
Volume 4, No. 3, March 2013 (Special Issue)

International Journal of Advanced Research in Computer Science

RESEARCH PAPER

Available Online at www.ijarcs.info

© 2010, IJARCS All Rights Reserved 151 CONFERENCE PAPER II International Conference on
“Advance Computing and Creating Entrepreneurs (ACCE2013)”

On 19-20 Feb 2013
Organized by

2nd SIG-WNs, Div IV & Udaipur Chapter , CSI , IEEE Computer Society Chapter India Council ,
IEEE Student Chapter Geetanjali Institute of Technical Studies, Udaipur, Rajasthan, India

Generate classifier for Genetic Programming of Multicategory Pattern
Classification Using Multiclass Microarray Datasets

Anwar Mohd Mansuri, Scholar
Department of Information Technology, MIT

Ujjain, India
anwar.iter@gmail.com

Deepali Kelkar, Reader
Department of Information Technology, MIT

Ujjain, India
bdeepali_b@yahoo.co.in

Abstract: In this paper a multiclass classification problem solving technique based on genetic programming is presented. This paper
explores the feasibility of applying genetic programming (GP) to multicategory pattern classification.GP can discover relationships
among observed data and express them mathematically Feature selection approaches have been widely applied to deal with the small
sample size problem in the analysis of microarray datasets. Multiclass problem, the proposed methods are based on the idea of
selecting a gene subset to distinguish all classes. However, it will be more effective to solve a multiclass problem by splitting it into a
set of two- class problems and solving each problem with a respective classification system, Data mining deals with the problem of
discovering novel and interesting knowledge from large amount of data. The results obtained show that by applying Modified
crossover together with Point Mutation improves the performance of the classifier. A comparison with the results achieved by other
techniques on a classical benchmark set is carried out.

Keywords: Microarray; Classifier; Genetic Programming; Mutation, Crossover

I. INTRODAUCTION

Data classification represents perhaps the most
commonly applied supervised data mining technique. It
consists in generating from a set of class-labeled training
examples a set of grouping rules which can be used to
classify future patterns. There are many methods used to
face the classification task. They include decision-tree
methods which operate performing a successive
partitioning of cases until all subsets belong to a single
class. The classification problem becomes very hard
when the number of possible different combinations of
parameters is high.Hense we used Different Operators
for solving different operators for solve the problem.
Genetic programming (GP) is an automated method for
creating a working computer program from a high-level
problem statement of a problem. Genetic programming
starts from a high-level statement of “what needs to be
done” and automatically creates a computer program to
solve the problem.

II. GENETIC PROGRAMMING

In artificial intelligence genetic programming (GP) is an
evaluation algorithm based methodology inspired by
biological evolution to find computer programs that
perform a user-defined task. It is a specialization of
Genetic Algorithm (GA) where each individual is a
computer program. It is a machine learning technique
used to optimize a population of computer programs
according to a fitness landscape determined by a
program's ability to perform a given computational task.
One of the central challenges of computer science is to
get a computer to do what needs to be done, without
telling it how to do it. Genetic programming addresses
this challenge by providing a method for automatically
creating a working computer program from a high-level
problem statement of the problem. Genetic

programming achieves this goal of automatic
programming (also sometimes called program synthesis
or program induction) by genetically breeding a
population of computer programs using the principles of
Darwinian natural selection and biologically inspired
operations. The operations include reproduction,
crossover mutation, and architecture-altering operations
patterned after gene duplication and gene deletion in
nature. Genetic programming is a domain-independent
method
That genetically breeds a population of computer
programs to solve a problem. Specifically, genetic
programming iteratively transforms a population of
computer programs into a new generation of programs
by applying analogs of naturally occurring genetic
operations. The genetic operations include crossover,
mutation, reproduction, gene duplication, and gene
deletion.

III. PROPOSED WORK

In this paper we have designed a Multiclass Classifier
using different Operations.

A. How Genetic Programming Work:

Genetic programming starts with a primordial ooze of
thousands of randomly created computer programs.
This population of programs is progressively evolved
over a series of generations. The evolutionary search
uses the Darwinian principle of natural selection
(survival of the fittest) and analogs of various naturally
occurring operations, including crossover, mutation,
gene duplication, gene deletion. Genetic programming
sometimes also employs developmental processes by
which an embryo grows into fully developed organism.

B. Executional Steps of Genetic Programming:

Genetic programming typically starts with a population
of randomly generated computer programs composed of

Anwar Mohd Mansuri, et al, International Journal of Advanced Research in Computer Science, 4 (3) Special Issue, March 2013, 151-154

© 2010, IJARCS All Rights Reserved 152 CONFERENCE PAPER II International Conference on
“Advance Computing and Creating Entrepreneurs (ACCE2013)”

On 19-20 Feb 2013
Organized by

2nd SIG-WNs, Div IV & Udaipur Chapter , CSI , IEEE Computer Society Chapter India Council ,
IEEE Student Chapter Geetanjali Institute of Technical Studies, Udaipur, Rajasthan, India

the available programmatic ingredients. Genetic
programming iteratively transforms a population of
computer programs into a new generation of the
population by applying analogs of naturally occurring
genetic operations. These operations are applied to
individual(s) selected from the population. The
individuals are probabilistically selected to participate
in the genetic operations based on their fitness (as
measured by the fitness measure provided by the human
user in the third preparatory step). The iterative
transformation of the population is executed inside the
main generational loop of the run of genetic
programming. The exceptional steps of genetic
programming (that is, the flowchart of genetic
programming) are as follows:
a. Randomly create an initial population (generation

0) of individual computer programs composed of
the available functions and terminals.

b. Iteratively perform the following sub-steps (called
a generation) on the population until the
termination criterion is satisfied:

c. Execute each program in the population and
ascertain its fitness (explicitly or implicitly) using
the problem’s fitness measure.

d. Select one or two individual program from the
population with a probability based on fitness
(with reselection allowed) to participate in the
genetic operations.

e. Create new individual program for the population
by applying the following genetic operations with
specified probabilities:

f. Reproduction: Copy the selected individual
program to the new population.

g. Crossover: Create new offspring program for the
new population by recombining randomly chosen
parts from two selected programs.

h. Mutation: Create one new offspring program for
the new population by randomly mutating a
randomly chosen part of one selected program.

i. Architecture-altering operations: Choose an
architecture-altering operation from the available
repertoire of such operations and create one new
offspring program for the new population by
applying the chosen architecture-altering operation
to one selected program.

j. After the termination criterion is satisfied, the
single best program in the population produced
during the run (the best-so-far individual) is
harvested and designated as the result of the run. If
the run is successful, the result may be a solution
(or approximate solution) to the problem.

IV. FLOWCHART OF GENETIC

PROGRAMMING

The figure below is a flowchart showing the exceptional
steps of a run of genetic programming. The flowchart
shows the genetic operations of crossover, reproduction,
and mutation as well as the architecture-altering
operations. This flowchart shows a two-offspring
version of the crossover operation. Genetic
programming starts with an initial population of
computer programs composed of functions and terminals
appropriate to the problem. The individual programs in
the initial population are typically generated by

recursively generating a rooted point-labeled program
tree composed of random choices of the primitive
functions and terminals.

Figure.1.Flow Chart of Genetic Programming

A. Mutation Operation:

In the mutation operation, a single parental program is
probabilistically selected from the population based on
fitness. A mutation point is randomly chosen, the sub
tree rooted at that point is deleted, and a new sub tree is
grown there using the same random growth process that
was used to generate the initial population. This
mutation operation is typically performed sparingly
(with a low probability of, say, 1% during each
generation of the run).

Figure.2.Tree mutation in genetic programming.

We used Point Mutation technique for mutation, Point
Mutation is a special technique in which we randomly
selected an individual from the population and from this
randomly selected individual we generate the two
children. From this two generated children one is
rejected on the basis of fitness the children with the
lower fitness is rejected now we compare the selected
individual with the parent and compare its fitness with
the parent if the fitness of parent is better than the child
than with a probability of 0.5 parent is transferred to the
next generation otherwise children is transferred to the
next generation. By applying this special mutation
technique we are sure that the generated individual does

Anwar Mohd Mansuri, et al, International Journal of Advanced Research in Computer Science, 4 (3) Special Issue, March 2013, 151-154

© 2010, IJARCS All Rights Reserved 153 CONFERENCE PAPER II International Conference on
“Advance Computing and Creating Entrepreneurs (ACCE2013)”

On 19-20 Feb 2013
Organized by

2nd SIG-WNs, Div IV & Udaipur Chapter , CSI , IEEE Computer Society Chapter India Council ,
IEEE Student Chapter Geetanjali Institute of Technical Studies, Udaipur, Rajasthan, India

not reduce the fitness and also provide the diversity
among the individuals

B. Crossover Operation:

In the crossover, operation, two parental programs are
probabilistically selected from the population based on
fitness. The two parents participating in crossover are
usually of different sizes and shapes. A crossover point
is randomly chosen in the first parent and a crossover
point is randomly chosen in the second parent. Then the
sub tree rooted at the crossover point of the first, or
receiving, parent is deleted and replaced by the sub tree
from the second, or contributing, parent. Now apply the
elitism on the generated children and compare the
fitness of the children with the parent if the fitness of
the parent is greater than the children than with the
probability of 0.25 parent is transferred to the next
generation otherwise children is transferred to the next
generation.

Figure.3.Tree crossovers in genetic programming.

C. Reproduction Operation:

The reproduction operation copies a single individual,
probabilistically selected based on fitness, into the next
generation of the population..

a. Use either SI (MKS) or CGS as primary units.
(SI units are encouraged.) English units may be
used as secondary units (in parentheses).

V. CO EVOLUTIONARY GENETIC

ALGORITHM

Step 1. Begin
Step 2. Define pop-size as desired population size
Step 3. Randomly initialize pop-size population
Step 4. While (Ideal best found or certain number of
generations met)
Evaluate fitness
While (number of children=population size)
Select parents
Apply evolutionary operators to create children
End while
Step 5. End While
Step 6. Return Best solution
Step 7. End

VI. EVALUATION AND RESULTS

We have designed a Multiclass Classifier to
demonstrate our results. We have used Java 6.0 as a
front end tool and Sql as a back end tool to develop our
project. We have used 3 real data sets for training and

validating our methodology. These are Car Evaluation,
Breast Cancer, and University. Table I gives a brief
description about all the data sets used.

Table 1. Datasets

No. of
Datasets

Number of
Instances:

Number of
Attributes:

Car Evaluation 1728 6

Breast Cancer 286 9

University 285 17

A. Parameters:

These are some parameter for different operations.

Table 2. Describes the common parameters used for all the data sets

Parameters Values

Probability of Crossover Operation 80-90%

Probability of Reproduction Operation 15%

Probability of Mutation Operation 20-25%

Population Size 150-500

Minimum Tree Depth 3

Maximum Tree Depth 5

Number of Generations 25-60

Table 3. Experimentation Performed on Different Dataset by varying
the number of training samples

Sr.No. Training
Error

Testing
error

Generalization
Error

1 3.7896 3.564 3.569

2 4.2345 3.456 2.265

3 4.5689 3.325 2.554

4 5.1234 3.112 2.545

5 5.2685 3.110 1.987

Figure.4. Numbers of training, Testing, Generalization error

Anwar Mohd Mansuri, et al, International Journal of Advanced Research in Computer Science, 4 (3) Special Issue, March 2013, 151-154

© 2010, IJARCS All Rights Reserved 154 CONFERENCE PAPER II International Conference on
“Advance Computing and Creating Entrepreneurs (ACCE2013)”

On 19-20 Feb 2013
Organized by

2nd SIG-WNs, Div IV & Udaipur Chapter , CSI , IEEE Computer Society Chapter India Council ,
IEEE Student Chapter Geetanjali Institute of Technical Studies, Udaipur, Rajasthan, India

0

1

2

3

4

5

6

100 200 300 400

Training
Error

Generalizat
ion Error

Testing
Error

Figure.5. Numbers of training samples versus percentage error

VII. CONCLUSIONS AND FUTURE WORKS

In this paper we have presented a GP Design for
explicit rule extraction. The system has been tested on
publicly available databases. We have compared our
system with neural network-based approaches and with
other GP-based techniques. Experimental results have
demonstrated the effectiveness of the approach
proposed in providing the user with compact and
comprehensible classification rules, and its robustness
in terms of low standard deviation. Future work will
include the application of the system proposed to other
real-world datasets in order to further validate the
promising results reported in the present paper, as for
example in computational archaeology. Moreover,
another interesting task to face will be the unsupervised
data mining in which the goal is to discover rules that
predict a value of a goal attribute which, unlike
classification, is not chosen a priori.

VIII. REFERENCE

[1] Peter A. Whig ham, Member IEEE, and Grant
Dick, Member IEEE, “Implicitly Controlling
Bloat in Genetic Programming,” IEEE
Transactions on Evolutionary Computation, Vol.
14, No. 2, APRIL 2010.

[2] W. B. Langdon and R. Poli, “Fitness causes
bloat: Mutation, “in Proc.Theory Application
Evolutionary Comput. (ET’97), London, U.K.:
University College London, 1997, pp. 59–77.

[3] W. Banzhaf and W. Langdon, “Some
considerations on the reason for bloat, ”Genetic,
Programming Evolvable Mach., vol. 3, no. 1, pp.
81–91, 2002.

[4] R. Poli, “A simple but theoretically- motivated
method to control bloat in genetic
programming,” in Proc. Genetic Programming
(EuroGP ’03) vol. 2610. Essex: Springer-Verlag,
Apr. 14–16, 2003, pp. 204– 217.

[5] H. Stringer and A. Wu, “Bloat is unnatural: An
analysis of changes invariable chromosome
length absent selection pressure,”

[6] University of Central Florida, Tech. Rep. CS-
TR-04-01, 2004.

[7] H. Stringer and A. Wu, “Winnowing wheat from
chaff: The chunking GA,” in Proc. Genet. Evol.
Comput. (GECCO’ 04) Part II, vol.

[8] 3103. Seattle, WA: Springer-Verlag, Jun. 26–30,
2004, pp. 198-209.

[9] C. Skinner, P. J. Riddle, and C.
Triggs,“Mathematics prevents bloat,” in Proc.
2005 IEEE Congr. Evol. Comput. vol. 1.
Edinburgh, U.K.: IEEE Press, Sep.2–5, 2005, pp.
390–395.

[10] S.Bleuler,M.Brack,L.Thiele,andE.Zitzler,
“Multiobjective Genetic Programming:
Reducing bloat using SPEA2,” in Proc. 2001
Congr .Evol. Comput. (CEC ’01), Piscataway,
NJ: IEEE Press, 2001, pp.536–543.

[11] Chaudhari, N.S., Purohit, A., Tiwari, A, “A
multiclass classifier using Genetic
Programming” Control, Automation, Robotics
and Vision, ICARCV 2008.10th International
Conference [1] Peter A. Whig ham, Member
IEEE, and Grant Dick, Member IEEE,
“Implicitly Controlling Bloat in Genetic
Programming,”IEEE Transactions on
Evolutionary Computation, Vol. 14, No. 2,
APRIL 2010.

[12] D J Nagendra Kumar, Suresh Chandra
Satapathy, J V R Murthy “a scalable genetic
programming multi-class ensemble classifier”

[13] World Congress on Nature Biologically Inspired
Computing NaBIC 2009 (2009).

[14] D.Agnelli, A. Bollini, and L. Lombardi, “Image
classification: an evolutionary approach,” Pattern
Recognit. Lett., vol.23,pp. 303–309, 2002.

[15] S. Hettich and S. D. Bay. The UCI KDD Archive
[http://kdd/ics/uci/edu]. Irvine, CA: University
of California, Dept. of Information and Comp.
Science, 1999.

[16] E. Bernado-Mansilla and J. M. Garrell-Guiu.
Accuracy-based learning classifier systems:
Models, analysis and applications to
classification tasks. Evolutionary Computation,
11(3):209– 238, 2003.

[17] M. Brameier and W. Banzhaf. Evolving teams of
predictors with linear genetic programming.
Genetic Programming and Evolvable Machines,
2(4):381–407, 2001.

[18] M. Brameier and W. Banzhaf. Linear Genetic
Programming. Springer, Genetic and
Evolutionary Computation Series, 2007.

[19] E. D. De Jong and J. B. Pollack. Ideal evaluation
from coevolution. Evolutionary Computation,
12:159–192, 2004.

[20] C. Elkan. Results of the KDD’99 classifier
learning. SIGKDD Explorations, 1(2):63–64,
2000.

[21] S. G. Ficici and J. B. Pollack. Pareto optimality
in coevolutionary learning. In Proceedings of the
6th European Conference on Advances in
Artificial Life, pages 316–325, 2001.

