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Abstract: In this paper a multiclass classification problem solving technique based on genetic programming is presented. This paper 
explores the feasibility of applying genetic programming (GP) to multicategory pattern classification.GP can discover relationships 
among observed data and express them mathematically Feature selection approaches have been widely applied to deal with the small 
sample size problem in the analysis of microarray datasets. Multiclass problem, the proposed methods are based on the idea of 
selecting a gene subset to distinguish all classes. However, it will be more effective to solve a multiclass problem by splitting it into a 
set of two- class problems and solving each problem with a respective classification system, Data mining deals with the problem of 
discovering novel and interesting knowledge from large amount of data. The results obtained show that by applying Modified 
crossover together with Point Mutation improves the performance of the classifier. A comparison with the results achieved by other 
techniques on a classical benchmark set is carried out. 
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I. INTRODAUCTION 

Data classification represents perhaps the most 
commonly applied supervised data mining technique. It 
consists in generating from a set of class-labeled training 
examples a set of grouping rules which can be used to 
classify future patterns. There are many methods used to 
face the classification task. They include decision-tree 
methods which operate performing a successive 
partitioning of cases until all subsets belong to a single 
class. The classification problem becomes very hard 
when the number of possible different combinations of 
parameters is high.Hense we used Different Operators 
for solving different operators for solve the problem. 
Genetic programming (GP) is an automated method for 
creating a working computer program from a high-level 
problem statement of a problem. Genetic programming 
starts from a high-level statement of “what needs to be 
done” and automatically creates a computer program to 
solve the problem. 

II. GENETIC PROGRAMMING 

In artificial intelligence genetic programming (GP) is an 
evaluation algorithm based methodology inspired by 
biological evolution to find computer programs that 
perform a user-defined task. It is a specialization of 
Genetic Algorithm (GA) where each individual is a 
computer program. It is a machine learning technique 
used to optimize a population of computer programs 
according to a fitness landscape determined by a 
program's ability to perform a given computational task. 
One of the central challenges of computer science is to 
get a computer to do what needs to be done, without 
telling it how to do it. Genetic programming addresses 
this challenge by providing a method for automatically 
creating a working computer program from a high-level 
problem statement of the problem. Genetic 

programming achieves this goal of automatic 
programming (also sometimes called program synthesis 
or program induction) by genetically breeding a 
population of computer programs using the principles of 
Darwinian natural selection and biologically inspired 
operations. The operations include reproduction, 
crossover mutation, and architecture-altering operations 
patterned after gene duplication and gene deletion in 
nature. Genetic programming is a domain-independent 
method  
That genetically breeds a population of computer 
programs to solve a problem. Specifically, genetic 
programming iteratively transforms a population of 
computer programs into a new generation of programs 
by applying analogs of naturally occurring genetic 
operations. The genetic operations include crossover, 
mutation, reproduction, gene duplication, and gene 
deletion. 

III. PROPOSED WORK 

In this paper we have designed a Multiclass Classifier 
using different Operations. 

A.  How Genetic Programming Work: 

Genetic programming starts with a primordial ooze of 
thousands of randomly created computer programs. 
This population of programs is progressively evolved 
over a series of generations. The evolutionary search 
uses the Darwinian principle of natural selection 
(survival of the fittest) and analogs of various naturally 
occurring operations, including crossover, mutation, 
gene duplication, gene deletion. Genetic programming 
sometimes also employs developmental processes by 
which an embryo grows into fully developed organism. 

B.  Executional Steps of Genetic Programming: 

Genetic programming typically starts with a population 
of randomly generated computer programs composed of 
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the available programmatic ingredients. Genetic 
programming iteratively transforms a population of 
computer programs into a new generation of the 
population by applying analogs of naturally occurring 
genetic operations. These operations are applied to 
individual(s) selected from the population. The 
individuals are probabilistically selected to participate 
in the genetic operations based on their fitness (as 
measured by the fitness measure provided by the human 
user in the third preparatory step). The iterative 
transformation of the population is executed inside the 
main generational loop of the run of genetic 
programming. The exceptional steps of genetic 
programming (that is, the flowchart of genetic 
programming) are as follows: 
a. Randomly create an initial population (generation 

0) of individual computer programs composed of 
the available functions and terminals.  

b. Iteratively perform the following sub-steps (called 
a generation) on the population until the 
termination criterion is satisfied:  

c. Execute each program in the population and 
ascertain its fitness (explicitly or implicitly) using 
the problem’s fitness measure.  

d. Select one or two individual program from the 
population with a probability based on fitness 
(with reselection allowed) to participate in the 
genetic operations. 

e. Create new individual program for the population 
by applying the following genetic operations with 
specified probabilities: 

f.  Reproduction: Copy the selected individual 
program to the new population. 

g. Crossover: Create new offspring program for the 
new population by recombining randomly chosen 
parts from two selected programs. 

h.  Mutation: Create one new offspring program for 
the new population by randomly mutating a 
randomly chosen part of one selected program.  

i. Architecture-altering operations: Choose an 
architecture-altering operation from the available 
repertoire of such operations and create one new 
offspring program for the new population by 
applying the chosen architecture-altering operation 
to one selected program.  

j.  After the termination criterion is satisfied, the 
single best program in the population produced 
during the run (the best-so-far individual) is 
harvested and designated as the result of the run. If 
the run is successful, the result may be a solution 
(or approximate solution) to the problem. 

IV. FLOWCHART OF GENETIC 

PROGRAMMING 

The figure below is a flowchart showing the exceptional 
steps of a run of genetic programming. The flowchart 
shows the genetic operations of crossover, reproduction, 
and mutation as well as the architecture-altering 
operations. This flowchart shows a two-offspring 
version of the crossover operation. Genetic 
programming starts with an initial population of 
computer programs composed of functions and terminals 
appropriate to the problem. The individual programs in 
the initial population are typically generated by 

recursively generating a rooted point-labeled program 
tree composed of random choices of the primitive 
functions and terminals. 

 

 
Figure.1.Flow Chart of Genetic Programming 

A. Mutation Operation: 

In the mutation operation, a single parental program is 
probabilistically selected from the population based on 
fitness. A mutation point is randomly chosen, the sub 
tree rooted at that point is deleted, and a new sub tree is 
grown there using the same random growth process that 
was used to generate the initial population. This 
mutation operation is typically performed sparingly 
(with a low probability of, say, 1% during each 
generation of the run). 

 

 
Figure.2.Tree mutation in genetic programming. 

We used Point Mutation technique for mutation, Point 
Mutation is a special technique in which we randomly 
selected an individual from the population and from this 
randomly selected individual we generate the two 
children. From this two generated children one is 
rejected on the basis of fitness the children with the 
lower fitness is rejected now we compare the selected 
individual with the parent and compare its fitness with 
the parent if the fitness of parent is better than the child 
than with a probability of 0.5 parent is transferred to the 
next generation otherwise children is transferred to the 
next generation. By applying this special mutation 
technique we are sure that the generated individual does 
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not reduce the fitness and also provide the diversity 
among the individuals 

B. Crossover Operation: 

In the crossover, operation, two parental programs are 
probabilistically selected from the population based on 
fitness. The two parents participating in crossover are 
usually of different sizes and shapes. A crossover point 
is randomly chosen in the first parent and a crossover 
point is randomly chosen in the second parent. Then the 
sub tree rooted at the crossover point of the first, or 
receiving, parent is deleted and replaced by the sub tree 
from the second, or contributing, parent. Now apply the 
elitism on the generated children and compare the 
fitness of the children with the parent if the fitness of 
the parent is greater than the children than with the 
probability of 0.25 parent is transferred to the next 
generation otherwise children is transferred to the next 
generation. 

 

 
Figure.3.Tree crossovers in genetic programming. 

C. Reproduction Operation: 

The reproduction operation copies a single individual, 
probabilistically selected based on fitness, into the next 
generation of the population.. 

a. Use either SI (MKS) or CGS as primary units. 
(SI units are encouraged.) English units may be 
used as secondary units (in parentheses).  

V. CO EVOLUTIONARY GENETIC 

ALGORITHM 

Step 1. Begin 
Step 2. Define pop-size as desired population size 
Step 3. Randomly initialize pop-size population 
Step 4. While (Ideal best found or certain number of 
generations met) 
Evaluate fitness 
While (number of children=population size) 
Select parents 
Apply evolutionary operators to create children 
End while 
Step 5. End While 
Step 6. Return Best solution 
Step 7. End 

VI. EVALUATION AND RESULTS 

We have designed a Multiclass Classifier to 
demonstrate our results. We have used Java 6.0 as a 
front end tool and Sql as a back end tool to develop our 
project. We have used 3 real data sets for training and 

validating our methodology. These are Car Evaluation, 
Breast Cancer, and University. Table I gives a brief 
description about all the data sets used. 

Table 1. Datasets 

No. of 
Datasets 

Number of 
Instances: 

Number of 
Attributes: 

Car Evaluation 1728 6 

Breast Cancer 286 9 

University 285 17 

A.  Parameters: 

These are some parameter for different operations. 

Table 2. Describes the common parameters used for all the data sets 

Parameters Values 

Probability of Crossover Operation 80-90% 

Probability of Reproduction Operation 15% 

Probability of Mutation Operation 20-25% 

Population Size 150-500 

Minimum Tree Depth 3 

Maximum Tree Depth 5 

Number of Generations 25-60 

Table 3. Experimentation Performed on Different Dataset by varying 
the number of training samples 

Sr.No. Training 
Error 

Testing 
error 

Generalization 
Error 

1 3.7896 3.564 3.569 

2 4.2345 3.456 2.265 

3 4.5689 3.325 2.554 

4 5.1234 3.112 2.545 

5 5.2685 3.110 1.987 

 

 
Figure.4. Numbers of training, Testing, Generalization error  
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Figure.5. Numbers of training samples versus percentage error 

VII. CONCLUSIONS AND FUTURE WORKS 

In this paper we have presented a GP Design for 
explicit rule extraction. The system has been tested on 
publicly available databases. We have compared our 
system with neural network-based approaches and with 
other GP-based techniques. Experimental results have 
demonstrated the effectiveness of the approach 
proposed in providing the user with compact and 
comprehensible classification rules, and its robustness 
in terms of low standard deviation. Future work will 
include the application of the system proposed to other 
real-world datasets in order to further validate the 
promising results reported in the present paper, as for 
example in computational archaeology. Moreover, 
another interesting task to face will be the unsupervised 
data mining in which the goal is to discover rules that 
predict a value of a goal attribute which, unlike 
classification, is not chosen a priori. 
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