Volume 4, No. 10, Sep-Oct 2013

International Journal of Advanced Research in Computer Science

RESEARCH PAPER

Available Online at www.ijarcs.info

A Theory of Fs-sets,Fs-Complements and Fs-De Morgan Laws

Vaddiparthi Yogeswara*
Dept. Mathematics, GIT
GITAM University
Visakhapatnam-530045,A.P State, India
vaddiparthyy@yahoo.com

Gudivada Srinivasa Rao Research Scholar : Dept. of Mathematics GIT GITAM University Visakhapatnam-530045,A.P State, India vasumse11@.gmail.com

Biswajit Rath
Dept. of Mathematics
GIACR Engg. college
Rayagada-765002, Odisha State,India
urwithbr@gmail.com

Abstract: In this paper we introduced Fs-set, Fs-subset etc and we define Fs-complement and prove De Morgan laws of Fs-subsets.

Keywords: Fs-set, Fs-subset, Fs-empty set, Fs-union, Fs-intersection, Fs-complement and Fs-De Morgan laws.

I. INTRODUCTION

Murthy[1] introduced F-set in order to prove Axiom of choice f or f uzzy sets which is n ot tr ue f or L -fuzzy s ets introduced by Goguen[2]. In the paper[3], Tridiv discussed fuzzy complement of an extended fuzzy subset and proved De Mo rgan l aws etc. The ex tended F uzzy sets T ridiv considered contains the membership value $\mu_1(x) - \mu_2(x)$. $-\mu_2(x)$, a te rm is i n th is expression will n ot be in the interval [0,1]. Also they d iscussed s imilar r esults i n [4]. To answer this incomprehensiveness, we introduced the concept of Fs-set and developed the theory of Fs-sets in this paper . The object of this theory is to introduce Fs-complement of a Fs -subset similar to fuzzy complement of a fuzzy set, so that the De Morgan l aws which are called the Fs- De Morgan laws in the new theory are to be proved.

The membership values of Fs-set and Fs-subset lie in a complete B oolean al gebra[5] and we define F s-union, F sintersection, F s-complement and proved c ollection of a ll Fs-subsets i s a complete lattices u nder Fs-union a nd F sintersection. We denote Fs-union and crisps et un ion by same symbol U and similary Fs-intersection and crisp set intersection by the same symbol ∩. Distribution laws hold partially. We stated Fs-De Morgan laws and proved one of the F s-De M organ l aws i s true [2.7(ii)] and o ther F s-De Morgan law was conditionally true[2.7(i)]. We denote the largest el ement o f a co mplete B oolean algebra L_A[1.1] by M_A , the complement of b in L_A by b^c . For any crisp subset B, the usual s et complement of B, i s d enoted b y B^c and $B^c \cup A$ is denoted by $C_A B$. Complete Boolean algebras in this paper are generally represented by suitable diagrams. .For a ll la ttice theoretic properties and B oolean algebraic properties w e refer S zasz [6], Garret B irkhoff[7], Steven Givant • Paul Halmos[5] and Thomas Jech[8]

II. THEORY OF FS-SETS

A. Fs-set:

Let U be a universal set, $A_1 \subseteq U$ and let $A \subseteq U$ be nonempty. A four tuple $\mathcal{A} = (A_1, A, \overline{A}(\mu_{1A_1}, \mu_{2A}), L_A)$ is said be an Fs-set if, and only if

- (1) $A \subseteq A_1$
- (2) L_A is a complete Boolean Algebra
- (3) $\mu_{1A_1}: A_1 \to L_A$, $\mu_{2A}: A \to L_A$, are such that $\mu_{1A_1}|A \ge \mu_{2A}$
- (4) $\bar{A}: A \longrightarrow L_A$ is defined by $\bar{A}x = \mu_{1A_1}x \wedge (\mu_{2A}x)^c$, for each $x \in A$

B. Fs-subset

Let $\mathcal{A}=(A_1, A, \overline{A}(\mu_{1A_1}, \mu_{2A}), L_A)$ and

 $\mathcal{B}=(B_1, B, \overline{B}(\mu_{1B_1}, \mu_{2B}), L_B)$ be a pair of Fs-sets. \mathcal{B} is said to be an Fs-subset of \mathcal{A} , denoted by $\mathcal{B}\subseteq\mathcal{A}$, if, and only if

- a. $B_1 \subseteq A_1$, $A \subseteq B$
- b. L_B is a complete subalgebra of L_A or $L_B \le L_A$
- c. $\mu_{1B_1} \le \mu_{1A_1} | B_1$, and $\mu_{2B} | A \ge \mu_{2A}$

C. Proposition:

Let \mathcal{B} and \mathcal{A} be a pair of F s-sets such that $\mathcal{B} \subseteq \mathcal{A}$. Then $\overline{B}x \leq \overline{A}x$ is true for each $x \in A$

The p roof f ollows from the d efinitions o f F s-subset, $\overline{B}x$ and $\overline{A}x$.

a. Example: I
Let
$$A_1 = \{a_1, a_2\}, A = \{a_1\}, L_A = \alpha$$

$$\emptyset \text{ Fig-I}$$

 $\begin{array}{l} \mu_{1A_1}(a_1) = 1 \text{ and } \mu_{1A_1}(a_2) = 0 = \mu_{2A}(a_1) \\ \therefore \ \overline{A}a_1 = \mu_{1A_1}(a_1) \wedge (\mu_{2A}(a_1))^c = 1 \wedge 0^c = 1 \wedge 1 = 1 \end{array}$

Then $\mathcal{A} = (A_1, A, \overline{A}(\mu_{1A_1}, \mu_{2A}), L_A)$ is an Fs-set

Again s uppose $B_1 = \{a_1\}$, $B = \{a_1\}$, $L_B = L_A$, $\mu_{1B_1}(a_1) = 1$, $\mu_{2B}(a_1) = 0$

 $\therefore \overline{B}(a_1) = \mu_{1B_1}(a_1) \wedge (\mu_{2B}(a_1))^c = 1 \wedge 0^c = 1 \wedge 1 = 1$ Then $\mathcal{B} = (B_1, B, \overline{B}(\mu_{1B_1}, \mu_{2B}), L_B)$ is an Fs-subset of \mathcal{A}

D. Definition:

For some L_X , such that $L_X \le L_A$ a four tuple $\mathcal{X} = (X_1, X, \overline{X}(\mu_{1X_1}, \mu_{2X}), L_X)$ is not an Fs-set if, and only if (a) $X \nsubseteq X_1$ or

(b) $\mu_{1X_1}x \ngeq \mu_{2X}x$, for some $x \in X \cap X_1$

Here onwards, any object of this type is called an Fsempty set of first kind and we accept that it is an Fs-subset of \mathcal{B} for any $\mathcal{B} \subseteq \mathcal{A}$.

Definition: An Fs-subset $\mathcal{Y} = (Y_1, Y, \overline{Y}(\mu_{1Y_1}, \mu_{2Y}), L_Y)$ of \mathcal{A} , is said to be an Fs-empty set of second kind if, and only if

- (a') $Y_1 = Y = A$
- (b') $L_Y \leq L_A$
- (c') $\overline{Y} = 0$

a. Remark:

We denote Fs-empty set of first kind or Fs-empty set of second kind by $\Phi_{\mathcal{A}}$ and we prove later (1.15), $\Phi_{\mathcal{A}}$ is the least Fs-subset among all Fs-subsets of \mathcal{A} .

E. Definition of equality of two Fs-sets:

Let
$$\mathcal{B}_1 = (B_{11}, B_1, \overline{B}_1(\mu_{1B_{11}}, \mu_{2B_1}), L_{B_1})$$
 and $\mathcal{B}_2 = (B_{12}, B_2, \overline{B}_2(\mu_{1B_{12}}, \mu_{2B_2}), L_{B_2})$ be a pair of Fs-sets. We say that \mathcal{B}_1 and \mathcal{B}_2 are equal, denoted by $\mathcal{B}_1 = \mathcal{B}_2$ if, only if

- (1) $B_{11} = B_{12}$, $B_1 = B_2$
- $(2) L_{B_1} = L_{B_2}$
- (3) (a) $\left(\mu_{1B_{11}} = \mu_{1B_{12}} \text{ and } \mu_{2B_1} = \mu_{2B_2}\right)$, or (b) $\overline{B}_1 = \overline{B}_2$

a Romark

We can eas ily o bserved that 3 (a) an d 3 (b) n ot equivalent statements.

b. Example:

Let
$$\mathcal{A}=(A_1,A,\overline{A}(\mu_{1A_1},\mu_{2A}),L_A)$$
, where $A_1=\{a,b,c\},A=\{a\}$, where $L_A=L_B$ is the fig-II. 1 $\mu_{1A_1}:A_1\to L_A$ is given by $\mu_{1A_1}=1$ α_2 α_1 α_2 α_2 α_3 α_4 α_4 α_4 α_5 α_5 α_6 α_6

 \bar{A} : $A \to L_A$ is given by, $\bar{A}x = \mu_{1A_1}x \wedge (\mu_{2A}x)^c = 1 \wedge 0^c = 1$ $\mathcal{B} = (B_1, B, \bar{B}(\mu_{1B_1}, \mu_{2B}), L_B)$ $B_1 = \{a, b\}, B = \{a\}, L_B = L_A$ $\mu_{1B_1} : B_1 \to L_B \text{ is given by } \mu_{1B_1} = \alpha_2$ $\mu_{2B} : B \to L_B \text{ is given by } \bar{B}x = \mu_{1B_1}x \wedge (\mu_{2B}x)^c = \alpha_2 \wedge (\alpha_1)^c = \alpha_2 \wedge \beta_2 = \gamma_1$ $\mathcal{C} = (C_1, C, \bar{C}(\mu_{1C_1}, \mu_{2C}), L_C) \text{ where } C_1 = \{a, b\}, C = \{a\},$ $L_c = L_A$ $\mu_{1C_1} : C_1 \to L_C \text{ is given by } \mu_{1C_1} = \beta_2$ $\mu_{2C} : C \to L_C \text{ is given by } \mu_{2C} = \beta_1$ $\bar{C} : C \to L_C \text{ is given by } \bar{C}x = \mu_{1C_1}x \wedge (\mu_{2C}x)^c = \beta_2 \wedge (\beta_1)^c = \beta_2 \wedge \alpha_2 = \gamma_1$

We can observed that

 $\mu_{1B_1} \neq \mu_{1C_1}$ and $\mu_{2B} \neq \mu_{2C}$ but $\overline{B} = \overline{C}$

F. Proposition:

$$\mathcal{B}_{1} = (B_{11}, B_{1}, \overline{B}_{1}(\mu_{1B_{11}}, \mu_{B_{1}}), L_{B_{1}})$$
 and $\mathcal{B}_{2} = (B_{12}, B_{2}, \overline{B}_{2}(\mu_{1B_{12}}, \mu_{B_{2}}), L_{B_{2}})$ are equal if, only if $\mathcal{B}_{1} \subseteq \mathcal{B}_{2}$ and $\mathcal{B}_{2} \subseteq \mathcal{B}_{1}$

Proof: (\Rightarrow) : Part of the proposition.

Let $\mathcal{B}_1 = \mathcal{B}_2$. Then we have the following

- (i) $B_{11} = B_{12}$, $B_1 = B_2$
- (ii) $L_{B_1} = L_{B_2}$

(iii) (a) $\left(\mu_{1B_{11}} = \mu_{1B_{12}}, \ \mu_{2B_1} = \mu_{2B_2}\right)$ or (b) $\overline{B}_1 = \overline{B}_2$ $\mathcal{B}_1 \subseteq \mathcal{B}_2$ and $\mathcal{B}_2 \subseteq \mathcal{B}_1$ follow from (i),(ii)and(iii)

(**⇐**): Part of the proposition.

Suppose $\mathcal{B}_1 \subseteq \mathcal{B}_2$ and $\mathcal{B}_2 \subseteq \mathcal{B}_1$. Then we have the following

- (1) $B_{11} \subseteq B_{12} \text{ and } B_1 \supseteq B_2$
- (2) $L_{B_1} \leq L_{B_2}$
- (3) $\mu_{1B_{11}}x \le \mu_{1B_{12}}x$, for each $x \in B_{11}$, $\mu_{2B_1}x \ge \mu_{2B_2}x$ for each $x \in B_2$

And

- (1') $B_{12} \subseteq B_{11}$ and $B_2 \supseteq B_1$
- (2') $L_{B_2} \leq L_{B_1}$
- (3') $\mu_{1B_{12}}x \le \mu_{1B_{11}}x$, for each $x \in B_{12}$, $\mu_{2B_2} \ge \mu_{2B_1}$, for each $x \in B_1$
- (d') $B_{11} = B_{12}$ and $B_1 = B_2$ follow from (1) and (1')
- (e') $L_{B_1} = L_{B_2}$, follows from (2) and (2')
- (f') $(\mu_{1B_{11}} = \mu_{1B_{12}} \text{ and } \mu_{2B_1} = \mu_{2B_2}) \text{ or } \overline{B}_2 = \overline{B}_1, \text{ follow from (3) and (3')}$

Hence $\mathcal{B}_1 = \mathcal{B}_2$ follow from (d'),(e') and (f')

G. Definition of Fs-union for a given pair of Fs-subsets of A:

Let $\mathcal{B}=(B_1, B, \overline{B}(\mu_{1B_1}, \mu_{2B}), L_B)$ and $\mathcal{C}=(C_1, C, \overline{C}(\mu_{1C_1}, \mu_{2C}), L_C)$, be a pair of Fs-subsets of \mathcal{A} . Then

the Fs-union of \mathcal{B} and \mathcal{C} , denoted by $\mathcal{B} \cup \mathcal{C}$ is defined as $\mathcal{B} \cup \mathcal{C} = \mathcal{D} = (D_1, D, \overline{D}(\mu_{1D_1}, \mu_{2D}), L_D)$, where

 $a. D_1 = B_1 \cup C_1$, $D = B \cap C$

b. $L_D = L_B \vee L_C$ =complete subalgebra generated by $L_B \cup L_C$ c. $\mu_{1D_1} : D_1 \to L_D$ is defined by $\mu_{1D_1} x = (\mu_{1B_1} \vee \mu_{1C_1}) x$ $\mu_{2D} : D \to L_D$ is defined by $\mu_{2D} x = \mu_{2B} x \wedge \mu_{2C} x$ and \overline{D} : $D \to L_D$ is defined by $\overline{D} x = \mu_{1D_1} x \wedge (\mu_{2D} x)^c$

H. Proposition:

BUC is an Fs-subset of A.

The prove directly follows from the definition of $\mathcal{B}\cup\mathcal{C}$.

I. Definition of Fs-intersection for a given pair of Fs-subsets of A:

Let $\mathcal{B}=(B_1, B, \overline{B}(\mu_{1B_1}, \mu_{2B}), L_B)$ and $\mathcal{C}=(C_1, C, \overline{C}(\mu_{1C_1}, \mu_{2C}), L_C)$ be a pair of Fs-subsets of \mathcal{A} satisfying the following conditions:

- (i) $B_1 \cap C_1 \supseteq B \cup C$
- (ii) $\mu_{1B_1}x \wedge \mu_{1C_1}x \geq (\mu_{2B} \vee \mu_{2C})x$, for each $x \in A$

Then, the Fs-intersection of \mathcal{B} and \mathcal{C} , denoted by $\mathcal{B} \cap \mathcal{C}$ is defined as

$$\mathcal{B} \cap \mathcal{C} = \mathcal{E} = (E_1, E, \overline{E}(\mu_{1E_1}, \mu_{2E}), L_E)$$
, where

- (a) $E_1 = B_1 \cap C_1$, $E = B \cup C$
- (b) $L_E = L_B \wedge L_C = L_B \cap L_C$
- (c) $\mu_{1E_1}: E_1 \longrightarrow L_E$ is defined by $\mu_{1E_1}x = \mu_{1B_1}x \wedge \mu_{1C_1}x$ $\mu_{2E}: E \longrightarrow L_E$ is defined by $\mu_{2E}x = (\mu_{2B} \vee \mu_{2C})x$ $\overline{E}: E \longrightarrow L_E$ is defined by $\overline{E}x = \mu_{1E_1}x \wedge (\mu_{2E}x)^c$.

a. Remark:

If (i) or (ii) fails we define $\mathcal{B}\cap\mathcal{C}$ as $\mathcal{B}\cap\mathcal{C}=\Phi_{\mathcal{A}}$, which is the Fs-empty set of first kind.

b. Example:

Let $\mathcal{A} = (A_1, A, \overline{A}(\mu_{1A_1}, \mu_{2A}), L_A)$, where $A_1 = \{a, b, c\}, A = \{a\}$ $\mu_{1A_1}: A_1 \longrightarrow L_A$ is given by $\mu_{1A_1} = 1$, $L_A = \alpha$ $\mu_{2A}: A \longrightarrow L_A$ is given by $\mu_{2A} = 0$ 0 fig-III $\bar{A}(a) = \mu_{1A_1}(a) \wedge (\mu_{2A}(a))^c = 1 \wedge 0^c = 1$ Let $\mathcal{B}=(B_1, B, \overline{B}(\mu_{1B_1}, \mu_{2B}), L_B)$, where $B_1 = \{a, b, c\}, B = \{a\}, L_B = L_A$ $\mu_{1B_1}: B_1 \to L_B$ is given by $\mu_{1B_1}(a) = \alpha, \mu_{1B_1}(b) =$ $1, \mu_{1B_1}(c) = \beta$ $\mu_{2B}: B \to L_B$ is given by $\mu_{2B}(a) = \beta$ $\overline{B}: B \to L_B$, is given by $\overline{B}(a) = \mu_{1B_1}(a) \wedge (\mu_{2B}(a))^c$ Let $C = (C_1, C, \overline{C}(\mu_{1C_1}, \mu_{2C}), L_C)$, where $C_1 = \{a, c\}, C = \{a\}$ $L_C = L_A$ $C_{1C_1}: C_1 \longrightarrow L_C$ is given by $\mu_{1C_1} = \beta$ μ_{2C} : $C \rightarrow L_C$ is given by $\mu_{2C} = 0$ $\bar{C}: C \to L_C$ is given by $\bar{C}(a) = \mu_{1C_1}(a) \wedge (\mu_{2C}(a))^c = \beta \wedge 0^c$ $=\beta$

Fs-union of \mathcal{B} and \mathcal{C}

Let $\mathcal{B} \cup \mathcal{C} = \mathcal{D} = (D_1, D, \overline{D}(\mu_{1D_1}, \mu_{2D}), L_D)$, where $D_1 = B_1 \cup C_1 = \{a, b, c\} \cup \{a, c\} = \{a, b, c\}, B \cap C = \{a\}, L_D = L_B \vee L_C = L_A$ $\mu_{1D_1} : D_1 \to L_D$ is given by $\mu_{1D_1}(a) = \mu_{1B_1}(a) \vee \mu_{1C_1}(a) = 1 \vee \beta = 1$ $\mu_{1D_1}(c) = \mu_{1B_1}(c) \vee \mu_{1C_1}(c) = \beta \vee \beta = \beta$ $\mu_{2D} : D \to L_D$ is given by $\mu_{2D}(a) = \mu_{2B}(a) \wedge \mu_{2C}(a) = \beta \wedge 0 = 0$ and $\overline{D} : D \to L_D$ is given by $\overline{D}(a) = \mu_{1D_1}(a) \wedge (\mu_{2D}(a))^c = 1 \wedge 0^c = 1$ $\therefore \mathcal{B} \cup \mathcal{C} = \mathcal{D} = (\{a, b, c\}, \{a\}, \overline{D}(1, 0), L_A)$

Fs-intersection of Band C

Let $\mathcal{B} \cap \mathcal{C} = \mathcal{E} = (E_1, E, \overline{E}(\mu_{1E_1}, \mu_{2E}), L_E)$, where $E_1 = B_1 \cap C_1 = \{a, b, c\} \cap \{a, c\} = \{a, c\}, E = B \cup C = \{a\}$ $L_E = L_B \wedge L_C = L_A$ $\mu_{1E_1} : E_1 \longrightarrow L_E$ is defined by $\mu_{1E_1}(a) = \mu_{1B_1}(a) \wedge \mu_{1C_1}(a) = 1 \wedge \beta = \beta$ $\mu_{1E_1}(c) = \mu_{1B_1}(c) \wedge \mu_{1C_1}(c) = 1 \wedge \beta = \beta$ $\mu_{2E} : E \longrightarrow L_E$ is defined by $\mu_{2E}(a) = \mu_{2B}(a) \vee \mu_{2C}(a) = \beta \wedge 0 = 0$ $\overline{E} : E \longrightarrow L_E$ is defined by, $\overline{E}(a) = \mu_{1E_1}(a) \wedge (\mu_{2E}(a))^c = \beta \wedge \beta^c = 0$ Here we observed that

- (i) $B_1 \cap C_1 \supseteq B \cup C$
- (ii) $\mu_{1B_1}x \wedge \mu_{1C_1}x \geq (\mu_{2B} \vee \mu_{2C})x$, for each $x \in B \cup C$ $\therefore \mathcal{B} \cap \mathcal{C} = \mathcal{E} = (\{a, c\}, \{a\}, \overline{\mathcal{E}}(\beta, \beta), L_A)$.

J. Proposition:

For any pair of Fs-subsets $\mathcal{B}=(B_1,B,\overline{B}(\mu_{1B_1},\mu_{2B}),L_B)$ and $\mathcal{C}=(C_1,C,\overline{C}(\mu_{1C_1},\mu_{2C}),L_C)$ of \mathcal{A} , the following results are true

- a. $\mathcal{B} \subseteq \mathcal{B} \cup \mathcal{C}$ and $\mathcal{C} \subseteq \mathcal{B} \cup \mathcal{C}$
- b. $\mathcal{B} \cap \mathcal{C} \subseteq \mathcal{B}$ and $\mathcal{B} \cap \mathcal{C} \subseteq \mathcal{C}$ provided $\mathcal{B} \cap \mathcal{C}$ exists
- c. $\mathcal{B} \subseteq \mathcal{C}$ implies $\mathcal{B} \cup \mathcal{C} = \mathcal{C}$
- d. $\mathcal{B} \cap \mathcal{C} = \mathcal{B}$ when $\mathcal{B} \neq \Phi_{cA}$ and $\mathcal{B} \subseteq \mathcal{C}$ and $\Phi_{cA} \cap \mathcal{C} = \Phi_{cA}$
- e. $\mathcal{B} \cup \mathcal{C} = \mathcal{C} \cup \mathcal{B}$ (commutative law of Fs-union)

- f. $\mathcal{B} \cap \mathcal{C} = \mathcal{C} \cap \mathcal{B}$ provided $\mathcal{B} \cap \mathcal{C}$ exists. (commutative law of Fs-intersection)
- g. $\mathcal{B} \cup \mathcal{B} = \mathcal{B}$
- h. $\mathcal{B} \cap \mathcal{B} = \mathcal{B}$ ((7)and (8) are Idempotent laws of Fsunion and Fs-intersection respectively)

Proof(1):Let $\mathcal{B} \cup \mathcal{C} = \mathcal{D} = (D_1, D, \overline{D}(\mu_{1D_1}, \mu_{2D}), L_D)$

(1a) $D_1 = B_1 \cup C_1$, $D = B \cap C$

 $(1b) L_D = L_B \vee L_C$

(1c) $\mu_{1D_1}: D_1 \to L_D$ is given by $\mu_{1D_1}x = (\mu_{1B_1} \lor \mu_{1C_1})x$ $\mu_{2D}: D \to L_D$ is given by $\mu_{2D}x = \mu_{2B}x \land \mu_{2C}x$ $\overline{D}: D \to L_D$ is given by $\overline{D}x = \mu_{1D_1}x \land (\mu_{2D}x)^c$

We can eas ily s how t hat t he f ollowing ar et he consequences of (1a),(1b)and(1c)

- (1d) $B_1 \subseteq D_1$, $D \subseteq B$
- (1e) $L_B \leq L_D$
- (1f) $\mu_{1B_1} \le \mu_{1D_1} | B_1$, and $\mu_{2B} | D \ge \mu_{2D}$

These in term imply $\mathcal{B} \subseteq \mathcal{B} \cup \mathcal{C}$

Similarly we can prove that $C \subseteq B \cup C$

Proof(2):Let $\mathcal{B} \cap \mathcal{C} = \mathcal{E} = (E_1, E, \overline{E}(\mu_{1E_1}, \mu_{2E}), L_E)$, where

- $(2a) \quad E_1 = B_1 \cap C_1 , E = B \cup C$
- $(2b) \quad L_E = L_B \wedge L_C$
- (2c) $\mu_{1E_1}: E_1 \to L_E$ is given by $\mu_{1E_1}x = \mu_{1B_1}x \wedge \mu_{1C_1}x$ $\mu_{2E}: E \to L_E$ is given by $\mu_{2E}x = (\mu_{2B} \vee \mu_{2C})x$ $\overline{E}: E \to L_E$ is given by $\overline{E}x = \mu_{1E_1}x \wedge (\mu_{2E}x)^c$

We can eas ily s how t hat t he f ollowing ar e t he consequences of (2a),(2b) and (2c) and existence of $\mathcal{B} \cap \mathcal{C}$

- (2d) $E_1 \subseteq B_1, E \subseteq B$
- (2e) $L_E \leq L_B$
- (2f) $\mu_{1E_1} \le \mu_{1B_1} | E_1$, and $\mu_{2E} | B \ge \mu_{2B}$

Hence $\mathcal{B} \cap \mathcal{C} \subseteq \mathcal{B}$

Similarly we can prove that $\mathcal{B} \cap \mathcal{C} \subseteq \mathcal{C}$

Proof (3): The following are true since $\mathcal{B} \subseteq \mathcal{C}$.

$$(3a)B_1 \subseteq C_1, \quad C \subseteq B$$

(3b) $L_B \leq L_C$

(3c) $\mu_{1B_1} \le \mu_{1C_1} | B_1$, and $\mu_{2B} | C \ge \mu_{2C}$

$$\mathcal{B} \cup \mathcal{C} = \mathcal{D} = (D_1, D, \overline{D}(\mu_{1D_1}, \mu_{2D}), L_D)$$
, where

 D_1 , D, \overline{D} and L_D are as in(1a),(1b)and(1c).

The following are the consequences of (1a), (1b), (3a) and (3b)

- (3a') $D_1 = C_1$ and D = C
- (3b') $L_D = L_c$

We prove

(3c')
$$\overline{D} = \overline{C}$$
 from (1c) and (3c)
 $\overline{D}x = \mu_{1D_1}x \wedge (\mu_{2D}x)^c$
 $= (\mu_{1B_1} \vee \mu_{1C_1})x \wedge (\mu_{2B}x \wedge \mu_{2C}x)^c$

$$= \begin{cases}
\left(\mu_{1B_{1}}x \vee \mu_{1C_{1}}x\right) \wedge (\mu_{2B}x \wedge \mu_{2C}x)^{c}, x \in B_{1} = B_{1} \cap C_{1} \\
\left(\mu_{1C_{1}}x\right) \wedge (\mu_{2B}x \wedge \mu_{2C}x)^{c}, x \notin B_{1}, x \in C_{1} \\
= \left(\mu_{1C_{1}}x\right) \wedge (\mu_{2C}x)^{c} \\
= \overline{C}x, \text{ for each } x \in D = C
\end{cases}$$

Proof (4): From definition of $\mathcal{B} \cap \mathcal{C}$ and hypothesis of $\mathcal{B} \subseteq \mathcal{C}$, we have

(4a)
$$E_1 = B_1 \cap C_1 = B_1, E = B \cup C = B \text{ and } E_1 \supseteq E$$

 $(4b) L_E = L_B \wedge L_C = L_B$

We can observe that

(4c) $\mu_{1E_1}x = \mu_{1B_1}x \land \mu_{1C_1}x = \mu_{1B_1}x$, for each $x \in E_1 = B_1$ and

$$\mu_{2E}x = (\mu_{2B} \lor \mu_{2C})x$$

$$= \begin{cases} \mu_{2B}x & , x \in B, x \notin C \\ \mu_{2B}x \lor \mu_{2C}x = \mu_{2B}x , x \in B \cap C = C \end{cases}$$
In both cases, we can have $\mu_{1E_1}x \ge \mu_{2E}x$

Hence t he ex istence $\mathcal{B} \cap \mathcal{C}$ is a consequence from (4a),(4b) and (4c).

We prove that $\mathcal{B} \cap \mathcal{C} = \mathcal{B}$, that is, $\mathcal{E} = \mathcal{B}$, where \mathcal{E} is as in (2a), (2b) and (2c).

From(4a) and (4b), we can have

$$E_1 = B_1$$
, $E = B$ and $L_E = L_B$

Sufficient to show that $\overline{E}x = \overline{B}x$ for each $x \in B$ From (2c)

$$\begin{split} \overline{E}x &= \mu_{1E_{1}}x \wedge (\mu_{2E}x)^{c} \\ &= (\mu_{1B_{1}}x \wedge \mu_{1C_{1}}x) \wedge ((\mu_{2B} \vee \mu_{2C})x)^{c} \\ &= \begin{cases} \mu_{1B_{1}}x \wedge (\mu_{2B}x)^{c} &= \overline{B}x, for \ x \in B, x \notin C \\ \mu_{1B_{1}}x \wedge (\mu_{2B}x)^{c} &= \overline{B}x, for \ x \in B \cap C \end{cases} \end{split}$$

Hence $\overline{E}x = \overline{B}x$ for each $x \in E = B$

 $\Phi_{\mathcal{A}} \cap \mathcal{C} = \Phi_{\mathcal{A}}$ follows from corollary 1.15.1

Proof (5): we calculate \overline{D} in $\mathcal{B} \cup \mathcal{C}$ from (1c) as follows \overline{D} : $D \to L_D$ is given by, $\overline{D}x = \mu_{1D_1}x \wedge (\mu_{2D}x)^c$ $\overline{D}x = (\mu_{1B_1} \vee \mu_{1C_1})x \wedge (\mu_{2B}x \wedge \mu_{2C}x)^c$, for each $x \in D = B \cap C$ $= (\mu_{1B_1}x \vee \mu_{1C_1}x) \wedge [(\mu_{2B}x)^c \vee (\mu_{2C}x)^c]$

$$\begin{split} = & \left[\left(\mu_{1B_{1}} x \vee \mu_{1C_{1}} x \right) \wedge \left(\mu_{2B} x \right)^{c} \right] \vee \qquad \left[\left(\mu_{1B_{1}} x \vee \mu_{1C_{1}} x \right) \wedge \left(\mu_{2C} x \right)^{c} \right] \\ = & \left[\mu_{1B_{1}} x \wedge \left(\mu_{2B} x \right)^{c} \right] \vee \left[\mu_{1C_{1}} x \wedge \left(\mu_{2B} x \right)^{c} \right] \vee \\ & \left[\mu_{1B_{1}} x \wedge \left(\mu_{2C} x \right)^{c} \right] \vee \left[\mu_{1C_{1}} x \wedge \left(\mu_{2C} x \right)^{c} \right] \end{split}$$

$$= \overline{B}x \vee \overline{C}x \vee \left[\mu_{1C_1}x \wedge (\mu_{2B}x)^c\right] \vee \left[\mu_{1B_1}x \wedge (\mu_{2C}x)^c\right]$$

Let $\mathcal{C} \cup \mathcal{B} = \mathcal{F} = (F_1, F, \overline{F}(\mu_{1F_1}, \mu_{2F}), L_F)$, where

- (5a) $F_1 = C_1 \cup B_1$, $F = C \cap B$
- (5b) $L_F = L_C \vee L_B$

(5c)
$$\mu_{1F_1} : E_1 \to L_F$$
 is given by $\mu_{1F_1} x = (\mu_{1C_1} \vee \mu_{1B_1}) x$
 $\mu_{2F} : F \to L_F$ is given by $\mu_{2E} x = \mu_{2C} x \wedge \mu_{2B} x$
 $\overline{F} : F \to L_F$ is given by $\overline{F} x = \mu_{1F_1} x \wedge (\mu_{2F} x)^c$
 $\overline{F} x = (\mu_{1C_1} \vee \mu_{1B_1}) x \wedge (\mu_{2C} x \wedge \mu_{2B} x)^c$, for each $x \in F = C \cap B$
 $= (\mu_{1C_1} x \vee \mu_{1B_1} x) \wedge [(\mu_{2C} x)^c \vee (\mu_{2B} x)^c]$
 $= [(\mu_{1C_1} x \vee \mu_{1B_1} x) \wedge (\mu_{2C} x)^c] \vee [(\mu_{1C_1} x \vee \mu_{1B_1} x) \wedge (\mu_{2B} x)^c]$
 $= [\mu_{1C_1} x \wedge (\mu_{2B} x)^c]$
 $= [\mu_{1C_1} x \wedge (\mu_{2C} x)^c] \vee [\mu_{1B_1} x \wedge (\mu_{2C} x)^c]$
 $\vee [\mu_{1C_1} x \wedge (\mu_{2B} x)^c] \vee [\mu_{1B_1} x \wedge (\mu_{2B} x)^c]$
 $= \overline{C} x \vee \overline{B} x \vee [\mu_{1B_1} x \wedge (\mu_{2C} x)^c] \vee [\mu_{1C_1} x \wedge (\mu_{2B} x)^c]$
 $(\mu_{2B} x)^c$

Sufficient to show $\mathcal{D}=\mathcal{F}$ i.e.

- (5d) $D_1 = F_1, D = F$
- $(5e) L_D = L_F$
- (5f) $\left(\mu_{1D_1} = \mu_{1F_1}, \mu_{2D} = \mu_{2F}\right) \text{ or } \overline{D}x = \overline{F}x$
- (5d) follows from (1a) and (5a).
- (5e) follows from (1b) and (5b).
- (5f) follows from (1c) and (5c).

Proof (6): We calculate \overline{E} in $\mathcal{B} \cap \mathcal{C}$ from (2c) as follows. $\overline{E}: E \longrightarrow L_E$ is given by, $\overline{E}x = \mu_{1E_1} x \wedge (\mu_{2E} x)^c$

$$\begin{split} & \overline{E}x = \left(\mu_{1B_1}x \wedge \mu_{1C_1}x\right) \wedge \left(\left(\mu_{2B} \vee \mu_{2C}\right)x\right)^C \text{, for each } x \in E = B \cup C \\ & = \left(\mu_{1B_1}x \wedge \mu_{1C_1}x\right) \wedge \left(\mu_{2B}x \vee \mu_{2C}x\right)^C \\ & = \left(\mu_{1B_1}x \wedge \mu_{1C_1}x\right) \wedge \left[\left(\mu_{2B}x\right)^c \wedge \left(\mu_{2C}x\right)^c\right] \\ & = \left[\mu_{1B_1}x \wedge \left(\mu_{2B}x\right)^c\right] \wedge \left[\mu_{1C_1}x \wedge \left(\mu_{2C}x\right)^c\right] \\ & = \overline{B}x \wedge \overline{C}x \end{split}$$

Suppose $\mathcal{G}=\mathcal{C}\cap\mathcal{B}=\left(G_1,G,\overline{G}\left(\mu_{1G_1},\mu_{2G}\right),L_G\right)$, where

- (6a) $G_1 = C_1 \cap B_1, G = C \cup B$
- (6b) $L_G = L_C \wedge L_B$

(6c) $\mu_{1G_1}: G_1 \to L_G$ is given by $\mu_{1G_1}x = \mu_{1C_1}x \wedge \mu_{1B_1}x$ $\mu_{2G}: G \to L_G$ is given by $\mu_{2G}x = (\mu_{2C} \vee \mu_{2B})x$ $\bar{G}: G \to L_G$ is given by $\bar{G}x = \mu_{1G_1}x \wedge (\mu_{2G}x)^c$ $\bar{G}x = (\mu_{1C_1}x \wedge \mu_{1B_1}x) \wedge ((\mu_{2C} \vee \mu_{2B})x)^C$, for each $x \in G = C \cup B$ $= (\mu_{1C_1}x \wedge \mu_{1B_1}x) \wedge (\mu_{2C}x \vee \mu_{2B}x)^c$ $= (\mu_{1C_1}x \wedge \mu_{1B_1}x) \wedge [(\mu_{2C}x)^c \wedge (\mu_{2B}x)^c]$ $= [\mu_{1C_1}x \wedge (\mu_{2C}x)^c] \wedge [\mu_{1B_1}x \wedge (\mu_{2B}x)^c]$ $= \bar{C}x \wedge \bar{B}x$

Need to show $\mathcal{E}=\mathcal{G}$ i.e. sufficient to show that

- $(6d) E_1 = G_1, E = G$
- (6e) $L_E = L_G$ and
- (6f) $\left(\mu_{1E_1} = \mu_{1G_1}, \mu_{2E} = \mu_{2G}\right) \text{ or } \overline{E} = \overline{G}$
- (6d) follows from (2a) and (6a).
- (6e) follows from (2b) and (6b).
- (6f) follows from (2c) and (6c).

The proofs of (7) and (8) follow directly from the definitions of Fs-union and Fs-intersection respectively.

K. Proposition:

For any Fs -subsets \mathcal{B} , \mathcal{C} and \mathcal{D} of $\mathcal{A} = (A_1, A, \bar{A}(\mu_{1A_1}, \mu_{2A}), L_A)$, the following a ssociative laws are true:

- (I) $\mathcal{B} \cup (\mathcal{C} \cup \mathcal{D}) = (\mathcal{B} \cup \mathcal{C}) \cup \mathcal{D}$
- (II) $\mathcal{B} \cap (\mathcal{C} \cap \mathcal{D}) = (\mathcal{B} \cap \mathcal{C}) \cap \mathcal{D}$, whenever Fsintersections exist.

Proof (I): Let
$$\mathcal{B} = (B_1, B, \overline{B}(\mu_{1B_1}, \mu_{2B}), L_B)$$
, $C = (C_1, C, \overline{C}(\mu_{1C_1}, \mu_{2C}), L_C)$ and $\mathcal{D} = (D_1, D, \overline{D}(\mu_{1D_1}, \mu_{2D}), L_D)$.

Suppose $C \cup D = \mathcal{E}, \mathcal{B} \cup \mathcal{E} = \mathcal{F}, \mathcal{B} \cup C = \mathcal{G}, \mathcal{G} \cup D = \mathcal{H}$ Now $\mathcal{E}=C\cup D=(E_1, E, \overline{E}(\mu_{1E_1}, \mu_{2E}), L_E)$, where

- (1) $E_1 = C_1 \cup D_1$, $E = C \cap D$
- $(2) \quad L_E = L_C \vee L_D$
- (3) $\mu_{1E_1}: E_1 \to L_E$ is given by $\mu_{1E_1}x = (\mu_{1C_1} \lor \mu_{1D_1})x$ $\mu_{2E}: E \to L_E$ is given by $\mu_{2E}x = \mu_{2C}x \land \mu_{2D}x$ $\overline{E}: E \to L_E$ is given by $\overline{E}x = \mu_{1E_1}x \land (\mu_{2E}x)^c$

 $\mathcal{F}=\mathcal{B}\cup\mathcal{E}=(F_1,F,\overline{F}(\mu_{1F_1},\mu_{2F}),L_F)$, where

- (4) $F_1 = B_1 \cup E_1 = B_1 \cup (C_1 \cup D_1), F = B \cap E = B \cap (C \cap D)$
- $(5) L_F = L_B \vee L_E = L_B \vee (L_C \vee L_D)$
- (6) $\mu_{1F_1}: F_1 \to L_F$ is given by $\mu_{1F_1}x = (\mu_{1B_1} \vee \mu_{1E_1})x$ $= (\mu_{1B_1} \vee (\mu_{1C_1} \vee \mu_{1D_1}))x$ $\mu_{2F}: F \to L_F$ is given by $\mu_{2F}x = \mu_{2B}x \wedge \mu_{2E}x$ $= \mu_{2B}x \wedge (\mu_{2C}x \wedge \mu_{2D}x)$ $\overline{F}: F \to L_F$ is given by $\overline{F}x = \mu_{1F_1}x \wedge (\mu_{2F}x)^c$

 $\mathcal{G}=\mathcal{B}\cup\mathcal{C}=(G_1,G,\bar{G}(\mu_{1G_1},\mu_{2G}),L_G)$, where

- (7) $G_1 = B_1 \cup C_1$, $G = B \cap C$
- $(8) L_G = L_B \vee L_C$
- (9) $\mu_{1G_1}: G_1 \to L_G$ is defined by $\mu_{1G_1}x = (\mu_{1B_1} \vee \mu_{1C_1})x$ $\mu_{2G}: G \to L_G$ is defined by $\mu_{2G}x = \mu_{2B}x \wedge \mu_{2C}x$ and $\bar{G}: G \to L_G$ is defined by $\bar{G}x = \mu_{1G_1}x \wedge (\mu_{2G}x)^c$

 $\mathcal{H}=\mathcal{G}\cup\mathcal{D}=(H_1,H,\overline{H}(\mu_{1H_1},\mu_{2H}),L_H)$, where

(10) $H_1 = G_1 \cup D_1 = (B_1 \cup C_1) \cup D_1, H = G \cap D = (B \cap C)$

- (11) $L_H = L_G \vee L_D = (L_B \vee L_C) \vee L_D$
- (12) $\mu_{1H_1}: H_1 \longrightarrow L_H$ is defined by $\mu_{1H_1} x =$ $(\mu_{1G_1} \vee \mu_{1D_1})x = ((\mu_{1B_1} \vee \mu_{1C_1}) \vee \mu_{1D_1})x$ $\mu_{2H}: H \longrightarrow L_H$ is defined by $\mu_{2H}x = \mu_{2G}x \land$ $\mu_{2D}x = (\mu_{2B}x \wedge \mu_{2C}x) \wedge \square_{2D}x$ \overline{H} : $H \to L_H$ is defined by $\overline{H}x = \mu_{1H_1}x \wedge (\mu_{2H}x)^c$

Need to show $\mathcal{F}=\mathcal{H}$ i.e. sufficient to show

- $(13) F_1 = H_1, F = H$
- $(14) L_F = L_H$
- $(15)(\mu_{1F_1}x = \mu_{1H_1}x \text{ and } \mu_{2F}x = \mu_{2H}x) \text{ or } \bar{F}x = \bar{H}x$
- (13) follows from (4) and (10).
- (14) follows from (5) and (11).
- (15) follows from (6)and(12).

Proof (II): Let $\mathcal{J}=\mathcal{C}\cap\mathcal{D}$, $\mathcal{K}=\mathcal{B}\cap\mathcal{J}$, $\mathcal{M}=\mathcal{B}\cap\mathcal{C}$, $\mathcal{N}=\mathcal{M}\cap\mathcal{D}$ Now $\mathcal{J}=\mathcal{C}\cap\mathcal{D}=(J_1,J,\overline{J}(\mu_{1J_1},\mu_{2J}),L_j)$, where

- $(16)J_1 = C_1 \cap D_1, J = C \cup D$
- $(17)L_I = L_C \wedge L_D$
- (18) $\mu_{1J_1}: J_1 \longrightarrow L_J$ is given by $\mu_{1J_1}x = \mu_{1C_1}x \wedge \mu_{1D_1}x$ $\mu_{2J}: J \to L_I$ is given by $\mu_{2J}x = (\mu_{2C} \vee \mu_{2D})x$ and $\overline{J}: J \to L_I$ is given by $\overline{J}x = \mu_{1I_1} x \wedge (\mu_{2I} x)^c$

 $\mathcal{K}=\mathcal{B}\cap\mathcal{J}=(K_1,K,\overline{K}(\mu_{1K_1},\mu_{2k}),L_k)$, where

- $(19)K_1 = B_1 \cap J_1 = B_1 \cap (C_1 \cap D_1), F = B \cup J = B \cup J$ $(C \cup D)$
- $(20) L_K = L_B \wedge L_K = L_B \wedge (L_C \wedge L_D)$
- (21) $\mu_{1K_1}: K_1 \to L_K$ is given by $\mu_{1K_1}x = \mu_{1B_1}x \wedge \mu_{1J_1}x$ $=\mu_{1B_1}x \wedge (\mu_{1C_1}x \wedge \mu_{1D_1}x)$

 $\mu_{2K}: K \longrightarrow L_K$ is given by $\mu_{2K}x = (\mu_{2B} \vee \mu_{2I})x$ $=(\mu_{2B} \vee (\mu_{2C} \vee \mu_{2D}))x$ and $\overline{K}:K \to L_K$ is given by $\overline{K}x = \mu_{1K_1}x \wedge (\mu_{2K}x)^c$

 $\mathcal{M}=\mathcal{B}\cap\mathcal{C}=(M_1,M,\overline{M}(\mu_{1M_1},\mu_{2\square}),L_M)$, where

- $(22)M_1 = B_1 \cap C_1, M = B \cup C$
- $(23)L_M = L_B \wedge L_C$
- (24) $\mu_{1M_1}: M_1 \to L_M$ is given by $\mu_{1M_1}x = \mu_{1B_1}x \land \mu_{1C_1}x$ $\mu_{2M}: M \to L_M$ is given by $\mu_{2M}x = (\mu_{2B} \vee \mu_{2C})x$ and $\overline{M}:M \to L_M$ is given by $\overline{M}x = \mu_{1M_1}x \wedge (\mu_{2M}x)^c$

 $\mathcal{N}=\mathcal{M}\cap\mathcal{D}=(N_1,N,\overline{N}(\mu_{1N_1},\mu_{2N}),L_N)$, where

- $(25) N_1 = M_1 \cap D_1 = (B_1 \cap C_1) \cap D_1, J = (B \cup C) \cup D$
- $(26) L_N = L_M \wedge L_D = (L_B \wedge L_C) \wedge L_D$
- (27) $\mu_{1N_1}: N_1 \to L_N$ is given by $\mu_{1N_1}x = \mu_{1M_1}x \land \mu_{1D_1}x$ $=(\mu_{1B_1}x \wedge \mu_{1C_1}x) \wedge \mu_{1D_1}x$

 $\mu_{2N}: N \longrightarrow L_N$ is given by $\mu_{2N}x = (\mu_{2M} \vee \mu_{2D})x =$ $((\mu_{2B} \vee \mu_{2C}) \vee \mu_{2D})x$ and $\overline{N}: N \to L_N$ is given by $\overline{N}x = \mu_{1N_1} x \wedge (\mu_{2N} x)^c$

Need to show $\mathcal{K}=\mathcal{N}$ i.e. sufficient to show

- $(28) K_1 = N_1, K = N$
- $(29)\,L_K=L_N$
- $(30)(\mu_{1K_1}x = \mu_{1N_1}x \text{ and} \mu_{2K}x = \mu_{2N}x) \text{ or } \overline{K}x = \overline{N}x$
- (28) follows from (19) and (25).
- (29) follows from (20) and (26).
- (30) follows from (21) and (27)

Arbitrary Fs-unions and arbitrary Fs-intersections:

Given a family $(\mathcal{B}_i)_{i \in I}$ of Fs-subset of $\mathcal{A} = (A_1, A, \overline{A}(\mu_{1A_1}, \mu_{2A}), L_A),$

where $\mathcal{B}_i = (B_{1i}, B_i, \overline{B}_i(\mu_{1B_{1i}}, \mu_{2B_i}), L_{B_i})$, for any $i \in I$

Definition of Fs-union is as follows:

Case (1): For $I=\Phi$, define Fs-union of $(\mathcal{B}_i)_{i\in I}$, denoted by $\bigcup_{i \in I} \mathcal{B}_i$ as $\bigcup_{i \in I} \mathcal{B}_i = \Phi_{\mathcal{A}}$, which is Fs-empty set

Case (2): Define for $I \neq \Phi$, Fs-union of $(\mathcal{B}_i)_{i \in I}$ denoted by $\bigcup_{i\in I} \mathcal{B}_i$ as follow

$$\bigcup_{i \in I} \mathcal{B}_i = \mathcal{B} = (B_1, B, \overline{B}(\mu_{1B_1, \mu_{2B}}), L_B), \text{ where}$$

- (a) $B_1 = \bigcup_{i \in I} B_{1i}, B = \bigcap_{i \in I} B_i$
- (b) $L_B = \bigvee_{i \in I} L_{B_i} = \text{complete subalgebra generated by}$ $\bigcup L_i(L_i = L_{B_i})$
- (c) $\mu_{1B_1}: B_1 \to L_B$ is defined by $\mu_{1B_1}x = (\bigvee_{i \in I} \mu_{1B_{1i}})x$ $= \bigvee_{i \in I_x} \mu_{1B_1} x$, where $I_x = \{i \in I | x \in B_i\}$ $\mu_{2B}: B \to L_B$ is defined by $\mu_{2B}x = (\bigwedge_{i \in I} \mu_{2B_i})x$ $= \bigwedge_{i \in I} \mu_{2B_i} x$

 $\overline{B}: B \to L_B$ is defined by $\overline{B}x = \mu_{1B_1} x \wedge (\mu_{2B} x)^c$

Remark: a.

We can easily show $B_1 \supseteq B$ and that (d) $\mu_{1B_1}|B\geq \mu_{2B}$

N. Definition of Fs-intersection:

Case (1): For I= Φ , we define Fs-intersection of $(\mathcal{B}_i)_{i \in I}$, denoted by $\bigcap_{i \in I} \mathcal{B}_i$ as $\bigcap_{i \in I} \mathcal{B}_i = \mathcal{A}$

Case (2): Suppose

 $\bigcap_{i \in I} B_{1i} \supseteq \bigcup_{i \in I} B_i$ and $\bigwedge_{i \in I} \mu_{1B_{1i}} | (\bigcup_{i \in I} B_i) \ge \bigvee_{i \in I} \mu_{2B_i}$

Then, we define Fs-intersection of $(\mathcal{B}_i)_{i \in I}$, denoted by $\bigcap_{i\in I} \mathcal{B}_i$ as follows

$$\bigcap_{i\in I} \mathcal{B}_i = \mathcal{C} = \left(C_1, C, \bar{C}(\mu_{1C_1}, \mu_{2C}), L_C\right)$$

- (a') $C_1^{i \in I} = \bigcap_{i \in I} B_{1i}$, $C = \bigcup_{i \in I} B_i$
- (b') $L_C = \bigwedge_{i \in I} L_{B_i}$
- (c') $\mu_{1C_1}: C_1 \longrightarrow L_C$ is defined by $\mu_{1C_1} x = (\bigwedge_{i \in I} \mu_{1B_{1i}}) x = \bigwedge_{i \in I} \mu_{1B_{1i}} x$ $\mu_{2C}: C \longrightarrow L_C$ is defined by $\mu_{2C}x = (\bigvee_{i \in I} \mu_{2B_i})x = \bigvee_{i \in I_x} \mu_{2B_i}x$, where $I_x =$ $\{i \in I | x \in B_i\}$ $\bar{C}: C \to L_C$ is defined by $\bar{C}x = \mu_{1C_1}x \wedge (\mu_{2C}x)^c$

Case (3): $\bigcap_{i \in I} B_{1i} \not\supseteq \bigcup_{i \in I} B_i \text{ or } \bigwedge_{i \in I} \mu_{1B_{1i}} | (\bigcup_{i \in I} B_i) \not\ge$

 $\bigvee_{i \in I} \mu_{2B_i}$

implies

We define

$$\bigcap_{i\in I}\mathcal{B}_i=\Phi_{\mathcal{A}}$$

a.

For a ny F s-subset $\mathcal{B}=(B_1, B, \overline{B}(\mu_{1B_1}, \mu_{2B}), L_A)$ and $\mathcal{B}\subseteq\mathcal{B}_i=\left(B_{1i},B_i,\overline{B}_i(\mu_{1B_{1i}},\mu_{2B_i}),L_{B_i}\right)$ for each $i \in I \cap_{i \in I} \mathcal{B}_i$ exists and $\mathcal{B} \subseteq \bigcap_{i \in I} \mathcal{B}_i$ Proof: $\mathcal{B} \subseteq \mathcal{B}_i = (B_{1i}, B_i, \overline{B}_i(\mu_{1B_{1i}}, \mu_{2B_i}), L_{B_i})$ for each $i \in I$

- (1) $B_1 \subseteq B_{1i}$ and $B \supseteq B_i$
- $(2) L_B \leq L_{B_i}$
- (3) $\mu_{1B_1}x \le \mu_{1B_1i}x$ for each $x \in B_1$ and $\mu_{2B}x \ge \mu_{2B_i}x$ for each $x \in B_i$

All the above statements are true for each $i \in I$

Let $\bigcap_{i \in I} \mathcal{B}_i = \mathcal{D} = (D_1, D, \overline{D}(\mu_{1B_1}, \mu_{2B}), L_B)$, where

- (4) $D_1 = \bigcap_{i \in I} B_{1i}$, $D = \bigcup_{i \in I} \Box_i$
- $(5) L_D = \bigwedge_{i \in I} L_{B_i}$
- (6) $\mu_{1D_1}: D_1 \longrightarrow L_D$ is defined by $\mu_{1D_1}x =$ $\left(\bigwedge_{i\in I}\mu_{1B_{1i}}\right)x = \bigwedge_{i\in I}\mu_{1B_{1i}}x$ $\mu_{2D}: D \to L_D$ is defined by $\mu_{2D}x = (\bigvee_{i \in I} \mu_{2B_i})x$ $= \bigvee_{i \in I_x} \mu_{2B_i} x$, where $I_x = \{i \in I \mid x \in B_i\}$

$$\overline{D}: D \to L_D$$
 is define by $\overline{D}x = \mu_{1D} x \wedge (\mu_{2D} x)^c$

We needs to show that $D_1 \supseteq D$ and $\mu_{1D_1} x \ge \mu_{2D} x$, for each $x \in D = \bigcup_{i \in I} B_i$

 $B_1 \subseteq \bigcap_{i \in I} B_{1i} = D_1$ and $B \supseteq \bigcup_{i \in I} B_i = D$ are follows from (1)

Hence $D \subseteq B \subseteq B_1 \subseteq D_1$ (I)

 $\mu_{1B_1}x \leq \left(\bigwedge_{i \in I} \mu_{1B_{1i}}\right)\!x = \mu_{1D_1}x$, for each $x \in B_1$ and

 $\mu_{2B}x \ge (\bigvee_{i \in I} \mu_{2B_i})x = \mu_{2D}x$, for each $x \in \bigcup_{i \in I} B_i = D$

Hence $\mu_{2D}x \le \mu_{2B}x \le \mu_{1B_1}x \le \mu_{2B}$,for each $x \in$

 $\bigcup_{i \in I} B_i = D \dots (II)$

Hence $\bigcap_{i \in I} \mathcal{B}_i$ exists.

 $\mathcal{B} \subseteq \mathcal{D}$ follow from(I),(II)and(5)

Hence $\mathcal{B} \subseteq \bigcap_{i \in I} \mathcal{B}_i$

Let $\mathcal{L}(\mathcal{A})$ be the collection of F s-subsets of \mathcal{A} . Let(\mathcal{B}_i)_{$i \in I$} be any subfamily of $\mathcal{L}(\mathcal{A})$, where $\mathcal{B}_i = (B_{1i}, B_i, \overline{B}_i(\mu_{1B_{1i}}, \mu_{2B_i}), L_{B_i})$ for each $i \in I$

O. Proposition:

 $(\mathcal{L}(\mathcal{A}), \cap)$ is Λ -complete lattics.

Proof: Case (1): For $I=\Phi$, $\bigcap_{i\in I}\mathcal{B}_i=\mathcal{A}$ which is the largest element of $\mathcal{L}(\mathcal{A})$

Case (2): F or $I \neq \Phi$, let $(\mathcal{B}_i)_{i \in I}$ be a family of F s-subsets of \mathcal{A} . So that $\bigcap_{i \in I} \mathcal{B}_i$ does not exist

i.e. $\bigcap_{i \in I} \mathcal{B}_i = \Phi_{\mathcal{A}}$ of first kind. We prove that $\Phi_{\mathcal{A}}$ is the greatest lower bound of $(\mathcal{B}_i)_{i \in I}$

Suppose $\mathcal{B} \subseteq \mathcal{A}$ such that $\Phi_{\mathcal{A}} \subseteq \mathcal{B} \subseteq \mathcal{B}_i$ for $i \in I$. Then form above lemma $\bigcap_{i \in I} \mathcal{B}_i$ exists which is a contradiction. Hence $\Phi_{\mathcal{A}}$ is greatest lower bound

Case (3): For $I \neq \Phi$, let Fs-intersection exist

and,
$$\bigcap_{i \in I} \mathcal{B}_i = \mathcal{D} = (D_1, D, \overline{D}(\mu_{1B_1}, \mu_{2B}), L_B)$$

(a')
$$D_1 = \bigcap_{i \in I} B_{1i}$$
, $D = \bigcup_{i \in I} B_i$

(b') $L_D = \bigwedge_{i \in I} L_{B_i}$

(c') $\mu_{1D_1} \colon D_1 \to L_D$ is defined by $\mu_{1D_1} x = (\bigwedge_{i \in I} \mu_{1B_{1i}}) x = \bigwedge_{i \in I} \mu_{1B_{1i}} x$ $\mu_{2D} \colon D \to L_D$ is defined by $\mu_{2D} x = (\bigvee_{i \in I} \mu_{2B_i}) x$ $= \bigvee_{i \in I_x} \mu_{2B_i} x$, where $I_x = \{i \in I \mid x \in B_i\}$ $\overline{D} \colon D \to L_D$ is defined by, $\overline{D} x = \mu_{1D_1} x \wedge (\mu_{2D} x)^c$

Existence of Fs-intersection of given family imply the following

 $(1) D_1 = \bigcap_{i \in I} B_{1i} \supseteq \bigcup_{i \in I} B_i = D$

(2) $\bigwedge_{i \in I} \mu_{1B_{1i}} x \ge (\bigvee_{i \in I} \mu_{2B_i}) x$, for $x \in D$

The p roofs of t he following r esults a re s ufficient to prove the proposition.

(3) $\bigcap_{i \in I} \mathcal{B}_{1i} \subseteq \mathcal{B}_i$ for each $j \in I$

(4) $\mathcal{B}_J \supseteq \mathcal{E} = (E_1, E, \overline{E}(\mu_{1E_1}, \mu_{2E}), L_E)$ for each $j \in I$, implies $\mathcal{E} \subseteq \mathcal{D}$

Proof (3): We have the following

(d') $D_1 = \bigcap_{i \in I} B_{1i} \subseteq B_{1j} B_j \subseteq \bigcup_{i \in I} B_i = D$, for each $j \in I$

(e') $L_D = \bigwedge_{i \in I} L_{B_i} \le L_{B_j}$ for each $j \in I$

(f') $\bigwedge_{i \in I} \mu_{1B_{1i}} x \leq \mu_{1B_{1j}}$ for each $x \in D_1$ and $(\bigvee_{i \in I} \mu_{2B_i}) x \geq \mu_{2B_{1j}} x$ for each $x \in B_j$ and for each $j \in I$

 $\bigcap_{i \in I} B_{1i} \subseteq B_j$ for each $j \in I$ follow from (d'),(e') and (f')

Proof (4): $\mathcal{E} \subseteq \mathcal{B}_j$ implies

(g') $E_1 \subseteq B_{1j}, B_j \subseteq E$

(h') $L_E \leq L_{B_i}$

(i') $\mu_{1E_1}x \le \mu_{1B_{1j}}x$, for each $x \in E_1$ and $\mu_{2E}x \ge \mu_{2B_i}x$ for each $x \in B_i$

All these statement (g')(h') and (i') are true for each $j \in I$

These in term imply

- (5) $E_1 \subseteq \bigcap_{i \in I} B_{1i} = D_1$ and $E \supseteq \bigcup_{i \in I} B_i = D$
- (6) $L_E \leq \bigwedge_{i \in I} L_{B_i} = L_D$
- (7) $\mu_{1 \square_1} x \le \bigwedge_{i \in I} \mu_{1B_{1i}} x$, for each $x \in E_1$ and $\mu_{2E} x \ge (\bigvee_{i \in I} \mu_{2B_i}) x$, for each $x \in B_i$

These in term imply $\ensuremath{\mathcal{D}}$ is the greatest lower bound of the given family.

 $(\mathcal{L}(\mathcal{A}), \cap)$ is Λ -complete lattics.

a. Corollary:

For any Fs-subset \mathcal{B} of \mathcal{A} , the following results are true

- (i) $\Phi_{\mathcal{A}} \cup \mathcal{B} = \mathcal{B}$
- (ii) $\Phi_{\mathcal{A}} \cap \mathcal{B} = \Phi_{\mathcal{A}}$

Proof: These results follow from case (2) of proposition 1.15.

P. Proposition:

 $(\mathcal{L}(\mathcal{A}), \mathsf{U})$ is V-complete lattics

Proof: Case (I): For $I=\Phi$, $\bigcup_{i\in I} \mathcal{B}_i = \Phi_{\mathcal{A}}$ which is a Fsempty set acting as the least element of $\mathcal{L}(\mathcal{A})$

Case (II): For $I \neq \Phi, \bigcup_{i \in I} \mathcal{B}_i =$

 $\mathcal{B} = (B_1, B, \overline{B}(\mu_{1B_1}, \mu_{2B}), L_B)$, where

- $(1) B_1 = \bigcup_{i \in I} B_{1i}, B = \bigcap_{i \in I} B_i$
- (2) $L_B = \bigvee_{i \in I} L_{B_i} =$ complete subalgebra generated by $\bigcup_{i \in I} L_{B_i}$
- (3) $\mu_{1B_1}: B_1 \to L_B$ is defined by $\mu_{1B_1}x = (\bigvee_{i \in I} \mu_{1B_{1i}})x$ $= \bigvee_{i \in I_X} \mu_{1B_{1i}}x$, where $I_X = \{i \in I \mid x \in B_{1i}\}$ $\mu_{2B}: B \to L_B$ is defined by $\mu_{2B}x = (\bigwedge_{i \in I} \mu_{2B_i})x$ $\bar{B}: B \to L_B$ is define by $\bar{B}x = \mu_{1B_1}x \wedge (\mu_{2B}x)^c$

The p roofs of the following r esults a res ufficient to prove the proposition.

- (1) $\mathcal{B}_i \subseteq \bigcup_{i \in I} \mathcal{B}_i$ for each $j \in I$
- (2) $\mathcal{B}_J \subseteq \mathcal{C} = (C_1, C, \overline{C}(\mu_{1C_1}, \mu_{2C}), L_C)$ for each $j \in I$, implies $\mathcal{B} \subseteq \mathcal{C}$

Proof (1): We have the following

- (a) $B_{1j} \subseteq \bigcup_{i \in I} B_{1i} = B_1$, $B_j \supseteq \bigcap_{i \in I} B_i = B$, for each $i \in I$
- (b) $L_{B_i} \leq \bigvee_{i \in I} L_{B_i} = L_B$, for each $j \in I$
- (c) $\mu_{1B_{1j}} \le (\bigvee_{i \in I} \mu_{1B_{1i}}) x$, for each $x \in B_{1j}$ and $\mu_{2B_{1j}} x \ge \bigwedge_{i \in I} \mu_{2B_{1i}} x$, for each $x \in B$

 $\mathcal{B}_i \subseteq \bigcup_{i \in I} \mathcal{B}_i$ follow from (a), (b) and (c)

Proof(2): $\mathcal{B}_i \subseteq \mathcal{C}$ implies

- (d) $B_{1i} \subseteq C_1$, $C \subseteq B_i$
- (e) $L_{B_i} \leq L_C$
- (f) $\mu_{1B_{1j}}x \le \mu_{1C_1}x$, for each $x \in B_{1j}$ and $\mu_{2B_j}x \ge \mu_{2C}x$ for each $x \in B$

All these statement (d),(e) and (f) are true for each $j \in I$ These in term imply

- (3) $\bigcup_{i \in I} B_{1i} = B_1 \subseteq C_1$ and $\bigcap_{i \in I} B_i = B \supseteq C$
- $(4) \ \bigvee_{i \in I} L_{B_i} = L_B \le L_C$
- (5) $(\bigvee_{i \in I} \mu_{1B_{1i}})x \le \mu_{1C_1}x$, for each $x \in B_1$ and $\bigwedge_{i \in I} \mu_{2B_{1i}}x \ge \mu_{2C}x$, for each $x \in C$

These in term imply \mathcal{B} is the least upper bound of the given family

Hence $(\mathcal{L}(\mathcal{A}), \mathsf{U})$ is V-complete lattics

a. Corollary:

 $(\mathcal{L}(\mathcal{A}), \cup, \cap)$ is a complete lattice with \forall and \land

Proof: This result follows from proposition (1.15) and proposition (1.16)

Q. Proposition:

Let $\mathcal{B}=(B_1,B,\overline{B}(\mu_{1B_1},\mu_{2B}),L_B),$

 $C = (C_1, C, \overline{C}(\mu_{1C_1}, \mu_{2C}), L_C)$ and

 $\mathcal{D}=(D_1, D, \overline{D}(\mu_{1D_1}, \mu_{2D}), L_D)$. Then $\mathcal{B}\cup (\mathcal{C}\cap \mathcal{D})=(\mathcal{B}\cup \mathcal{C})\cap (\mathcal{B}\cup \mathcal{D})$ provided $\mathcal{C}\cap \mathcal{D}$ exists.

Proof: Let $\mathcal{C} \cap \mathcal{D} = \mathcal{E} = (E_1, E, \overline{E}(\mu_{1E_1}, \mu_{2E}), L_E)$, where

- (a) $E_1 = C_1 \cap D_1$, $E = C \cup D$
- (b) $L_E = L_C \wedge L_D$
- (c) $\mu_{1E_1}: E_1 \to L_E$ is given by $\mu_{1E_1}x = \mu_{1C_1}x \wedge \mu_{1D_1}x$ $\mu_{2E}: E \to L_E$ is given by $\mu_{2E}x = (\mu_{2C} \vee \mu_{2D})x$ $\overline{E}: E \to L_E$ is given by $\overline{E}x = \mu_{1E_1}x = (\mu_{1C_1} \wedge \mu_{1D_1})x \wedge [(\mu_{2C} \vee \mu_{2D})x]^c$

Existence of $\mathcal{C} \cap \mathcal{D}$ implies

(1) $C \cup D \subseteq C_1 \cap D_1$ (2) $(\mu_{1C_1} \wedge \mu_{1D_1})x \ge (\mu_{2C} \vee \mu_{2D})x$, for each $x \in E = C \cup D$

Let $\mathcal{B} \cup \mathcal{E} = \mathcal{F} = (F_1, F, \overline{F}(\mu_{1F_1}, \mu_{2F}), L_F)$, where

- (d) $F_1 = B_1 \cup E_1 = B_1 \cup (C_1 \cap D_1), F = B \cap E = B \cap (C \cup D)$
- (e) $L_F = L_B \vee L_E = L_B \vee (L_C \wedge \square_D)$
- (f) $\mu_{1F_1}: F_1 \to L_F$ is given by $\mu_{1F_1}x = (\mu_{1B_1} \vee \mu_{1E_1})x$ $= [\mu_{1B_1} \vee (\mu_{1C_1} \wedge \mu_{1D_1})]x$ $\mu_{2F}: F \to L_F$ is given by $\mu_{2F}x = (\mu_{2B} \wedge \mu_{2E})x$ $= [\mu_{2B} \wedge (\mu_{2C} \vee \mu_{2D})]x$ $\bar{F}: F \to L_F$ is given by $\bar{F}x = \mu_{1F_1}x \wedge (\mu_{2F}x)^c$ $= [\mu_{1B_1} \vee (\mu_{1C_1} \wedge \mu_{1D_1})]x \wedge [[\mu_{2B} \wedge (\mu_{2C} \vee \mu_{2D})]x]^c$

To prove the existence of right hand side

Let $\mathcal{B} \cup \mathcal{C} = \mathcal{G} = (G_1, G, \overline{G}(\mu_{1G_1}, \mu_{2G}), L_G)$, where

- (g) $G_1 = B_1 \cup C_1$, $G = B \cap C$
- (h) $L_G = L_B \vee L_C$
- (i) $\mu_{1G_1}: G_1 \longrightarrow L_G$ is defined by $\mu_{1G_1}x = (\mu_{1B_1} \vee \mu_{1C_1})x$ $\mu_{2G}: G \longrightarrow L_G$ is defined by $\mu_{2G}x = \mu_{2B}x \wedge \mu_{2C}$ and $\bar{G}: G \longrightarrow L_G$ is defined by $\bar{G}x = \mu_{1G_1}x \wedge (\mu_{2G}x)^c$ $= (\mu_{1B_1} \vee \mu_{1C_1})x \wedge [(\mu_{2B} \wedge \mu_{2C})x]^c$

Let $\mathcal{B} \cup \mathcal{D} = \mathcal{H} = (H_1, H, \overline{H}(\mu_{1H_1}, \mu_{2H}), L_H)$, where

- $(j) H_1 = B_1 \cup D_1, H = B \cap D$
- $(k) L_H = L_B \vee L_D$

(1) $\mu_{1H_1}: H_1 \to L_H$ is defined by $\mu_{1H_1}x = (\mu_{1B_1} \vee \mu_{1D_1})x$ $\mu_{2H}: H \to L_H$ is defined by $\mu_{2G}x = \mu_{2B}x \wedge \mu_{2C}x$ and $\overline{H}: H \to L_H$ is defined by $\overline{H}x = \mu_{1H_1}x \wedge (\mu_{2H}x)^c$ $= (\mu_{1B_1} \vee \mu_{1D_1})x \wedge [(\mu_{2B} \wedge \mu_{2D})x]^c$

 $Let(\mathcal{B} \cup \mathcal{C}) \cap (\mathcal{B} \cup \mathcal{D}) = \mathcal{G} \cap \mathcal{H} = \mathcal{K} =$

 $(K_1, K, \overline{K}(\mu_{1K_1}, \mu_{2K}), L_K)$

- (j) $K_1 = G_1 \cap H_1 = (B_1 \cup C_1) \cap (B_1 \cup D_1) = B_1 \cup (C_1 \cap D_1), K = G \cup H = (B \cap C) \cup (B \cap D) = B \cap (C \cup D)$
- (k) $L_K = L_G \wedge L_H = (L_B \vee L_C) \wedge (L_B \vee L_D) = L_B \vee (L_C \wedge L_D)$
- (1) $\mu_{1K_1}: K_1 \to L_K$ is defined by $\mu_{1K_1}x = (\mu_{1G_1} \land \mu_{1H_1})x$ = $[(\mu_{1B_1} \lor \mu_{1C_1}) \land (\mu_{1B_1} \lor \mu_{1D_1})]x$

 $\mu_{2K}: K \to L_K$ is defined by $\mu_{2K}x = (\mu_{2G} \vee \mu_{2H})x = [(\mu_{2B} \wedge \mu_{2C}) \vee (\mu_{2B} \wedge \mu_{2D})]x$ and

 $\overline{K}: K \to L_K$ is defined by $\overline{K}x = \mu_{1K_1}x \wedge (\mu_{2K}x)^c = [(\mu_{1B_1} \vee \mu_{1C_1}) \wedge (\mu_{1B_1} \vee \mu_{1D_1})]x \wedge [[(\mu_{2B} \wedge \mu_{2C}) \vee (\mu_{2B} \wedge \mu_{2D})]x]^c$ Need to show that (3) $K_1 \supseteq K$ and (4) $\mu_{1K_1}x \ge \mu_{2K}x$ for each $x \in K = B \cap (C \cup D)$

(3) $K = B \cap (C \cup D) \subseteq K_1 = B_1 \cup (C_1 \cap D_1)$ follows from (1)

Case (1): $x \in B$ and $x \in C$ and $x \notin D, \mu_{1K_1}x = (\mu_{1 \square_1} \lor \mu_{1C_1})x \land \mu_{1B_1}x = \mu_{1B_1}x \ge \mu_{2B}x \land \mu_{2C}x = \mu_{2K}x$

Case (2): $x \in B$ and $x \notin C$ and $x \in D$, $\mu_{1K_1}x = \mu_{1B_1}x \land (\mu_{1B_1} \lor \mu_{1D_1})x = \mu_{1B_1}x \ge \mu_{2B}x \land \mu_{2D}x = \mu_{2K}x$

Case (3): $x \in B$ and $x \in C \cap D$, $\mu_{1K_1} x = (\mu_{1B_1} x \vee \mu_{1C_1 x}) \wedge$

 $(\mu_{1B_1} x \lor \mu_{1D_1 x}) = \mu_{1B_1} x \land (\mu_{1B_1} x \lor \mu_{1D_1 x})$ $\mu_{2K} x = \mu_{2B} x \lor (\mu_{2B} x \land \mu_{2D} x) \text{ i.e} \mu_{1K_1} \ge \mu_{2K}$

Therefore $(\mathcal{B} \cup \mathcal{C}) \cap (\mathcal{B} \cup \mathcal{D})$ exist.

Need to show $\mathcal{F}=\mathcal{K}$ i.e. sufficient to show

- (p) $F_1 = K_1, F = K$
- (q) $L_F = L_K$
- (r) $(\mu_{1F_1}x = \mu_{1K_1}x \text{ and } \mu_{2F}x = \mu_{2K}x) \text{ or } \overline{F}x = \overline{K}x$
- (m) follows from (d)and(m)
- (n) follows from (e)and(n) we have to show
- (o) $\mu_{1F_1}x = \mu_{1K_1}x$ and $\mu_{2F}x = \mu_{2K}x$ or $\overline{F}x = \overline{K}x$

Case (4) $x \in B, x \in C, x \in D$

 $\overline{K}x = \mu_{1K_{1}}x \wedge (\mu_{2K}x)^{c} = [(\mu_{1B_{1}} \vee \mu_{1C_{1}}) \wedge (\mu_{1B_{1}} \vee \mu_{1D_{1}})]x \wedge [[(\mu_{2B} \wedge \mu_{2C}) \vee (\mu_{2B} \wedge \mu_{2D})]x]^{c}$ $= [(\mu_{1B_{1}}x \vee \mu_{1C_{1}}x) \wedge (\mu_{1B_{1}}x \vee \mu_{1D_{1}}x)] \wedge [(\mu_{2B}x \wedge \mu_{2C}x) \vee (\mu_{2B}x \wedge \mu_{2D}x)]^{c} = [\mu_{1B_{1}}x \wedge \mu_{2D}x)]^{c}$

 $(\mu_{1B_1}x \vee \mu_{1D_1}x)] \wedge [\mu_{2B}x \vee (\mu_{2B}x \wedge \mu_{2D}x)]^c = \overline{F}x$

Case (5) $x \in B \cap C, x \notin B \cap D, x \in D_1$

 $\overline{K}x = \mu_{1K_{1}}x \wedge (\mu_{2K}x)^{c} = [(\mu_{1B_{1}}x \vee \mu_{1C_{1}}x) \wedge (\mu_{1B_{1}}x \vee \mu_{1D_{1}}x)] \wedge (\mu_{2B}x \wedge \mu_{2C}x)^{c} = [\mu_{1B_{1}}x \wedge (\mu_{1B_{1}}x \vee \mu_{1D_{1}}x)] \wedge (\mu_{2B}x \wedge \mu_{2C}x)^{c}$ $\overline{F}x = [\mu_{1B_{1}}x \wedge (\mu_{1B_{1}}x \vee \mu_{1D_{1}}x)] \wedge (\mu_{2B}x \wedge \mu_{2C}x)^{c}$

Therefore $\overline{F}x = \overline{K}x$

Case (6) $x \in B \cap C, x \notin B \cap D, x \notin D_1$

 $\bar{F}x = \mu_{1B_1} x \wedge (\mu_{2B} x \wedge \mu_{2C} x)^c$ $\mu_{1K_1} x = (\mu_{1B_1} \vee \mu_{1C_1}) x \wedge (\mu_{1B_1} \vee \mu_{1D_1}) x$

 $= (\mu_{1B_1} x \lor \mu_{1C_1} x) \land (\mu_{1B_1} x = \mu_{1B_1} x)$ $= (\mu_{1B_1} x \lor \mu_{1C_1} x) \land \mu_{1B_1} x = \mu_{1B_1} x$

 $\mu_{2K} x = [(\mu_{2B} \wedge \mu_{2C}) \vee (\Box_{2B} \wedge \mu_{2D})] x = (\mu_{2B} \wedge \mu_{2C}) x$ = $\mu_{2B} x \wedge \mu_{2C} x$

Therefore $\overline{K}x = \mu_{1B_1}x \wedge (\mu_{2B}x \wedge \mu_{2C}x)^c = \overline{F}x$

R. Proposition:

Let $\mathcal{B}=(B_1, B, \overline{B}(\mu_{1B_1}, \mu_{2B}), L_B),$

 $\mathcal{C}=(C_1, C, \overline{C}(\mu_{1C_1}, \mu_{2C}), L_C)$ and

 $\mathcal{D}=(D_1, D, \overline{D}(\mu_{1D_1}, \mu_{2D}), L_D)$. Then $\mathcal{B}\cap (\mathcal{C}\cup \mathcal{D})=(\mathcal{B}\cap \mathcal{C})\cup (\mathcal{B}\cap \mathcal{D})$ provided R.H.S exists.

Proof: Let $\mathcal{B} \cap \mathcal{C} = \mathcal{E} = (E_1, E, \overline{E}(\mu_{1E_1}, \mu_{2E}), L_E)$, where

- (a) $E_1 = B_1 \cap C_1$, $E = B \cup C$
- (b) $L_E = L_B \wedge L_C$
- (c) $\mu_{1E_1}: E_1 \longrightarrow L_E$ is define by $\mu_{1E_1}x = \mu_{1B_1}x \wedge \mu_{1C_1}x$ $\mu_{2E}: E \longrightarrow L_E$ is defined by $\mu_{2E}x = (\mu_{2B} \vee \mu_{2C})x$ $\overline{E}: E \longrightarrow L_E$ is defined by $\overline{\Box}x = \mu_{1E_1}x \wedge (\mu_{2E}x)^c$

Also we have

 $(1)B_1 \cap C_1 \supseteq B \cup C$

```
(2)\mu_{1B_1}x \wedge \mu_{1C_1}x \geq (\mu_{2B} \vee \mu_{2C})x \geq \mu_{2B}x, for each x \in \mathbb{B} \cup \mathbb{C}
```

Let
$$\mathcal{B} \cap \mathcal{D} = \mathcal{F} = (F_1, F, \overline{F}(\mu_{1F_1}, \mu_{2F}), L_F)$$
, where

- (d) $F_1 = B_1 \cap D_1$, $F = B \cup D$
- (e) $L_F = L_B \wedge L_D$
- (f) $\mu_{1F_1}: F_1 \longrightarrow L_F$ is defined by $\mu_{1F_1}x = \mu_{1B_1}x \land \mu_{1D_1}x$ $\mu_{2F}: F \longrightarrow L_F$ is defined by $\mu_{2F}x = (\mu_{2B} \lor \mu_{2D})x$ $\overline{F}: F \longrightarrow L_F$ is defined by $\overline{F}x = \mu_{1F_1}x \land (\mu_{2F}x)^c$

Also we have

- (3) $B_1 \cap D_1 \supseteq B \cup D$
- (4) $\mu_{1B_1}x \wedge \mu_{1D_1}x \geq (\mu_{2B} \vee \mu_{2D})x \geq \mu_{2B}x$, for each $x \in B \cup D$

Let
$$\mathcal{E} \cup \mathcal{F} = \mathcal{G} = (G_1, G, \overline{G}(\mu_{1G_1}, \mu_{2G}), L_G)$$
, where

- (g) $G_1 = E_1 \cup F_1 = (B_1 \cap C_1) \cup (B_1 \cap D_1) = B_1 \cap (C_1 \cup D_1), G = E \cap F = (B \cup C) \cap (B \cup D) = B \cup (C \cap D)$
- (h) $L_G = L_E \lor L_F = (L_B \land L_C) \lor (L_B \land L_D) = L_B \land (L_C \lor L_D)$
- (i) $\mu_{1G_1}: G_1 \to L_G$ is given by, $\mu_{1G_1}x = (\mu_{1E_1} \lor \mu_{1F_1})x$ $= [(\mu_{1B_1} \land \mu_{1C_1}) \lor (\mu_{1B_1} \land \mu_{1D_1})]x$ $\mu_{2G}: G \to L_G \text{ is defined by } \mu_{2G}x = \mu_{2E}x \land \mu_{2F}x$ $= [(\mu_{2B} \lor \mu_{2C}) \land (\mu_{2B} \lor \mu_{2D})]x \text{ and}$ $\bar{G}: G \to L_G \text{ is defined by } \bar{G}x = \mu_{1G_1}x \land (\mu_{2G}x)^c$ $= [(\mu_{1B_1} \land \mu_{1C_1}) \lor (\mu_{1B_1} \land \mu_{1D_1})]x \land [[(\mu_{2B} \lor \mu_{2C}) \land (\mu_{2B} \lor \mu_{2D})]x]^c$

Let $\mathcal{C} \cup \mathcal{D} = \mathcal{H} = (H_1, H, \overline{H}(\mu_{1H_1}, \mu_{2H}), L_H)$,where

- (j) $H_1 = C_1 \cup D_1, H = C \cap D$
- (k) $L_H = L_C \vee L_D$
- (l) $\mu_{1H_1}: H_1 \to L_H$ is given by $\mu_{1H_1}x = (\mu_{1C_1} \lor \mu_{1D_1})x \ \mu_{2H}: H \to L_H$ is given by $\mu_{2H}x = \mu_{2C}x \land \mu_{2D}x$ $\overline{H}: H \to L_H$ is given by $\overline{H}x = \mu_{1H_1}x \land (\mu_{2H}x)^c$ $= (\mu_{1C_1} \lor \mu_{1D_1})x \land [(\mu_{2C} \land \mu_{2D})x]^c$

Let $\mathcal{B} \cap (\mathcal{C} \cup \mathcal{D}) = \mathcal{B} \cap \mathcal{H} = \mathcal{K} = (K_1, K, \overline{K}(\mu_{1K_1}, \mu_{2K}), L_K),$ where

(m)
$$K_1 = B_1 \cap H_1 = B_1 \cap (C_1 \cup D_1), K = B \cup H = B \cup (C \cap D)$$

- (n) $L_K = L_B \wedge L_H = L_B \wedge (L_C \vee L_D)$
- (o) $\mu_{1K_1}: K_1 \to L_K$ is given by $\mu_{1K_1}x = (\mu_{1B_1} \wedge \mu_{1H_1})x = [\mu_{1B_1} \wedge (\mu_{1C_1} \vee \mu_{1D_1})]x$ $\mu_{2K}: K \to L_K$ is given by $\mu_{2K}x = (\mu_{2B} \vee \mu_{2H})x = [\mu_{2B} \vee (\mu_{2C} \wedge \mu_{2D})]x$ $\overline{K}: K \to L_K$ is given by $\overline{K}x = \mu_{1K_1}x \wedge (\mu_{2K}x)^c$ $= [\mu_{1B_1} \wedge (\mu_{1C_1} \vee \mu_{1D_1})]x \wedge [[\mu_{2B} \vee (\mu_{2C} \wedge \mu_{2D})]x]^c$

Need to show that $\mathcal{B} \cap (\mathcal{C} \cup \mathcal{D})$ exists i.e. sufficient to show that

 $(5)K \subseteq K_1$

 $(6)\mu_{1K_1}x \ge \mu_{2K}x$ for each $x \in K = B \cup (C \cap D)$

(5) follows from (1) and (3)

We have to show (6)

We have to show (6)
Now
$$x \in B \cup (C \cap D) \Rightarrow \mu_{1K_1}x = [\mu_{1B_1}x \wedge (\mu_{1C_1} \vee \mu_{1D_1})x]$$

Case (1): $x \in B_1, x \in C_1, x \in D_1 \Rightarrow \mu_{1K_1}x = [\mu_{1B_1}x \wedge (\mu_{1C_1}x \vee \mu_{1D_1}x)] = [(\mu_{1B_1}x \wedge \mu_{1C_1}x) \vee (\mu_{1B_1} \wedge \mu_{1D_1})x]$
Case (2): $x \in B, x \notin C \cap D \Rightarrow \mu_{2K}x = \mu_{2B}x, \mu_{1K_1}x \geq \mu_{2B}x = \mu_{2K}x$

$$\begin{split} x \in B, x \in C, x \notin D \Rightarrow \mu_{1K_1}x = \left(\mu_{1B_1}x \wedge \mu_{1C_1}x\right) \geq \\ \mu_{2B}x = \mu_{2K}x \\ x \in B, x \notin C, x \in D \Rightarrow \mu_{1K_1}x = \left(\Box_{1B_1}x \wedge \mu_{1D_1}x\right) \geq \\ \mu_{2B}x = \mu_{2K}x \\ x \in B, x \in C \cap D \Rightarrow \mu_{1K_1}x = \left(\mu_{1B_1}x \wedge \mu_{1C_1}x\right) \vee \\ \left(\mu_{1B_1} \wedge \mu_{1D_1}\right)x \geq \mu_{2B}x = \mu_{2K}x \end{split}$$
 Therefore $\mu_{1K_1} \geq \mu_{2K}$

Again need to show $G=\mathcal{K}$ i.e. sufficient to show that

- (p) $G_1 = K_1$, F = K
- (q) $L_G = L_K$
- (r) $(\mu_{1G_1}x = \mu_{1K_1}x \text{ and } \mu_{2G}x = \mu_{2K}x)$ or $\bar{G}x = \bar{K}x$ (p)follows from(g) and (m)

(q)follows from(h) and (n)

We havve to show $(\mu_{1G_1}x = \mu_{1K_1}x \text{ and } \mu_{2G}x = \mu_{2K}x)$ or $\overline{G}x = \overline{K}x$ for each $x \in B \cup (C \cap D)$

Case (1): $x \in B$ and $x \in (C \cap D) \Rightarrow \mu_{1G_1} = (\mu_{1B_1} x \land B)$

$$\mu_{1C_1}x)\vee\left(\mu_{1B_1}x\wedge\mu_{1D_1}x\right)=$$

 $\mu_{1B_1}x \wedge (\mu_{1C_1}x \vee \mu_{1D_1}x) = \mu_{1K_1}x$

 $\mu_{2G}x = (\mu_{2B}x \lor \mu_{2C}x) \land (\mu_{2B}x \lor \mu_{2D}x) = [\mu_{2B}x \lor \mu_{2D}x]$

 $(\mu_{2C}x \wedge \mu_{2D}x)] = \mu_{2K}x$

case (2): $x \in B$, $x \notin C$ and $x \in D \Rightarrow \mu_{1G_1}x = \mu_{1B_1}x \land \mu_{1D_1}x = \mu_{1K_1}x$

 $\mu_{2G}x = \mu_{2B}x \land (\mu_{2B}x \lor \mu_{2D}x) = \mu_{2B}x = \mu_{2G}x$ $x \in B, x \in C \ and \ x \notin D \Rightarrow \mu_{1G_1}x = \mu_{1B_1}x \land \mu_{1C_1}x = \mu_{1K_1}x$ $\mu_{2G}x = (\mu_{2B}x \lor \mu_{2D}x) \land \mu_{2B}x = \mu_{2B}x = \mu_{2G}x$

d Eig-1

These in term imply $\overline{G}x = \overline{K}x$

Example: 1.18.1

Let $\mathcal{B}=(B_1, B, \overline{B}(\mu_{1B_1}, \mu_{2B}), L_B)$ α_2 $B_1 = \{a, b\}, B = \{a\}, L_A = L_B = \alpha_1$ $\mu_{1B_1}: B_1 \to L_B$ is given by $\mu_{1B_1} = \alpha_2$ $\mu_{2B}: B \to L_B$ is given by $\mu_{2B} = 0$

 $\overline{B}: B \to L_B$ is given by $\overline{B}x = \alpha_2$

Let $C = (C_1, C, \bar{C}(\mu_{1C_1}, \mu_{2C}), L_C)$ $C_1 = \{a, c\}, C = \{a, c\}, L_C = L_A$

 $\mu_{1C_1}: C_1 \longrightarrow L_C$ is given by $\mu_{1C_1} = \beta_2$

 $\mu_{2C}: C \longrightarrow L_C$ is given by $\mu_{2C} = 0$

 $\overline{C}: C \longrightarrow L_C$ is given by $\overline{C}x = \beta_2$

Let $\mathcal{D} = (D_1, D, \overline{D}(\mu_{1D_1}, \mu_{2D}), L_D)$

 $D_1 = \{a, d\}, D = \{a, d\}, L_D = L_A$

 $\mu_{1D_1}: D_1 \longrightarrow L_D$ is given by $\mu_{1D_1} = \gamma_2$

 μ_{2D} : $D \to L_D$ is given by $\mu_{2D} = 0$

 $\Box: D \longrightarrow L_D$ is given by $\overline{D}x = \gamma_2$

Let $\mathcal{C} \cap \mathcal{D} = \mathcal{E} = (E_1, E, \overline{E}(\mu_{1E_1}, \mu_{2E}), L_E)$, where

- (a) $E_1 = C_1 \cap D_1 = \{a\}, E = C \cup D = \{a, c\}$
- (b) $L_E = L_C \wedge L_D = L_A$
- (c) $\mu_{1E_1}: E_1 \longrightarrow L_E$ is given by $\mu_{1E_1}x = \mu_{1C_1}x \land \mu_{1D_1}x = \beta_2 \land \gamma_2 = \beta_1$ $\mu_{2E}: E \longrightarrow L_E$ is given by $\mu_{2E}x = (\mu_{2C} \lor \mu_{2D})x = 0$

 $\overline{E}: E \to L_E$ is given by, $\overline{E}x = \mu_{1E_1}x \wedge (\mu_{2E}x)^c = \beta_1$

Hence $\mathcal{C} \cap \mathcal{D}$ does not exist.

Let $\mathcal{B} \cup \mathcal{C} = \mathcal{G} = (G_1, G, \overline{G}(\mu_{1G_1}, \mu_{2G}), L_G)$, where

- (d) $G_1 = B_1 \cup C_1 = \{a, b, c\}, G = B \cap C = \{a\}$
- (e) $L_G = L_B \vee L_C = L_A$
- (f) $\mu_{1G_1}: G_1 \longrightarrow L_G$ is defined by $\mu_{1G_1}x = (\mu_{1B_1} \lor \mu_{1G_1})x = \alpha_2 \lor \beta_2 = 1$ $\mu_{2G}: G \longrightarrow L_G$ is defined by $\mu_{2G}x = \mu_{2B}x \land \mu_{2C}x = 0$

 $\bar{G}:G \to L_G$ is defined by $\bar{G}x = \mu_{1G_1}x \wedge (\mu_{2G}x)^c = 1$

Let $\mathcal{B} \cup \mathcal{D} = \mathcal{H} = (H_1, H, \overline{H}(\mu_{1H_1}, \mu_{2H}), L_H)$, where

- (g) $H_1 = B_1 \cup D_1 = \{a, b, d\}, H = B \cap D = \{a\}$
- (h) $L_H = L_B \vee L_D = L_A$
- (i) $\mu_{1H_1}: H_1 \longrightarrow L_H$ is defined by $\mu_{1H_1}x = (\mu_{1B_1} \lor \mu_{1D_1})x = \alpha_2 \lor \gamma_2 = 1$ $\mu_{2H}: H \longrightarrow L_H$ is given by $\mu_{2G}x = \mu_{2B}x \land \mu_{2C}x = 0$

 $\overline{H}: H \to L_H$ is given by $\overline{H}x = \mu_{1H_1}x \wedge (\mu_{2H}x)^c = 1$ Let $(\mathcal{B} \cup \mathcal{C}) \cap (\mathcal{B} \cup \mathcal{D}) = \mathcal{G} \cap \mathcal{H} = \mathcal{K} =$

 $(K_1, K, \overline{K}(\mu_{1K_1}, \mu_{2K}), L_K)$

- (j) $K_1 = G_1 \cap H_1 = \{a, b\}, K = G \cup H = \{a\}$
- (k) $L_K = L_G \wedge L_H = L_A$
- (l) $\mu_{1K_1}: K_1 \longrightarrow L_K$ is defined by $\mu_{1K_1}x = (\mu_{1G_1} \land \mu_{1H_1})x=1$

 $\mu_{2K}: K \to L_K$ is defined by $\mu_{2K}x = (\mu_{2G} \vee \mu_{2H})x = 0$ $\overline{K}: K \to L_K$ is defined by $\overline{K}x = \mu_{1K_1}x \wedge (\mu_{2K}x)^c = 1$

We observed the following

- (1) $\mathcal{C} \cap \mathcal{D}$ does not exist i.e. $\mathcal{C} \cap \mathcal{D} = \Phi_A$
- (2)L.H.S $\mathcal{B} \cup \Phi_A = \mathcal{B}$
- (3)R.H.S $(\mathcal{B} \cup \mathcal{C}) \cap (\mathcal{B} \cup \mathcal{D}) = (\{a, b\}, \{a\}, \overline{K}(1,0), L_A) \neq \mathcal{B}$ **Example 1.18.2:** Let \mathcal{B} , \mathcal{C} and \mathcal{D} Fs-subsets of \mathcal{A} as in above example 1.18.3

Let $\mathcal{B} \cap \mathcal{C} = \mathcal{E} = (E_1, E, \overline{E}(\mu_{1E_1}, \mu_{2E}), L_E)$, where

- (1) $E_1 = B_1 \cap C_1 = \{a\}, E = B \cup C = \{a, c\}$
- $(2) \quad L_E = L_B \wedge L_C = L_A$
- (3) μ_{1E_1} : $E_1 \rightarrow L_E$ is define by, $\mu_{1E_1} x = \mu_{1B_1} x \land \mu_{1C_1} x = \alpha_2 \land \beta_2 = \gamma_1$

 $\mu_{2E}: E \to L_E$ is defined by, $\mu_{2E}x = (\mu_{2B} \lor \mu_{2C})x = 0$ $\overline{E}: E \to L_E$ is defined by, $\overline{E}x = \mu_{1E_1}x \land (\mu_{2E}x)^c = \gamma_1$ $\therefore \mathcal{B} \cap \mathcal{C}$ does not exist

Let $\mathcal{B} \cap \mathcal{D} = \mathcal{F} = (F_1, F, \overline{F}(\mu_{1F_1}, \mu_{2F}), L_F)$, where

- (4) $F_1 = B_1 \cap D_1 = \{a\}, F = B \cup D = \{a, c\}$
- $(5) \quad L_F = L_B \wedge L_D = L_A$
- (6) $\mu_{1F_1}: F_1 \longrightarrow L_F$ is defined by $\mu_{1\square_1} x = \mu_{1B_1} x \land \mu_{1D_1} x = \alpha_2 \land \gamma_2 = \alpha_1$ $\mu_{2F}: F \longrightarrow L_F$ is defined by $\mu_{2F} x = (\mu_{2B} \lor \mu_{2D}) x = 0$ $\overline{F}: F \longrightarrow L_F$ is defined by $\overline{F} x = \mu_{1F_1} x \land (\mu_{2F} x)^c = \alpha_1$

 $::\mathcal{B}\cap\mathcal{D}$ does not exist

Let $\mathcal{C} \cup \mathcal{D} = \mathcal{H} = (H_1, H, \overline{H}(\mu_{1H_1}, \mu_{2H}), L_H)$, where

- (7) $H_1 = C_1 \cup D_1 = \{a, c, d\}, H = C \cap D = \{a\}$
- $(8) L_H = L_C \vee L_D = L_A$
- (9) $\mu_{1H_1}: H_1 \to L_H$ is given by $\mu_{1H_1}x = (\mu_{1C_1} \lor \mu_{1D_1})x = \beta_2 \lor \gamma_2 = 1$ $\mu_{2H}: H \to L_H$ is given by $\mu_{2H}x = \mu_{2C}x \land \mu_{2D}x = 0$ $\overline{H}: H \to L_H$ is given by $\overline{H}x = \mu_{1H_1}x \land (\mu_{2H}x)^c = 1$

Let $\mathcal{B} \cap (\mathcal{C} \cup \mathcal{D}) = \mathcal{B} \cap \mathcal{H} = \mathcal{K} = (K_1, K, \overline{K}(\mu_{1K_1}, \mu_{2K}), L_K),$ where

- $(10) K_1 = B_1 \cap H_1 = \{a\}, K = B \cup H = \{a\}$
- $(11) L_K = L_B \wedge L_H = L_A$
- (12) $\mu_{1K_1}: K_1 \to L_K$ is given by $\mu_{1K_1}x = (\mu_{1B_1} \land \mu_{1H_1})x = \alpha_2$

 $\mu_{2K}: K \to L_K$ is given by $\mu_{2K}x = (\mu_{2B} \lor \mu_{2H})x = 0$ $\overline{K}: K \to L_K$ is given by $\overline{K}x = \mu_{1K_1}x \land (\mu_{2K}x)^c = \alpha_2$ Here R.H.S does not exist.

R.H.S= Φ_A and L.H.S= $(\{a\}\{a\}, \overline{K}(\alpha_2, 0), L_A)$

III. FS-COMPLEMENTS

Fs-set

A. Definition of Fs-complement of a Fs-subset:

Consider a particular $\mathcal{A} = (A_1, A, \overline{A}(\mu_{1A_1}, \mu_{2A}), L_A), A \neq \Phi$, where

- (i) $A \subseteq A_1$
- (ii) $L_A = [0, M_A], M_A = \forall \bar{A}A = \bigvee_{\alpha \in A} \bar{A} \alpha$
- (iii) $\mu_{1A_1} = M_A, \mu_{2A} = 0,$ $\bar{A}x = \mu_{1A_1}x \wedge (\mu_{2A}x)^c = M_A, for each x \in A$

Given $\mathcal{B}=(B_1,B,\overline{B}(\mu_{1B_1},\mu_{2B}),L_B)$. We define Fs-complement of \mathcal{B} , denoted by $\mathcal{B}^{\mathcal{C}_{\mathcal{A}}}$ for B=A and $L_B=L_A$

 $\mathcal{B}^{C_{\mathcal{A}}} = \mathcal{D} = (D_1, D, \overline{D}(\mu_{1D_1}, \mu_{2D}), L_D)$, where

- (a') $D_1 = C_A B_1 = B_1^c \cup A, D = B = A$
- (b') $L_D = L_A$
- (c') $\mu_{1D_1}: D_1 \longrightarrow L_A$, is defined by $\mu_{1D_1}x = M_A$ $\mu_{2D}: A \longrightarrow L_A$, is defined by $\mu_{2D}x = \overline{B}x = \mu_{1B_1}x \wedge (\mu_{2B}x)^c$ $\overline{D}: A \longrightarrow L_A$, is defined by $\overline{D}x = \mu_{1D_1}x \wedge (\mu_{2D}x)^c = M_A \wedge (\overline{B}x)^c = (\overline{B}x)^c$.

B. Proposition: $A^{C_A} = \Phi_A$

Let $\mathcal{A}^{\mathcal{C}_{\mathcal{A}}} = \mathcal{D} = (D_1, D, \overline{D}(\mu_{1D_1}, \mu_{2D}), L_D)$, where

- (a') $D_1 = C_A A_1 = A_1^c \cup A = A, D = A$
- (b') $L_D = L_A$
- (c') $\mu_{1D_1}: D_1 \to L_A$, is given by $\mu_{1D_1}x = M_A$, $\mu_{2D}: D \to L_A$, is given by $\mu_{2D}x = \overline{A}x$ $\overline{D}: D \to L_A$, is given by $\overline{D}x = \mu_{1D_1}x \wedge (\mu_{2D}x)^c = M_A \wedge (\overline{A}x)^c = M_A \wedge (M_A)^c = 0$ i.e. $\overline{D} = \overline{0}$, where $\overline{0}x = 0$

Hence $\mathcal{D} = (A, A, \overline{0}(M_A, \overline{A}), L_A) = \Phi_{\mathcal{A}}$, where is an Fsempty set

C. Definition: Define $(\Phi_{\mathcal{A}})^{C_{\mathcal{A}}} = \mathcal{A}$

- **D.** Proposition: For $\mathcal{B}=(B_1, B, \overline{B}(\mu_{1B_1}, \mu_{2B}), L_B)$, $\mathcal{C}=(C_1, C, \overline{C}(\mu_{1C_1}, \mu_{2C}), L_C)$, which are non Fs-empty sets and $B=C=A, L_B=L_C=L_A$
 - (1) $\mathcal{B} \cap \mathcal{B}^{\mathcal{C}_{\mathcal{A}}} = \Phi_{\mathcal{A}}$
 - (2) $\mathcal{B} \cup \mathcal{B}^{\mathcal{C}_{\mathcal{A}}} = \mathcal{A}$
 - $(3) (\mathcal{B}^{\mathcal{C}_{\mathcal{A}}})^{\mathcal{C}_{\mathcal{A}}} = \mathcal{B}$
 - (4) $\mathcal{B} \subseteq \mathcal{C}$ if and only if $\mathcal{C}^{\mathcal{C}_{\mathcal{A}}} \subseteq \mathcal{B}^{\mathcal{C}_{\mathcal{A}}}$

Proof (1): G iven $\mathcal{B}=(B_1, B, \overline{B}(\mu_{1B_1}, \mu_{2B}), L_B)$, where $B=A, L_B=L_A, \mathcal{B} \neq \Phi_{\mathcal{A}}$

Let $\mathcal{B}^{\mathcal{C}_{\mathcal{A}}} = \mathcal{D} = (D_1, D, \overline{D}(\mu_{1D_1}, \mu_{2D}), L_D)$, where

- $(1a) D_1 = C_A B_1 = B_1^C \cup A, D = B = A$
- $(1b)L_D = L_A$
- (1c) $\mu_{1D_1}: D_1 \to L_A$ is given by $\mu_{1D_1}x = M_A$ $\mu_{2D}: A \to L_A$ is given by $\mu_{2D}x = \overline{B}x$, $\overline{D}: A \to L_A$ is given by $\overline{D}x = \mu_{1D_1}x \wedge (\mu_{2D}x)^c = M_A \wedge (\overline{B}x)^c = (\overline{B}x)^c$
- Let $\mathcal{B} \cap \mathcal{B}^{\mathcal{C}_{\mathcal{A}}} = \mathcal{E} = (E_1, E, \overline{E}(\mu_{1E_1}, \mu_{2E}), L_E)$, where
 - $(1d)E_1 = B_1 \cap D_1 = B_1 \cap (B_1^C \cup A) = A \text{ and } E = A$
 - $(1e) L_E = L_B \wedge L_D = L_A$
 - (1f) $\mu_{1E_1}x = \mu_{1B_1}x \land \mu_{1D_1}x = \mu_{1B_1}x \land M_A = \mu_{1B_1}x$, for each $x \in E_1 = A$ $\mu_{2E}x = \mu_{2B}x \lor \mu_{2D}x$, for each $x \in A$ $= \mu_{2B}x \lor \overline{B}x$

```
=(\mu_{2B}x \vee \mu_{1B}x) \wedge [\mu_{2B}x \vee (\mu_{2B}x)^C]
                          =\mu_{1B_1}x \wedge M_A = \mu_{1B_1}x
\overline{E}x = \mu_{1E_1}x \wedge (\mu_{2E}x)^c = \mu_{1B_1}x \wedge (\mu_{1B_1}x)^c =
0, for each x \in A
Existence of \mathcal{B} \cap \mathcal{B}^{\mathcal{C}_{\mathcal{A}}} follow from (1d),(1e) and (1f)
Hence \mathcal{E}=(A, A, \overline{0}(\mu_{1B_1}, \mu_{1B_1}), L_A) is an Fs-empty set
\mathcal{E} = \mathcal{B} \cap \mathcal{B}^{\mathcal{C}_{\mathcal{A}}} = \Phi_{\mathcal{A}}
Proof (2): Let \mathcal{B} \cup \mathcal{B}^{\mathcal{C}_{\mathcal{A}}} = \mathcal{F} =
(F_1, F, \overline{F}(\mu_{1F_1}, \mu_{2F}), L_F), where
(2a) F_1 = B_1 \cup D_1 = B_1 \cup (B_1^C \cup A) = A_1, F = B \cap D = A
(2b) L_F = L_B \vee L_D = L_A
(2c) \mu_{1F_1}x = (\mu_{1B_1} \vee \mu_{1D_1})x for each x \in F_1 = A_1
               \mu_{2F}x = \mu_{2B}x \wedge \mu_{2D}x for each x \in A
                           =\mu_{2B}x \wedge \overline{B}x
                           = \mu_{2B} x \wedge [\mu_{1B_1} x \wedge (\mu_{2B} x)^C] = 0
                    \overline{F}x = \mu_{1F_1} x \wedge (\mu_{2F} x)^c, for each x \in A
                           = (\mu_{1B_1} \vee \mu_{1D_1}) x \wedge (0)^c
                           = (\mu_{1B_1} x \vee \mu_{1D_1} x) \wedge M_A
                           = \mu_{1B_1} x \vee \mu_{1D_1} x
                           = \mu_{1B_1} x \vee M_A = M_A
Hence \mathcal{F} = (A_1, A, \overline{A}(M_A, 0), L_A) = \mathcal{A}
\therefore \mathcal{F} = \mathcal{B} \cup \mathcal{B}^{\mathcal{C}_{\mathcal{A}}} = \mathcal{A}
Proof (3): Suppose \mathcal{D}^{C_{\mathcal{A}}} = \mathcal{G} = (G_1, G, \bar{G}(\mu_{1G_1}, \mu_{2G}), L_G),
       (3a) G_1 = C_A D_1 = D_1^C \cup A = (B_1^C \cup A)^C \cup A =
               (B_1 \cap A^c) \cup A = (B_1 \cup A) \cap (A^c \cup A)
                     = B_1 \cap A_1 = B_1, G = D = B = A
       (3b)L_G = L_B = L_D = L_A
       (3c) \mu_{1G_1}: G_1 \longrightarrow L_A, is given by \mu_{1G_1}x = M_A
              \mu_{2G}: A \longrightarrow L_A, is given by \mu_{2G}x = \overline{D}x = (\overline{B}x)^c
               \bar{G}: A \longrightarrow L_A, is given by \bar{G}x = \mu_{1G_1}x \wedge (\mu_{2G}x)^c =
               M_A \wedge ((\bar{B}x)^c)^c = \bar{B}x
We need to show that \mathcal{B}=\mathcal{G}
B_1 = G_1, B = G = A follows from (3a)
L_B = L_G = L_A follows from(3b)
 \overline{B}x = \overline{G}x follow from(3c)
Proof (4): Let C^{C_A} = (H_1, H, \overline{H}(\mu_{1H_1}, \mu_{2H}), L_H), where
              H_1=C_AC_1=C_1^C\cup A, H=C=A
(4a)
(4b)
(4c)
              \mu_{1H_1}: H_1 \longrightarrow L_A, is given by \mu_{1H_1}x = M_A
              \mu_{2H}: A \longrightarrow L_A, is given by \mu_{2H}x = \bar{C}x
\overline{H}: A \longrightarrow L_A is given by \overline{H}x = \mu_{1H_1} x \wedge (\mu_{2H} x)^c = M_A \wedge
(\bar{C}x)^c = (\bar{C}x)^c
(\Rightarrow): Part of the proposition.
Suppose \mathcal{B} \subseteq \mathcal{C}, we have the following
(4d) B_1 \subseteq C_1, C \subseteq B \subseteq A
(4e) L_B = L_C = L_A
(4f) \mu_{1B_1}x \le \mu_{1C_1}x, for each x \in B_1, \mu_{2B}x \ge \mu_{2C}x,
                                          for each x \in C
We need to show \mathcal{E} \subseteq \mathcal{D}, that is,
              E_1 \subseteq D_2, E \supseteq D
(4g)
(4h)
              L_E \leq L_D
 (4i)
              \overline{E}x \leq \overline{D}x
Therefore
D_1 = C_A B_1 \supseteq C_A, C_1 = E_1, D = H = A follow
from(1a)and(4a)
```

 $(\overline{B}x)^c \ge (\overline{C}x)^c = \mu_{2E}x$, for each $x \in A$ These in term imply $\mathcal{C}^{\mathcal{C}_{\mathcal{A}}} \subseteq \mathcal{B}^{\mathcal{C}_{\mathcal{A}}}$ (\Leftarrow) : Part of the proposition. Let $\mathcal{C}^{\mathcal{C}_{\mathcal{A}}} \subseteq \mathcal{B}^{\mathcal{C}_{\mathcal{A}}}$ From the above result $(\mathcal{C}^{\mathcal{C}_{\mathcal{A}}})^{\mathcal{C}_{\mathcal{A}}} \supseteq (\mathcal{B}^{\mathcal{C}_{\mathcal{A}}})^{\mathcal{C}_{\mathcal{A}}} \Rightarrow \mathcal{C} \supseteq \mathcal{B}$ E. Fs-De-Morgan's laws of a pair of Fs-subset: For any pair of Fs-sets $\mathcal{B}=(B_1,B,\overline{B}(\mu_{1B_1},\mu_{2B}),L_B)$ and $C = (C_1, C, \overline{C}(\mu_{1C_1}, \mu_{2C}), L_C)$, with B = C = A and $L_B = C$ $L_C = L_A$, we will have (i) $(\mathcal{B} \cup \mathcal{C})^{\mathcal{C}_{\mathcal{A}}} = \mathcal{B}^{\mathcal{C}_{\mathcal{A}}} \cap \mathcal{C}^{\mathcal{C}_{\mathcal{A}}} \text{ if } (\overline{\mathcal{B}}x)^{\mathcal{C}} \wedge (\overline{\mathcal{C}}x)^{\mathcal{C}} \leq$ $\left[\left(\mu_{1B_1}x\right)^c\vee\mu_{2C}x\right]\wedge\left[\left(\mu_{1C_1}x\right)^c\vee\mu_{2B}x\right], \text{ for each } x\in A$ (ii) $(\mathcal{B} \cap \mathcal{C})^{\mathcal{C}_{\mathcal{A}}} = \mathcal{B}^{\mathcal{C}_{\mathcal{A}}} \cup \mathcal{C}^{\mathcal{C}_{\mathcal{A}}}$, whenever $\mathcal{B} \cap \mathcal{C}$ exist. Proof (i): First we prove existence of $\mathcal{B}^{\mathcal{C}_{\mathcal{A}}} \cap \mathcal{C}^{\mathcal{C}_{\mathcal{A}}}$ Let $\mathcal{B}^{\mathcal{C}_{\mathcal{A}}} = (D_1, D, \overline{D}(\mu_{1D_1}, \mu_{2D}), L_D)$, where (a) $D_1 = C_A B_1 = B_1^{\bar{C}} \cup A, D = B = A$ (b) $L_D = L_A$ (c) $\mu_{1D_1}: D_1 \longrightarrow L_A$ given by $\mu_{1D_1}x = M_A$ $\mu_{2D}: A \longrightarrow L_A$ is given by $\mu_{2D}x = \bar{B}x$, $\overline{D}: A \longrightarrow L_A$ is given by $\overline{D}x = \mu_{1D_1}x \wedge (\mu_{2D}x)^c$ $= M_A \wedge (\bar{B}x)^c = (\bar{B}x)^c$ Let $C^{\mathcal{C}_{\mathcal{A}}} = (E_1, E, \overline{E}(\mu_{1E_1}, \mu_{2E}), L_E)$, where (d) $E_1 = C_A C_1 = C_1^C \cup A, E = C = A$ (e) $L_E = L_A$ (f) $\mu_{1E_1}: E_1 \longrightarrow L_A$ is defined by $\mu_{1E_1}x = M_A$ $\mu_{2E}: A \longrightarrow L_A$ is defined by $\mu_{2E}x = \bar{C}x$, $\bar{E}: A \longrightarrow L_A$, is defined by $\bar{E}x = \mu_{1E_1}x \wedge (\mu_{2E}x)^c$ $= M_A \wedge (\bar{c}x)^c = (\bar{C}x)^c$ Let $\mathcal{B}^{C_{\mathcal{A}}} \cap \mathcal{C}^{C_{\mathcal{A}}} = \mathcal{F} = (F_1, F, \overline{F}(\mu_{1F_1}, \mu_{2F}), L_F)$, where (g) $F_1 = D_1 \cap E_1 = (B_1^c \cup A) \cap (C_1^c \cup A) =$ $(B_1^c \cap C_1^c) \cup A = (B_1 \cup C_1)^c \cup A, \ F = D \cup E = A$ (h) $L_F = L_D \wedge L_E = L_A$ (i) $\mu_{1F_1}x = \mu_{1D_1}x \land \mu_{1E_1}x = M_A$, for each $x \in D_1 \cap$ $\mu_{2F}x = \mu_{2D}x \lor \mu_E x = \bar{B}x \lor \bar{C}x$, for each $x \in A$ $\overline{F}x = \mu_{1F_1}x \wedge (\mu_{2F}x)^c = (\overline{B}x \vee \overline{C}x)^c = (\overline{B}x)^c \wedge$ $(\bar{C}x)^c$, for each $x \in A$ $\therefore \mu_{1F_1} x = M_A \ge \bar{B} x \lor \bar{C} x = \mu_{2F} x$ This in term imply existence of $\mathcal{B}^{\mathcal{C}_{\mathcal{A}}} \cap \mathcal{C}^{\mathcal{C}_{\mathcal{A}}}$ Case (I): Now we prove the result (i) Let $\mathcal{G}=\mathcal{B}\cup\mathcal{C}=(G_1,G,\overline{G}(\mu_{1G_1},\mu_{2G}),L_G)$, where (j) $G_1 = B_1 \cup C_1$, $G = B \cap C$ $(k) \quad L_G = L_B \lor L_C = L_A$ (l) $\mu_{1G_1}: G_1 \to L_A$ is given by $\mu_{1G_1}x = (\mu_{1B_1} \lor \mu_{1G_1})x$ $\mu_{2G}: G \longrightarrow L_A$ is given by $\mu_{2G}x = \mu_{2B}x \land \mu_{2C}x$ $\bar{G}: A \longrightarrow L_A$ is given by $\bar{G}x = \mu_{1G_1}x \wedge (\mu_{2G}x)^c$ $\bar{G}x = (\mu_{1B_1} \lor \mu_{1C_1})x \land (\mu_{2B}x \land \mu_{2C}x)^c \forall x \in G =$ $= (\mu_{1B_1} x \vee \mu_{1C_1} x) \wedge [(\mu_{2B} x)^c \vee (\mu_{2C} x)^c]$ $= [(\mu_{1B_1} x \vee \mu_{1C_1} x) \wedge (\mu_{2B} x)^c] \vee [(\mu_{1B_1} x \vee \mu_{1C_1} x) \wedge (\mu_{1B_1} x) \wedge (\mu_$ $[\mu_{1C_1}x] \wedge (\mu_{2C}x)^c = [\mu_{1B_1}x \wedge (\mu_{2B}x)^c] \vee$ $\left[\mu_{1C_1}x \wedge (\mu_{2B}x)^c\right]$ $\vee \left[\mu_{1B_1} x \wedge (\mu_{2C} x)^c\right] \vee \left[\mu_{1C_1} x \wedge (\mu_{2C} x)^c\right]$ $= \overline{B}x \vee \overline{C}x \vee \left[\mu_{1C_1}x \wedge (\mu_{2B}x)^c\right] \vee \left[\mu_{1B_1}x \wedge (\mu_{2B}x)^c\right] \wedge \left[\mu_{1B_1}x \wedge (\mu_{2B}x)^c\right] \vee \left[\mu_{1B_1}x \wedge (\mu_{2B}x)^c\right] \wedge \left[\mu_{1B_1}x \wedge (\mu_{2B}x)^c\right] \wedge \left[\mu_{1B_1}x \wedge (\mu$ $(\mu_{2C}x)^c$

 $\mu_{1D_1}x = M_A \ge \mu_{1E_1}x = M_A$, for each $x \in D_1$ and $\mu_{2D}x =$

 $L_D = L_H = L_A$ follow from(1b)and(4b)

$$=\overline{B}x \vee \overline{C}x \ (\because \overline{B}x \vee \overline{C}x \geq [\mu_{1C_1}x \wedge (\mu_{2B}x)^c] \vee [\mu_{1B_1}x \wedge (\mu_{2C}x)^c])$$
 Suppose $\mathcal{H} = (G)^{C_A} = (H_1, H, \overline{H}(\mu_{1\Box_1}, \mu_H), L_H)$, where (m) $H_1 = C_A G_1 = G_1^c \cup A = (B_1 \cup C_1)^c \cup A, H = G = A$ (n) $L_H = L_G = L_A$ (o) $\mu_{1H_1}x = M_A, \forall x \in H_1$, $\mu_{2B}x = \overline{G}x$, for each $x \in A$ $\overline{H}x = M_A \wedge (\overline{G}x)^c = (\overline{G}x)^c = [\overline{B}x \vee \overline{C}x \vee [\mu_{1C_1}x \wedge (\mu_{2B}x)^c] \vee [\mu_{1B_1}x \wedge (\mu_{2C}x)^c]]^c = (\overline{B}x)^c \wedge (\overline{C}x)^c \wedge [(\mu_{1B_1}x)^c \vee \mu_{2C}x] \wedge [(\mu_{1C_1}x)^c \vee \mu_{2B}x] = (\overline{B}x)^c \wedge (\overline{C}x)^c \wedge [(\mu_{1B_1}x)^c \vee \mu_{2C}x] \wedge [(\mu_{1C_1}x)^c \vee \mu_{2B}x] = (\overline{B}x)^c \wedge (\overline{C}x)^c \wedge [(\mu_{1B_1}x)^c \vee \mu_{2C}x] \wedge [(\mu_{1C_1}x)^c \vee \mu_{2B}x] = (\overline{B}x)^c \wedge (\overline{C}x)^c \wedge [(\overline{G}x)^c \wedge (\overline{C}x)^c \otimes [(\mu_{1B_1}x)^c \vee \mu_{2C}x] \wedge [(\mu_{1C_1}x)^c \vee \mu_{2B}x]$ sufficient to show that $B^{C_A} \cap (C)^{C_A} = (B \cup C)^{C_A}$ $F_1 = H_1, F = H = A$ follow from (f) and(m) $L_F = L_H = L_A$ follow from (g) and (n) $(\mu_{1F_1}x = \mu_{1H_1}x, \text{for each } x \in F_1, \mu_{2F}x = \mu_{2H}x, \text{for each } x \in A) \text{ or } \overline{F}x = \overline{H}x \text{ follow from (h)} \text{ and (o)}$ Hence we proved the following (p) $F_1 = H_1, F = H = A$ (q) $L_F = L_H = L_A$ (1) $(\mu_{1F_1}x = \mu_{1H_1}x, \text{for each } x \in F_1, \mu_{2F}x = \mu_{2H}x, \text{for each } x \in A) \text{ or } \overline{F}x = \overline{H}x$ follow from (p),(q) and(r) Case (II): If B is Φ_A then $B \cup C = \Phi_A \cup C = C$ $\oplus (B \cup C)^{C_A} = (B \cup C)^{C_A} = A \cap C^{C_A} = C^{C_A}$ $\oplus (B \cup C)^{C_A} = A \cap C^{C_A} = C^{C_A}$ $\oplus (B \cup C)^{C_A} = A \cap C^{C_A} = C^{C_A}$ $\oplus (B \cup C)^{C_A} = B \cap C^{C_A} = C^{C_A}$ $\oplus (B \cup C)^{C_A} = B \cap C^{C_A} = C^{C_A}$ $\oplus (B \cup C)^{C_A} = B \cap C^{C_A} = C^{C_A}$ $\oplus (B \cup C)^{C_A} = B \cap C^{C_A} = C^{C_A}$ $\oplus (B \cup C)^{C_A} = (B \cup C)^{C_A} = (B \cup C)^{C_A}$ $\oplus (B \cup C)^{C_A} = (B \cup C)^{C_A} = (B \cup C)^{C_A}$ $\oplus (B \cup C)^{C_A} = (B \cup C)^{C_A} = (B \cup C)^{C_A}$ $\oplus (B \cup C)^{C_A} = (B \cup C)^$

```
Let C^{C_A} = (E_1, E, \overline{E}(\mu_{1E_1}, \mu_{2E}), L_E), where
        (j') E_1 = C_A C_1 = C_1^{\hat{C}} \cup A, E = C = A
        (k') L_E = L_A
        (l') \mu_{1E_1}: E_1 \longrightarrow L_A is define by \mu_{1E_1}x = M_A
                \mu_{2E}: A \longrightarrow L_A is define by \mu_{2E}x = \bar{C}x
                \overline{E}: A \longrightarrow L_A, is define by \overline{E}x = \mu_{1E_1}x \wedge (\mu_{2E}x)^c =
                M_A \wedge (\bar{C}x)^c = (\bar{C}x)^c
Let \mathcal{B}^{\mathcal{C}_{\mathcal{A}}} \cup \mathcal{C}^{\mathcal{C}_{\mathcal{A}}} = \mathcal{K} = (K_1, K, \overline{K}(\mu_{1K_1}, \mu_{2K}), L_K), where
        (m') K_1 = D_1 \cup E_1 = (B_1^c \cup A) \cup (C_1^c \cup A) =
                     (B_1^c \cup C_1^c) \cup A = (B_1 \cap C_1)^c \cup A,
                      K = D \cup E = A
        (n') L_K = L_D \vee L_E = L_A
        (o') \mu_{1K_1}x = (\mu_{1D_1} \lor \mu_{1E_1})x, for each x \in D_1 \cup E_1
                 \mu_{2K}x = \mu_{2D}x \wedge \mu_{2E}x = \overline{B}x \wedge \overline{C}x, for each x \in A
                      \overline{K}x = \mu_{1K_1}x \wedge (\mu_{2K}x)^c, for each x \in A
                              =(\mu_{1D_1} \vee \mu_{1E_1})x \wedge (\mu_{2D}x \wedge \mu_{2E}x)^c
                              = (\mu_{1D_1} x \vee \mu_{1E_1} x) \wedge (\overline{B}x \wedge \overline{C}x)^c
                              =(M_A \vee M_A) \wedge [(\bar{B}x)^c \vee (\bar{C}x)^c]
                              =(\overline{B}x)^c \vee (\overline{C}x)^c
Sufficient to show \mathcal{N}=\mathcal{K}
N_1 = (B_1 \cap C_1)^c \cup A = K_1, N = A = K \text{ follow from (d')}
and (m')
L_K = L_N = L_A follow from (e') and (n')
 (\mu_{1N_1}x = \mu_{1K_1}x, \text{ for each } x \in N_1, \mu_{2N}x =
\mu_{2K}x, for each x \in A) or \overline{N}x = \overline{K}x follow from (f') and (o')
Hence we proved the following
        (p') N_1 \subseteq K_1, \quad N = A = K
        (q') L_K = L_N = L_A
        (r') (\mu_{1N_1}x = \mu_{1K_1}x, \text{ for each } x \in N_1, \mu_{2N}x =
                \mu_{2K}x, for each x \in A) or \overline{N}x = \overline{K}x
Hence (\mathcal{B} \cap \mathcal{C})^{\mathcal{C}_{\mathcal{A}}} = \mathcal{B}^{\mathcal{C}_{\mathcal{A}}} \cup \mathcal{C}^{\mathcal{C}_{\mathcal{A}}} follow from (\mathfrak{p}'), (\mathfrak{q}') and (\mathfrak{r}')
                Example:
a.
        There exists a pair of Fs-subset \mathcal B and \mathcal C of \mathcal A such that
   (\overline{B}x)^c \wedge (\overline{C}x)^c > \left[ \left( \mu_{1B_1} x \right)^c \vee \mu_{2C} x \right] \wedge \left[ \left( \mu_{1C_1} x \right)^c \vee \mu_{2B} x \right]
and (\mathcal{B} \cup \mathcal{C})^{\mathcal{C}_{\mathcal{A}}} \neq \mathcal{B}^{\mathcal{C}_{\mathcal{A}}} \cap \mathcal{C}^{\mathcal{C}_{\mathcal{A}}}
Let \mathcal{A}=(A_1, A, \overline{A}(\mu_{1A_1}, \mu_{2A}), L_A), where
A_1 = \{a, b, c\}, A = \{a\}
\mu_{1A_1}: A_1 \longrightarrow L_A is given by \mu_{1A_1} = 1,
\mu_{2A}: A \rightarrow L_A is given by \mu_{2A} = 0,
\bar{A}: A \longrightarrow L_A is given by \bar{A}x = \mu_{1A_1}x \wedge (\mu_{2A}x)^c = 1 \wedge 0^c = 1
\mathcal{B}=(B_1,B,\overline{B}(\mu_{1B_1},\mu_{2B}),L_B)
B_1 = \{a, b\}, B = \{a\}, \text{where } L_A = L_B = \alpha_2
\mu_{1B_1}: B_1 \longrightarrow L_B is given by \mu_{1B_1} = \alpha_2 \alpha_1 \bowtie
\mu_{2B}: B \to L_B is given by \mu_{2B} = \alpha_1
\overline{B}: B \longrightarrow L_B is given by
\overline{B}x = \mu_{1B_1}x \wedge (\mu_{2B}x)^c = \alpha_2 \wedge (\alpha_1)^c = \alpha_2 \wedge \beta_2 = \gamma_1
\Rightarrow (\overline{B}x)^c = (\gamma_1)^c = \gamma_2
C = (C_1, C, \bar{C}(\mu_{1C_1}, \mu_{2C}), L_C)
C_1 = \{a, b\}, C = \{a\}
\mu_{1C_1}: C_1 \longrightarrow L_C is give by \mu_{1C_1} = \beta_2
\mu_{2C}: C \rightarrow L_C is given by \mu_{2C} = \beta_1
\overline{C}: C \longrightarrow L_C is given by
\overline{C}x = \mu_{1C_1}x \wedge (\mu_{2C}x)^c = \beta_2 \wedge (\beta_1)^c = \beta_2 \wedge \alpha_2 = \gamma_1
 \Rightarrow (\overline{C}x)^c = (\gamma_1)^c = \gamma_2
Here \mu_{1B_1} x = \alpha_2 \Rightarrow (\mu_{1B_1} x)^c = (\alpha_2)^c = \beta_1,
\mu_{1C_1}x = \beta_2 \Rightarrow (\mu_{1C_1}x)^c = (\beta_2)^c = \alpha_1
Now (\overline{B}x)^c \wedge (\overline{C}x)^c = \gamma_2 \wedge \gamma_2 = \gamma_2 .....(1)
```

 $M_A \wedge (\overline{B}x)^c = (\overline{B}x)^c$

 $\overline{D}: A \longrightarrow L_A$ is given by $\overline{D}x = \mu_{1D_1}x \wedge (\mu_{2D}x)^c =$

```
\left[\left(\mu_{1B_1}x\right)^c\vee\mu_{2C}x\right]\wedge\left[\left(\mu_{1C_1}x\right)^c\vee\mu_{2B}x\right]=\left(\beta_1\vee\beta_1\right)\wedge
(\alpha_1 \vee \alpha_1) = \beta_1 \wedge \alpha_1 = 0 \qquad \dots (2)
\therefore (\overline{B}x)^c \wedge (\overline{C}x)^c > \left[ \left( \mu_{1B_1} x \right)^c \vee \mu_{2C} x \right] \wedge \left[ \left( \mu_{1C_1} x \right)^c \vee \mu_{2B} x \right]
 Let \mathcal{B}^{C_{\mathcal{A}}} = \mathcal{D} = (D_1, D, \overline{D}(\mu_{1D_1}, \mu_{2D}), L_D), where
        (1) D_1 = C_A B_1 = B_1^C \cup A = \{a, c\}, D = A = \{a\}
        (2) L_D = L_A
        (3) \mu_{1D_1}: D_1 \longrightarrow L_A is define by \mu_{1D_1}x = 1
                 \mu_{2D}: A \rightarrow L_A is define by \mu_{2D}x = \overline{B}x = \gamma_1
                 \overline{D}: A \longrightarrow L_A is define by \overline{D}x = \mu_{1D_1}x \wedge (\mu_{2D}x)^c =
M_A \wedge (\overline{B}x)^c = (\overline{B}x)^c = \gamma_2
\therefore \mathcal{B}^{\mathcal{C}_{\mathcal{A}}} = \mathcal{D} = (\{a,c\},\{a\},\overline{D}(1,\gamma_1),L_A)
Let C^{C_A} = \mathcal{E} = (E_1, E, \overline{E}(\mu_{1E_1}, \mu_{2E}), L_E), where
        (4) E_1 = C_A C_1 = C_1^C \cup A = \{a, c\}, E = C = A = \{a\}
        (5) L_E = L_A
        (6) \mu_{1E_1}: E_1 \longrightarrow L_A is given by \mu_{1E_1}x = 1
                 \mu_{2E}: A \rightarrow L_A is given by \mu_{2E}x = \bar{C}x = \gamma_1
                  and \overline{E}: A \longrightarrow L_A is given by
                 \overline{E}x = \mu_{1E_1}x \wedge (\mu_{2E}x)^c = M_A \wedge (\overline{C}x)^c = (\overline{C}x)^c =
\therefore \, C^{c_{\mathcal{A}}} = \mathcal{E} = (\{a,c\},\{a\},\overline{D}(1,\gamma_1),L_A)
Let \mathcal{G}=\mathcal{B}\cup\mathcal{C}=(G_1,G,\bar{G}(\mu_{1G_1},\mu_{2G}),L_G), where
        (7) G_1 = B_1 \cup C_1 = \{a, b\}, G = B \cap C = \{a\}
        (8) \quad L_G = L_B \vee L_C = L_A
        (9) \mu_{1G_1}: G_1 \to L_A is given by \mu_{1G_1}x = (\mu_{1B_1} \lor L_A)
                 \mu_{1C_1})x = \alpha_2 \lor \beta_2 = 1
                  \mu_{2G}: G \longrightarrow L_A is given by \mu_{2G}x = \mu_{2B}x \wedge \mu_{2C}x =
                  \bar{G}: A \longrightarrow L_A is given by \bar{G}x = \mu_{1G_A}x \wedge (\mu_{2G}x)^c
                 =1 \wedge (0)^c = 1
Suppose\mathcal{H} = (\mathcal{G})^{C_{\mathcal{A}}} = (H_1, H, \overline{H}(\mu_{1H_1}, \mu_H), L_H), where
        (10)H_1 = C_A G_1 = G_1^c \cup A = (B_1 \cup C_1)^c \cup A = \{a, c\},\
                 H = G = A = \{a\}
        (11) L_H = L_G = L_A
         (12) \mu_{1H_1}x = 1, for each x \in H_1
                   \mu_{2H}x = \bar{G}x = 1, for each x \in A
                     \overline{H}x = \mu_{1H_1} x \wedge (\mu_{2H} x)^c = 1 \wedge (1)^c = 0
\therefore \mathcal{H} = (\mathcal{G})^{\mathcal{C}_{\mathcal{A}}} = (\{a,c\},\{a\},\overline{H}(1,1),L_A)
Let \mathcal{B}^{\mathcal{C}_{\mathcal{A}}} \cap \mathcal{C}^{\mathcal{C}_{\mathcal{A}}} = \mathcal{F} = (F_1, F, \overline{F}(\mu_{1F_1}, \mu_{2F}), L_F), where
                       F_1 = D_1 \cap E_1 = (B_1^c \cup A) \cap (C_1^c \cup A) =
                       (B_1^c \cap C_1^c) \cup A = (B_1 \cup C_1)^c \cup A = \{a, c\},\
                       F = D \cup E = A = \{a\}
        (14)
                       L_F = L_D \wedge L_E = L_A
                       \mu_{1F_1}x = \mu_{1D_1}x \land \mu_{1E_1}x = 1, for each x \in D_1 \cap
        (15)
                        \mu_{2F}x = \mu_{2D}x \lor \mu_{E}x = \overline{B}x \lor \overline{C}x = \gamma_{1} \lor \gamma_{1} = \gamma_{1}
                 \gamma_1, for each x \in A
                        \overline{F}x = \mu_{1F_1}x \wedge (\mu_{2F}x)^c = (\overline{B}x \vee \overline{C}x)^c =
                 (\gamma_1)^c = \gamma_2, for each x \in A
                 \therefore \mu_{1F_1}x = 1 \ge \overline{B}x \lor \overline{C}x = \gamma_1 = \mu_{2F}x
This in term imply existence of \mathcal{B}^{\mathcal{C}_{\mathcal{A}}} \cap \mathcal{C}^{\mathcal{C}_{\mathcal{A}}} and
\mathcal{B}^{\mathcal{C}_{\mathcal{A}}} \cap \mathcal{C}^{\mathcal{C}_{\mathcal{A}}} = \mathcal{F} = (\{a,c\},\{a\},\overline{F}(1,\gamma_1),L_A)
We observed that \mathcal{H} = (\mathcal{B} \cup \mathcal{C})^{\mathcal{C}_{\mathcal{A}}} \neq \mathcal{B}^{\mathcal{C}_{\mathcal{A}}} \cap \mathcal{C}^{\mathcal{C}_{\mathcal{A}}} = \mathcal{G}
```

IV. FS-DE MORGAN LAWS OF ANY ARBITRARY FAMILY OF FS-SETS PROPOSITION

Given a family of Fs-subsets $(\mathcal{B}_i)_{i\in I}$ of $\mathcal{A} = (A_1, A, \bar{A}(\mu_{1A_1}, \mu_{2A}), L_A)$, where $L_A = \bigvee_{a\in A} \bar{A}a$, $\mu_{1A_1} = M_A, \mu_{2A} = 0, \bar{A}x = M_A$

```
(I) (\bigcup_{i \in I} \mathcal{B}_i)^{C_{\mathcal{A}}} = \bigcap_{i \in I} \mathcal{B}_i^{C_{\mathcal{A}}}, fo r \not= \Phi, w here \mathcal{B}_i = \Phi
           (B_{1i}, B_i, \overline{B}_i(\mu_{1B_{1i}}, \mu_{2B_i}), L_{B_i}) and
            (1) B_i = A, L_{B_i} = L_A provided
                                                                                                \bigwedge_{i\in I}(\overline{B}_ix)^c\leq
                      \bigwedge_{i,j\in I} \left[ \left( \mu_{1B_{1i}} x \right)^c \vee \mu_{2B_j} x \right]
           (II) (\bigcap_{i \in I} \mathcal{B}_i)^{c_{\mathcal{A}}} = \bigcup_{i \in I} \mathcal{B}_i^{c_{\mathcal{A}}}, whenever \bigcap_{i \in I} \mathcal{B}_i exist.
Proof (I): For I=\Phi, \bigcup_{i\in I} \mathcal{B}_i = \Phi_{\mathcal{A}}
          L.H.S: (\Phi_{\mathcal{A}})^{\mathcal{C}_{\mathcal{A}}} = \mathcal{A} and R.H.S: \bigcap_{i \in I} \mathcal{B}_i^{\mathcal{C}_{\mathcal{A}}} = \mathcal{A}
          Hence Fs- De Morgan law holds for I=\Phi.
For I \neq \Phi, first we prove that existence of \bigcap_{i \in I} \mathcal{B}_i^{\mathcal{C}_{\mathcal{A}}}
Let \mathcal{B}_{i}^{\mathcal{C}_{\mathcal{A}}} = \mathcal{D}_{i} = (D_{1i}, D_{i}, \overline{D}_{i}(\mu_{1D_{1i}}, \mu_{2D_{i}}), L_{D_{i}}), where
         (1) D_{1i} = C_A B_{1i} = B_{1i}^c \cup A, D_i = B_i = A
         (2) L_{D_i} = L_{B_i} = L_A
         (3) \mu_{1D_{1i}}x = M_A, for each x \in D_{1i}
                  \mu_{2D_i}x = \overline{B}_ix, for each x \in D_i = A
                  \overline{D}x = \mu_{1D_1i}x \wedge (\mu_{2D_i}x)^c = M_A \wedge (\overline{B}_ix)^c =
                  (\overline{B}_i x)^c, for each x \in D_i = A
Let \bigcap_{i \in I} \mathcal{B}_i^{\mathcal{C}_{\mathcal{A}}} = \bigcap_{i \in I} \mathcal{D}_i = \mathcal{D} = (D_1, D, \overline{D}(\mu_{1D_1}, \mu_{2D}), L_D),
         (4) D_1 = \bigcap_{i \in I} D_{1i} = \bigcap_{i \in I} (B_{1i}^c \cup A) = (\bigcap_{i \in I} B_{1i}^c) \cup A
                  A, D = D_i = A
         (5) L_D = \bigwedge_{i \in I} L_{D_i} = L_A
         (6) \mu_{1D_1}: D_1 \longrightarrow L_A is given by \mu_{1D_1}x = \bigwedge_{i \in I} \mu_{1D_{1i}}x =
                  \mu_{2D}: D \rightarrow L_A is gi ven by \mu_{2D}x = \bigvee_{i \in I} \mu_{2D_i}x =
                  \bigvee_{i \in I} \overline{B}_i x
                  \overline{D}x: D \longrightarrow L_A is given by \overline{D}x = \mu_{1D_1}x \wedge (\mu_{2D}x)^c =
                  M_A \wedge (\bigvee_{i \in I} \overline{B}_i x)^c = (\bigvee_{i \in I} \overline{B}_i x)^c = \bigwedge_{i \in I} (\overline{B}_i x)^c
 D_1 = (\bigcap_{i \in I} B_{1i})^c \cup A \supseteq D = A \text{ follows from (4)} and
 \mu_{1D_1}x = M_A \ge \mu_{2D}x = \bigvee_{i \in I} \overline{B}_i x follows from (6)
                  This shows the existence of \bigcap_{i \in I} \mathcal{B}_i^{\mathcal{C}_{\mathcal{A}}}
                                      \mathcal{B}_i \subseteq \bigcup_{i \in I} \mathcal{B}_i \Rightarrow (\mathcal{B}_i)^{\mathcal{C}_{\mathcal{A}}} \supseteq (\bigcup_{i \in I} \mathcal{B}_i)^{\mathcal{C}_{\mathcal{A}}} \Rightarrow
Sufficient to show that \bigcap_{i \in I} (\mathcal{B}_i)^{c_{\mathcal{A}}} \subseteq (\bigcup_{i \in I} \mathcal{B}_i)^{c_{\mathcal{A}}}
Let \bigcup_{i \in I} \mathcal{B}_i = \mathcal{B} = (B_1, B, \overline{B}(\mu_{1B_1}, \mu_{2B}), \square_B), where
         (6) B_1 = \bigcup_{i \in I} B_{1i}, B = \bigcap_{i \in I} B_i = A
         (7) L_B = \bigvee_{i \in I} L_{B_i} = L_A
         (8) \mu_{1B_1}: B_1 \to L_B is given by \mu_{1B_1}x = (\bigvee_{i \in I} \mu_{1B_{1i}})x
                    \mu_{2B}: B \to L_B is d efine by \mu_{2B}x = (\bigwedge_{i \in I} \mu_{2B_i})x
                   = \bigwedge_{i \in I} \mu_{2B_i} x
                      \overline{B}: B \longrightarrow L_B is define by, \overline{B}x = \mu_{1B_1}x \wedge (\mu_{2B}x)^c
                    =(\bigvee_{i\in I}\mu_{1B_{1i}})x\wedge(\bigwedge_{i\in I}\mu_{2B_{i}}x)^{c}
                     = \bigvee_{i \in I} \mu_{1B_{1i}} x \wedge \left[ \bigvee_{i \in I} (\mu_{2B_i} x)^c \right]
Let (\bigcup_{i \in I} \mathcal{B}_i)^{C_{\mathcal{A}}} = E = (E_1, E, \overline{E}(\mu_{1E_1}, \mu_{2E}), L_E), where
                        E_1 = C_A B_1 = C_A \bigcup_{i \in I} B_{1i} = (\bigcup_{i \in I} B_{1i})^c \cup
                        A = (\bigcap_{i \in I} B_{1i}^c) \cup A, \ E = B = A
         (10) \quad L_E = L_B = L_A
         (11) \mu_{1E_1} x = M_A, for each x \in E_1
                         \mu_{2E}x = \overline{B}x, for each x \in A
                          \overline{E}x = \mu_{1E_1}x \wedge (\mu_{2E}x)^c, for each x \in A
                                  =M_A \wedge (\overline{B}x)^c
                                  =(\overline{B}x)^c
                                  = \left[ \bigvee_{i \in I} \mu_{1B_{1i}} x \wedge \left[ \bigvee_{i \in I} (\mu_{2B_{1i}} x)^c \right] \right]^c
                                   = \bigwedge_{i \in I} (\mu_{1B_1i} x)^c \vee \left[ \bigwedge_{i \in I} \mu_{2B_i} x \right]
```

$$= \bigwedge_{i \in I} \left[\left(\mu_{1B_{1i}} x \right)^{c} \vee \mu_{2B_{i}} x \right] \wedge \left[\bigwedge_{\substack{i,j \in I \\ i \neq j}} \left(\mu_{1B_{1i}} x \right)^{c} \vee \mu_{2B_{i}} x \right]$$

$$= \bigwedge_{i \in I} \left[\mu_{1B_{1i}} x \wedge \left(\mu_{2B_{i}} x \right)^{c} \right] \wedge \left[\bigwedge_{\substack{i,j \in I \\ i \neq j}} \left(\mu_{1B_{1i}} x \right)^{c} \vee \mu_{2B_{j}} x \right]$$

$$= \bigwedge_{i \in I} \left[\overline{B}_{i} x \right]^{c} = \overline{D} x$$

$$= \bigwedge_{i \in I} \left[\overline{B}_{i} x \right]^{c} \in \overline{D} x$$

Needs to show $\mathcal{D}\subseteq\mathcal{E}$

- (13) $D_1 \subseteq E_1, D \supseteq E$
- $(14) L_D \le L_E$
- $(15)(\mu_{1D_1}x \le \mu_{1E_1}x, \text{ for each } x \in D_1, \mu_{2D}x \ge \mu_{2E}x, \text{ for each } x \in E) \text{ or } \overline{D}x \le \overline{E}x$
- (13) follow from (4) and (10)
- (14) follow from (5) and (11)
- (15) follow from (6) and (12)

Hence
$$\bigcap_{i \in I} (\mathcal{B}_i)^{\mathcal{C}_{\mathcal{A}}} \subseteq (\bigcup_{i \in I} \mathcal{B}_i)^{\mathcal{C}_{\mathcal{A}}}$$
(ii)

Hence $\bigcap_{i \in I} (\mathcal{B}_i)^{\mathcal{C}_{\mathcal{A}}} = (\bigcup_{i \in I} \mathcal{B}_i)^{\mathcal{C}_{\mathcal{A}}}$

Proof (II): For $I=\Phi, \bigcap_{i\in I} \mathcal{B}_i = \mathcal{A}$

L.H.S:
$$(\bigcap_{i \in I} \mathcal{B}_i)^{c_{\mathcal{A}}} = (\mathcal{A})^{c_{\mathcal{A}}} = \Phi_{\mathcal{A}}$$

R.H.S: $\bigcup_{i \in I} \mathcal{B}_i^{C_{\mathcal{A}}} = \Phi_{\mathcal{A}}$

Hence De-Morgan's law holds for $I=\Phi$ For $I\neq\Phi$,

Let
$$\mathcal{B}_i^{\mathcal{C}_{\mathcal{A}}} = \mathcal{D}_i = (D_{1i}, D_i, \overline{D}_i(\mu_{1D_{1i}}, \mu_{2D_i}), L_{D_i})$$
, where

- (1) $D_{1i} = C_A B_{1i} = B_{1i}^c \cup A, D_i = B_i = A$
- $(2) \quad L_{D_i} = L_{B_i} = L_A$
- (3) $\mu_{1D_{1i}}x = M_A$, for each $x \in D_{1i}$ $\mu_{2D_i}x = \overline{B}_ix$, for each $x \in D_i = A$ $\overline{D}x = \mu_{1D_{1i}}x \wedge (\mu_{2D_i}x)^c = M_A \wedge (\overline{B}_ix)^c = (\overline{B}_ix)^c$, for each $x \in D_i = A$

Let $\bigcup_{i \in I} \mathcal{B}_i^{\mathcal{C}_{\mathcal{A}}} = \bigcup_{i \in I} \mathcal{D}_i = \mathcal{F} = (F_1, F, \overline{F}(\mu_{1F_1}, \mu_{2F}), L_F),$ where

- (4) $F_1 = \bigcup_{i \in I} D_{1i} = \bigcup_{i \in I} (B_{1i}^c \cup A) = (\bigcup_{i \in I} B_{1i}^c) \cup A, F = \bigcap_{i \in I} D_i = A$
- $(5) L_F = \bigvee_{i \in I} L_{D_i} = L_A$
- (6) $\mu_{1F_1}: F_1 \to L_A$ is given by $\mu_{1F_1}x = (\bigvee_{i \in I} \mu_{1D_{1i}})x$, $\mu_{2F}: F \to L_A$ is given by $\mu_{2F}x = \bigwedge_{i \in I} \mu_{2D_i}x = \bigwedge_{i \in I} \overline{B}_i x$ $\overline{F}x: F \to L_A$ is given by $\overline{F}x = \mu_{1F_1}x \wedge (\mu_{2F}x)^c$ $= (\bigvee_{i \in I} \mu_{1D_{1i}})x \wedge (\bigwedge_{i \in I} \mu_{2D_i}x)^c = \bigvee_{i \in I} \mu_{1D_{1i}}x \wedge (\bigwedge_{i \in I} \mu_{2D_i}x)^c$ (\because for each $x \in F = A$) $= M_A \wedge (\bigwedge_{i \in I} \overline{B}_i x)^c = (\bigwedge_{i \in I} \overline{B}_i x)^c = \bigvee_{i \in I} (\overline{B}_i x)^c$

Now

Sufficient to show $(\bigcap_{i \in I} \mathcal{B}_i)^{c_{\mathcal{A}}} \subseteq \bigcup_{i \in I} \mathcal{B}_i^{c_{\mathcal{A}}}$

 $\bigcap_{i\in I}\mathcal{B}_i=\mathcal{C}=\left(\mathcal{C}_1,\mathcal{C},\bar{\mathcal{C}}\left(\mu_{1\mathcal{C}_1},\mu_{2\mathcal{C}}\right),L_{\mathcal{C}}\right)$, where

- (7) $C_1 = \bigcap_{i \in I} B_{1i}$, $C = \bigcup_{i \in I} B_i = A$
- $(8) L_i = \bigwedge_{i \in I} L_{B_i} = L_A$
- (9) $\mu_{1C_1} : C_1 \longrightarrow L_C$ is given by, $\mu_{1C_1} x = \left(\bigwedge_{i \in I} \mu_{1B_{1i}} \right) x$ $= \bigwedge_{i \in I} \mu_{1B_{1i}} x$ $\mu_{2C} : C \longrightarrow L_C$ is given by $\mu_{2C} x = \bigvee_{i \in I} \mu_{2B_i} x$ $\bar{C} : C \longrightarrow L_C$ is given by $\bar{C} x = \mu_{1C_1} x \bigwedge (\mu_{2C} x)^c$ $= \bigwedge_{i \in I} \mu_{1B_{1i}} x \bigwedge \left(\bigvee_{i \in I} \mu_{2B_i} x \right)^c$ $= \bigwedge_{i \in I} \left[\mu_{1B_{1i}} x \bigwedge \left(\bigwedge_{i \in I} \left(\mu_{2B_i} x \right)^c \right) \right]$ $= \bigwedge_{i \in I} \left[\mu_{1B_{1i}} x \bigwedge \left(\mu_{2B_i} x \right)^c \right]$ $= \bigwedge_{i \in I} \left[\bar{B}_i x \right]$

Let $(\bigcap_{i\in I}\mathcal{B}_i)^{C_{\mathcal{A}}}=\mathcal{G}=(G_1,G,\bar{G}(\mu_{1G_1},\mu_{2G}),L_G)$, where

- (10) $G_1 = C_A C_1 = C_A (\bigcap_{i \in I} B_{1i}) = (\bigcap_{i \in I} B_{1i})^c \cup A = (\bigcup_{i \in I} B_{1i}^c) \cup A, G = C = A$
- $(11) \quad L_G = L_C = L_A$
- (12) $\mu_{1G_1}x = M_A$, for each $x \in G_1$ $\mu_{2G}x = \overline{C}x$, for each $x \in A$ $\overline{G}x = \mu_{1G_1}x \wedge (\mu_{2G}x)^c$, for each $x \in A$ $=M_A \wedge (\overline{C}x)^c = (\overline{C}x)^c = (\Lambda_{i \in I}(\overline{B}_ix))^c = \bigvee_{i \in I}(\overline{B}_ix)^c$

Needs to show $G \subseteq \mathcal{F}$

- (13) $G_1 \subseteq F_1, G \supseteq F$
- $(14) \quad L_G \le L_F$
- (15) $\left(\mu_{1G_1}x \le \mu_{1F_1}x, \text{ for each } x \in G_1, \mu_{2G}x \ge \mu_{2F}x, \text{ for each } x \in F\right) \text{ or } \overline{G}x \le \overline{F}x$

Hence

- (13) follow from (4) and (10)
- (14) follow from (5) and (11)
- (15) follow from (6) and (12)

Hence $\bigcap_{i \in I} (\mathcal{B}_i)^{\mathcal{C}_{\mathcal{A}}} \subseteq (\bigcup_{i \in I} \mathcal{B}_i)^{\mathcal{C}_{\mathcal{A}}}$(iv)

 $\bigcap_{i \in I} (\mathcal{B}_i)^{C_{\mathcal{A}}} = (\bigcup_{i \in I} \mathcal{B}_i)^{C_{\mathcal{A}}} \text{ follow from (iii) and (iv)}$

V. ACKNOWLEDGEMENT

The first author de eply acknowledges Nistala V.E.S. Murthy[1] for allowing him to pass through all results of [1] when they were in preparation state and GITAM University Management, Visakhapatnam, A.P-India for providing facilities to do research.

VI. REFERENCES

- [1] Nistala V.E.S. Murthy, Is the Axiom of Choice True for Fuzzy Sets?, Journal of Fuzzy Mathematics, Vol 5(3),P495-523, 1997, U.S.A.
- [2] Goguen J.A., L-Fuzzy S ets, Journal of Mathematical Analysis and Applications, Vol. 18, P145-174, 1967
- [3] Tridiv J yoti N eog a nd Dusmanta K umar S ut , Complement of an Extended Fuzzy S et, International Journal of C omputer A pplications (0975 – 8887), Volume 29–No.3, September 2011
- [4] Tridiv J yoti N eog a nd D usmanta K umar Sut, An Extended Approach to Generalized F uzzy Soft S ets, International J ournal of E nergy, I nformation and Communications Vol. 3, Issue 2, May, 2012
- [5] Steven Givant Paul Halmos, Introduction to Boolean algebras, Springer
- [6] Szasz, G., An Introduction to Lattice Theory, Academic Press, New York.
- [7] Garret B irkhoff, Lattice T heory, American Mathematical S ociety Colloquium p ublications Volume-xxv
- [8] Thomas J ech, Set T heory, The Third Millennium Edition revised and expanded, Springer
- [9] George J. Klir and Bo Yuan ,Fuzzy Sets, Fuzzy Logic, and Fuzzy Systems: Selected Papers by Lotfi A. Zadeh ,Advances in Fuzzy Systems-Applications and Theory Vol-6,World Scientific
- [10] James D ugundji, T opology, U niversal B ook Stall,
- [11] Nistala V.E.S Murthy and Vaddiparthi Yogeswara, A Representation Theorem for Fuzzy Subsystems of A

Fuzzy P artial A lgebra, F uzzy S ets a nd S ystem, V ol 104,P359-371,1999,HOLLAND.

[12] Zadeh, L., Fuzzy S ets, I nformation a nd C ontrol, Vol.8,P338-353,1965