CLASSIFICATION TECHNIQUES USING SPAM FILTERING EMAIL
Main Article Content
Abstract
The general data mining model with the complex sample data solves the problem on data classification. The preprocessing step of complex data in data mining solves the problem of accuracy caused by the mass data.
The growing volume of spam mails annoys people and affects work efficiency significantly. The work focused on developing spam filtering algorithm, using statistics or data mining approach to develop precise spam rules. The main propose of an anti spam approach combining both data mining and statistical test approach. The efficiency of spam rules, only significant rules will be used to classify emails and the rest of rules can be eliminated for performance improvement.
The effective decision tree classifiers are used to classify whether the mail is spam or ham. Various filtering techniques are used to find the spam mails and filter them but the accuracy and performance of the algorithms is distinct from each other. Two decision tree algorithms that are basically used as classifiers namely J48 or C4.5, Rndtree. The algorithms are studied, analyzed and test results are shown in WEKA tool for efficient spam filtering.The results are compared and RndTree algorithm shows almost 99% accuracy level in filtering the spam mails and it shows best results among other classifiers.
The growing volume of spam mails annoys people and affects work efficiency significantly. The work focused on developing spam filtering algorithm, using statistics or data mining approach to develop precise spam rules. The main propose of an anti spam approach combining both data mining and statistical test approach. The efficiency of spam rules, only significant rules will be used to classify emails and the rest of rules can be eliminated for performance improvement.
The effective decision tree classifiers are used to classify whether the mail is spam or ham. Various filtering techniques are used to find the spam mails and filter them but the accuracy and performance of the algorithms is distinct from each other. Two decision tree algorithms that are basically used as classifiers namely J48 or C4.5, Rndtree. The algorithms are studied, analyzed and test results are shown in WEKA tool for efficient spam filtering.The results are compared and RndTree algorithm shows almost 99% accuracy level in filtering the spam mails and it shows best results among other classifiers.
Downloads
Download data is not yet available.
Article Details
Section
Articles
COPYRIGHT
Submission of a manuscript implies: that the work described has not been published before, that it is not under consideration for publication elsewhere; that if and when the manuscript is accepted for publication, the authors agree to automatic transfer of the copyright to the publisher.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work
- The journal allows the author(s) to retain publishing rights without restrictions.
- The journal allows the author(s) to hold the copyright without restrictions.