requirements for the courses. This DAG is a connected 
network of nodes (represented by individual courses) related 
to each other with a parent-child connection.  

The left-most node is the root with the arrow pointing 
toward its children. The concept of one course having 
multiple pre-requisites is well modeled in the DAG. For 
optimization purposes, the courses have been segregated 
into four different years of undergraduate study (viz., 
freshman, sophomore, junior and senior). Each node in the 
tree is labeled with the code for the classes. 

D. Informal Description of RHS 
An informal description of the RHS algorithm is 

presented here:
1. Establish the vertex where the search should 
commence and assign the maximum search depth 

  

2. Verify if the current vertex is the Goal State  
• If no: Go to Step 3 
• If yes: return 

3. Verify if the current vertex is within the maximum 
search depth  

• If no: Do nothing 
• If yes:  

 Expand the vertex and save all of 
its predecessors in a stack 
 Call RHS recursively for all 
vertices of the stack and go back to 
Step 2 

E. Formal Description of RHS 

A Goal State is the final state after which traversal stops. 
A vertex having no un-traversed edges is said to be in Goal 
state. 

The formal pseudo code for the proposed algorithm is 
presented here, which will be subjected to preliminary 
testing and search time complexity computation. 
RHS (node, goal, depth) 
{ 
    if (node = goal) 
      return node; 
      push_stack(node);  
   while (stack is not empty)  {    ……….Step (1) 
     stack_counter ++; 
      If (depth > 0)    { 
                 nodeList_recvd := expand (node)     
                 While( nodeList_recvd is not empty )  {     
                        node = nodeList_recvd [next node]    
                        RHS (node, goal, depth-1)          … Step (2)  
    } 
         } 
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      Else  
        // no operation  
    }  
} 
Expand (node)             .………………… Step (3) 
{  i  = 0 
   while ( node is not root  ) {  
      i++ 
      if ( depth > 0 )  
          {   For each edge e  { 
  nodeList[i] :=  node.Parent();   // Fetch all parents of 
current node                                                                               
} 
 } 
 } 
     Return nodeList;  
}  

F. Asymptotic Complexity of RHS Algorithm 
The computation of the run-time complexity of an 

algorithm is an important aspect for performance evaluation. 
The estimation of the run-time complexity of the RHS 
algorithm is narrated in this section. With reference to the 
steps narrated in the formal description of the algorithm in 
the previous section, for an input of size N (equivalent to the 
number of pre-requisite courses that exist for the desired 
course), step 1 is executed log (N) times.  Similar to step 1, 
step 2 is executed log (N) times and so is step 3. Therefore, 
the total number of iterations needed to compute the RHS 
algorithm is: log (N) * log (N) + log (N) = log (N2

)1( −b

) + log (N) 
= log (N), ignoring the first term in the expression, which 
becomes negligible as size of N increases. A logarithmic 
run-time complexity for the RHS is considerably well lower 
than the linear run-time complexity for popular algorithms 
like the DFS.  

Evaluation of space complexity of the algorithm presents 
an estimate of the memory requirement for running the 
algorithm. With memory devices becoming cheaper day by 
day, space complexity results can bear moderately lower 
performance. During tree traversal, the memory needed in 
the original DFS is high when one reaches to the root of the 
tree. A branching factor ‘b’ for each node refers to average 
number of branches at any level. When a tree with depth d is 
inspected, the total number of nodes/vertices collected in 
memory is a combination of the expanded nodes up to depth 
‘d’ and the current node being studied. There being  
number of expanded nodes at each level, the total amount of 
memory that is required is computed as   

2/)1(**)1(
)1)......2()1((*)1(

1.).........1(*)1()1(*

+−=
−+−+−=

−−+−

ddb
dddb

bdbd
 

=  2* db  (ignoring constant terms) = O(bd) 
 

G. Algorithm Application 
Based on the requirements during student registration, a 

couple of scenarios have been isolated to evaluate the 
performance of the algorithm in a node-based model (see 
Figures 5 and 6).  

Scenario 1: Transcript analysis for registration of a single 
course (i.e. CSC216) depicted on a node based model is 

shown in Figure 8. Computing the processing time for this 
scenario gives the following results: Log2 (N) = log2 (7) = 
2.80735 time units 
 

 
Figure 5.  Transcript Analysis for a Single Course in Node Based Model 

 
Scenario 2: Simultaneous transcript analysis for two 

courses (i.e. CSC216 and CSC450) yields a dataset of size N 
(N=10). Plugging the values of this scenario in the time-
complexity equation derived in the previous section yields a 
computation time of 3.321 time units (Log2(10)). 
 

 
Figure 6.  Transcript Analysis for Two Courses in Node Based Model 

IV. CONCLUSIONS 

This paper presents the design and development of an 
alternate search algorithm based on the existing DFS 
algorithm known as Reverse Hierarchical Search (RHS) 
algorithm for tree data structures. During the process of 
searching for a node, the general DFS algorithm relies on 
backtracking to a previous node and beginning the search in 
a new sub-tree, until and unless the search element is found.  
The solution space in DFS that maintains the list of 
traversed nodes may contain repeated nodes if the routes 
have been revisited. In a scenario where the tree holds a 
large data set, the solution space can become quite heavy. 
The space and run-time complexity grows at the rate of O 
(N) for each in case of explicit graphs (for implicit graphs, 
the growth rate is exponential). The research carried out in 
this paper on various graphs and their run-time complexities 
reveals that backtracking is mostly responsible for degrading 
the performance of DFS.  
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Every element in the tree is indexed and positioned in a 
specific place in RHS algorithm. While in the DFS 
algorithm elements are thrown into the tree in a random 
fashion, the RHS algorithm relies on re-structuring the tree 
for optimization purposes. Every graph has a certain purpose 
and based on that the rearrangement is done. Once the 
criterion of re-structuring is set, every new element that 
comes in has a specific destination. The proposed RHS 
algorithm is based on a search process that begins its search 
from the leaf element at the nth level of the tree and not the 
root. In lineage tree structures, the nodes at subsequent 
levels are related to each other through parent child 
relationships. The parent elements found along the search 
path from the nth
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