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Abstract: In this paper, we extend our previous investigation of split array and scalar data caches to embedded systems. More specifically we explore 
reconfigurable data caches where L-1 data caches are optimally partitioned into scalar caches augmented with victim caches and array caches. We do 
not change cache block size or set-associativities, making it easier to reconfigure cache banks. We also evaluate how any unused portions of cache 

resources can be used as prefetch buffers and branch target buffers to further improve the performance of applications. Since embedded systems 
require very careful management of available resources, our approach to configuring L-1 caches can lead to better performance and better energy 
savings. 
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I. INTRODUCTION 

For embedded applications, it is necessary to provide the 
required performance within specified size and power 
budgets. Studies have found that the on-chip cache is 
responsible for 50% of the power consumed by an embedded 
processor [17]. Therefore, it is worthwhile investigating new 
cache organizations to address both performance and power 
requirements of embedded applications. In this paper we 
explore how to design reconfigurable caches that achieve 
high performance for embedded applications while 
remaining both energy and area efficient.  

For the last two decades computer architects have 
proposed various cache-control mechanisms and novel cache 
architectures that detect program access patterns and fine-
tune cache policies to improve both the overall cache use and 
data localities for desktop applications. Major cache 
optimization techniques (to improve either or both miss rate 
and miss penalty) include increasing block size and cache 
size, increasing associativity, complementing the regular 
cache with victim cache, prefetching data, including 
additional cache hierarchies. Since for embedded 
applications it is necessary to provide the required 
performance within specified size and power budgets, most 
of these techniques often are not implemented. In our 
previous work [20] we have studied each of these different 
cache-control mechanisms and performed comprehensive 
evaluation of our proposed partitioned caches. Our results 
demonstrated that split-caches can outperform all of these 
conventional cache optimization techniques. In this paper we 
adapt and further extend these studies for embedded systems, 
with the primary goal of energy savings while maintaining 
execution performance, yet using significantly smaller data 
caches. In addition to partitioning data caches into array (or 
stream) and scalar caches, we investigate how the split 
caches can be optimally reconfigured for each application. 
Our studies show significant savings in power and cache 
capacities. By using these saved area and power for other 

architectural features to implement different cache 
optimization techniques, additional performance gains can be 
achieved for embedded applications.  

We assume that caches can be designed to permit 
reconfigurability [10]. Previous studies investigated 
configuring block sizes and set-associativities. In this paper 
we only explore configuring caches by changing cache sizes, 
without changing associativity or block sizes. The 
reconfigurability is achieved by using a configuration vector 
that can be loaded with a new configuration before an 
application starts executing. The optimal cache sizes are 
explored off-line by searching through possible 
configurations. Our studies show that for L-1 cache system, 
reconfigurable caches consisting of an instruction cache with 
prefetching and split data caches (scalar data cache 
augmented with victim cache, and a separate array data 
cache) are effective for embedded systems. With such a L-1 
cache organization for embedded applications, our results 
show significant reductions in the number of cache misses, 
translating into reduced cache access times; reductions in 
required cache capacities, power consumptions and reduction 
in the number of execution cycles. This is primarily because 
we used separate caches which eliminate conflict among 
different data type that exhibit divergent access behaviors. 
Since lower miss rates at L-1 reduce the number of times one 
needs to access L-2 cache, we can reduce the size of L-2 
cache. This saved area can be used for other purposes or 
further power reductions can be achieved by partially or 
completely shutting down L-2 caches. The energy savings 
result from the reduced number of cache misses, which in 
turn reduces the number of trips to higher levels of 
memories, often crossing chip boundaries. 

The key contributions of this work are as follows.   
While partitioned caches have been explored previously, 

those studies relied on dynamically detecting spatial and 

temporal localities and directing cache accesses to different 

cache partitions. Dynamic detection requires additional 

hardware. Also the identification of different locality types 

requires observation of hundreds or even thousands of 
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memory accesses, and this leads to delays in adapting the 

caches for different locality types. In our research we use 

compile time analyses to detect array (or stream) and scalar 

accesses. This can be achieved by using different memory 

access instructions for each data type (e.g., 

Array_Load/Array_store and Load/Store). In our design, we 

first address the problem of improving L-1 data cache 

performance for embedded systems through the use of 

separate array and scalar data caches. We extend our 

architecture by augmenting the scalar cache with a victim 

cache [6], and augmenting instruction caches with prefetch 
buffers. We exhaustively explore optimal array, scalar and 

instruction cache sizes for each application, to achieve 

desired levels of energy savings while maintaining required 

performance levels. The analysis to identify optimal cache 

configurations is conducted off-line. These analyses are 

used to customize caches for each application by setting 

configuration vectors. Our reconfigurability leads to 

significant savings in cache capacities. 

Prefetching is not popular for embedded applications as 

such techniques require additional buffers to store 

prefetched instructions (or data). We show that some of the 
unused cache portions resulting from our optimally 

reconfigured L-1 and L-2 caches can be used for instruction 

prefetching, thus eliminating the need for additional buffer 

space. Similarly, while branch prediction and branch target 

buffers have been used for desktop computer systems, such 

techniques add to the hardware complexity and lead to 

additional power consumption. By using the unused portion 

of caches resulting from our reconfigurable caches, we can 

explore branch prediction and branch target buffers without 

requiring additional buffer space. Finally we also explored 

the energy savings if the unused cache partitions are shut 
down. 

The rest of the paper is organized as follows. Section 2 

describes the architectural design of our reconfigurable 

cache. In section 3 we describe the benchmarks and 

simulation environment used in our study.  In section 4 we 

evaluate our reconfigurable L-1 and L-2 caches. In section 5 

we evaluate two different possible uses of silicon area 

savings resulting from our cache organizations. In section 6 

we provide a survey of related work. Finally in section 7 we 

present our conclusions and possible future research. 

II. ARCHITECTURAL DESIGN OF 

RECONFIGURABLE CACHE  

Figure 1 shows our reconfigurable split data cache 

architecture, with L-1 array and scalar data caches, victim 

cache with scalar data cache, the L-1 instruction cache 

augmented by a small prefetching buffer and L-2 instruction 

and data caches. For our purpose of the experiments in this 

study, we marked traces as array accesses and scalar 

accesses. We identified array references by assuming that 

such references involve some form of indexing. While we 

cannot assure that all array data items are captured by our 

method, our analyses for selected sample programs show 

that most of the array data items (better than 99%) have 

been correctly identified. In an actual implementation of 

split caches, compiler will allocate data items to array and 

scalar cache portions, and use different memory access 

instructions for each portion (viz., array_load/array_store 

and load/store). 
In order to implement reconfigurable caches, only a small 

amount of additional logic is required. Additional wiring is 
also necessary from the cache to the processor for directing 
data to/from the various partitions. The most challenging part 
in designing a reconfigurable cache is the implementation of 
a mechanism to divide the cache into different (variable 
sized) partitions and designing an addressing scheme that can 
address any partition. Ranganathan et al in [10] have already 
proposed two partitioning and addressing schemes: 
―Associativity based partitioning‖ and ―Overlapped wide-tag 
partitioning‖. In our design we use ―Overlapped wide-tag 
partitioning‖ scheme. In this scheme, the key challenge is to 
devise a mechanism so that the size of the tag array can be 
dynamically changed with the size of partitions (since the 
number of bits in a tag and index fields of the address will 
vary based on the size of the partition). We restrict the size of 
each partition to a power of 2 and support a limited number 
of possible configurations (usually two or three). A 
reconfigurable cache with N partitions must accept N 
addresses and generate N hit/miss signals. In order to track 
the number and sizes of the partitions and control hit/miss 
signals, a special hardware register (viz., configuration 
vector) is needed. This register will be a part of the processor 
state [10]. 

 

Figure. 1. Reconfigurable split cache organization 

A reconfigurable cache can be used in different ways. 

The best configuration for an application can be determined 

by executing applications with different configurations. 

Software profiling tools can be used to identify portions of 

code that exhibit different cache behaviors. Reconfiguration 

can also be implemented dynamically with appropriate 

hardware profiling and an automatic cache tuner. However 

this requires additional hardware to profile applications. For 

L1 level we perform exhaustive search to find the best 

configuration offline. For L2 we explored offline to find 

configurations that reduce the silicon area. For both cases 

the configuration vector is set appropriately to customize 

caches for each application.  
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III. EXPERIMENTAL METHODS  

In this section we describe the experimental framework 
and the benchmarks used for this study. We used benchmark 
programs from the MiBench suite [5]. MiBench includes 
benchmarks from several representative embedded 
application domains: (1) Automotive and Industrial Control, 

(2) Office Automation, (3) Networking, (4) Security, (5) 
Consumer and (6) Telecommunications. For our study we 
included selected programs from these application domains. 
The descriptions of the benchmarks used in our studies are 
listed in Table 1.   

 

Table 1: Descriptions of benchmarks 

Benchmark Class Description % of 

load/store 

Name  

in Figure 

bit counts Auto./Industrial Test bit manipulation 10 bc 

Qsort Auto./Industrial quick sort 52 qs 

dijkstra Network Shortest path problem 34.8 dj 

blowfish Network Encription/decription 29 bf 

Sha Security Secure Hash Algorithm 19 sh 

rijndael Security Encryption Standard 34 ri 

string search Office Search mechanism 25 ss 

Adpcm Telecomm Variation of PCM standard 7 ad 

CRC32 Telecomm Redundency check 36 cr 

FFT Telecomm Fast Fourier Transform 23 ff 

Table 2: Default parameters defined by SimpleScalar 

Fetch queue size 4 LSQ 8 

Fetch speed 1 FUs alu:4, mult:1, memport:2, fpalu:4,  

Decode, width 4 Memory latency 18 cycles for first chunk, 2 thereafter 

Issue width 4 out-of-order Memory width 8 bytes 

Commit width 4 Instruction TLB 16-way, 4096 byte page, 4-way, LRU, 30 

cycle miss penalty 

RUU (window) size 16 Data TLB 32-way, 4096 byte page, 4-way, LRU, 30 

cycle miss penalty 

 
Our experimental environment is built on the 

SimpleScalar (version 3.0d) simulation tool set [3], modeling 
an out-of-order speculative processor with a two-level cache 
hierarchy. We rely on default parameters used by 
SimpleScalar and are shown in Table 2. The base cache 
system, against which we compare our designs, uses an 8k 
byte L-1 instruction cache, an 8k byte L-1 data cache, a 32k 
byte L-2 instruction cache and a 32k byte L-2 data cache. We 
used a modified CACTI [16] timing model to obtain area, 
access time and power overheads incurred by reconfigurable 
caches. Our analyses do account for additional hardware 
needed for reconfiguration. 

IV. EVALUATION OF RECONFIGURABLE 

SPLIT CACHE 

In the following two sections we describe our strategies 

for reducing power consumption while maintaining 

performance of caches. 

A. Results with L-1 Data and Instruction Caches: 

We believe that the main problem with data cache is the 
negative interaction between two different locality types - 
temporal and spatial localities, exhibited by different data 
types. To solve this problem, for L-1 data cache, we use 
separate scalar and array (or stream) caches, and augment 
direct mapped scalar caches with a small victim cache. As 
noted previously, in a real system, compiler will assign data 
to array and scalar cache portions, and use separate 
instructions to access these portions (e.g., load/store and 
array_load/array_store). In addition, with reconfigurability 

we permit varying the sizes of scalar and array caches for 
each application. We augment our L-1 instruction cache with 
a small buffer to permit for effective prefetching of 
instructions.  Even with the additional power needed for 
prefetching, we show significant reductions in total power 
consumed by all our caches (by 47% on average). The three 
series in Figure 2 represent percentage reductions in power, 
chip area and access times for L-1 instruction and data 
caches respectively. 

In order to obtain these results, we exhaustively searched 
for optimal cache sizes for each cache structure (array, scalar 
and instruction cache). In this figure we also show the 
average power, area and cache access time across all the 
benchmarks used in our experiments (last series). As can be 
seen, for instruction cache, on average we achieve reductions 
of 47% in power, 95% in area and 37% in cache access 
times. Here it should be mentioned that for benchmark ―ss‖ 
we did not achieve any reductions in power or access times. 
For data caches, on average we show more than 50% 
reduction in both power and area consumption. For each of 
the benchmarks we also achieve reduction in cache access 
times. However, considering the worst case such as ―qs‖ and 
―bf‖, less than 10% access time reduction was achieved. In 
exploring optimal configuration, we varied only cache-size 
(not line-size or associativity)—we start from smaller to 
larger sizes (from 256 to 8K bytes). At L-1, for each 
benchmark we exhaustively explored all cache size 
combinations for array, scalar and instruction caches to find 
the best configuration those results in optimal power, area 
and access times. In Table 3 we provide the optimum 
configurations for each benchmark. 
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Figure. 2. Percentage reduction of power, area and cache access time for L-1 (a) instruction and (b) data caches 

 

Figure. 3. Percentage reduction of number of access in L-2 caches 

Table 3: Cache configurations yielding lowest power, area and cache access time 

Benchmark L-1Instruction cache Array 

cache 

Scalar 

cache 

L-2 Instruction 

cache 

L-2 Data 

Cache 

bit counts 256 bytes 512 bytes 512 bytes 2k 2k 

qsort 256 bytes 1k 4k 2k 32k 

dijkstra 1k 512 bytes 4k 4k 8k 

blowfish 1k 512 bytes 4k 2k 8k 

sha 256 bytes 512 bytes 1k 1k 8k 

rijndael 512 bytes 1k 4k 4k 32k 

stringsearch 256 bytes 512 bytes 1k 1k 16k 

adpcm 256 bytes 1k 512 bytes 1k 4k 

CRC32 256 bytes 512 bytes 512 bytes 4k 2k 

FFT 1k 1k 4k 4k 16k 
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B. Results with L-2 Data and Instruction Caches:  

Unlike L-1 caches where cache behavior is mainly 

controlled by locality types, for L-2 cache, the main concern 

is the number of misses from L-1 caches. For most of the 

benchmarks (except ―sh‖, ―qs‖ and ―ss‖), our L-1 caches 

achieved excellent reductions in the number of cache misses, 

resulting in fewer visits to L-2 caches. For benchmark ―ff‖ 
we were able to achieve as much as 96% reduction in the 

number of misses. In Figure 3 we show the percentage 

reduction in the total number of L-2 accesses (which is the 

number of misses in L-1 caches) compared to those in the 

base cache system. This implies that we can reduce the size 

of L-2 caches, yet maintain the desired level of performance 

and the size of L-2 caches must be configured based on each 

application. Since the number of access to L-2 caches is 

small, we did not see a need for split array and scalar L-2 

data caches. We also felt that it is unnecessary to perform an 

exhaustive search of all possible L-2 cache configurations (as 
done for L-1 cache, see Figure 2 and Table 3). We only 

explored configurations that reduce the silicon area needed 

for L-2 caches. We start with a very small L-2 caches, and 

continuously increase the sizes of the caches until no further 

reductions in misses are achieved (compared to the base 

configuration of 32KB L-2 instruction and data caches). 

Since both cache access time and power consumption is 

determined by the number of misses, this method allows us 

to find the smallest cache sufficient to meet performance 

requirements without increasing power consumption. 

The three series in Figure 4 represent the percentage 
reductions in area, access time and power for L-2 instruction 

(a) and data (b) caches respectively. In this figure we also 

show the average area, cache access time and power across 

all the benchmarks used in our experiments (last series in the 

figures). As can be seen, for instruction cache, on average we 

achieve more than 80% reductions in power, in area and in 

cache access times. At the same time we have achieved 

significant improvement for each benchmark. However for 

data caches we can observe a different situation. Although on 

average we have achieved more than 50% reductions in 

power, in area and in cache access times, for some 
benchmarks we did not achieve any improvement. As we can 

see from Figure 4(b) for benchmark ―qs‖ we did not achieve 

any reductions in power or area consumptions. Similarly for 

benchmark ―ri‖ we did not achieve any reductions in area 

consumptions. 

Our goal is not only to reduce silicon area, cache access 

time and power consumption, but also to confirm that there is 

no degradation in overall performance. In Figure 5 we 

compare the execution cycles (not just memory access times 

but actual execution times of the applications) of the selected 

benchmarks of our proposed cache systems (with optimal 

configurations for various L-1 and L-2 structures as outlined 
previously) with that of base cache systems. In this figure we 

also show the average reduction across all the benchmarks 

used in our experiments (last series). As for benchmarks ―bc‖ 

and ―ad‖ have less than 10% load and store (Table 1) 

instructions, for both we did not achieve any reductions in 

numbers of execution cycles. 

 

 
Figure.4 (a). Percentage reduction of area, power and cache access time for L- 2 instruction caches 

 
Figure 4(b). Percentage reduction of area, power and cache access time for L-2 data caches 
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Figure. 5. Percentage reduction of execution cycles 

 

V. ACHIEVING FURTHER IMPROVEMENT  

When provided with larger caches than needed for an 
application, we can either disable unused sub-arrays to save 
power or use the sub-arrays for purposes other than 
traditional caching, so that the overall execution performance 
of an application can be further improved. In the following 
two sections we evaluated both options. 

A. Utilization of the Unused Areas:  

Techniques such as hardware prefetching, instruction 
reuse, value prediction and branch prediction have been used 
effectively in desktop applications. However, these 
techniques require additional space for implementing look-up 
tables or buffers (viz., prefetch buffers, trace caches, branch 
target buffers). And the performance gains from these 
techniques are proportional to the sizes of these tables [12]. 
Because of the additional tables needed, these techniques are 
often viewed as inappropriate for embedded systems [19]. 
Since we show reductions in cache sizes in our designs, these 
savings may be used to implement buffers or look-up tables 
to implement prefetching or branch prediction ideas. 
a) Hardware and software Prefetching: Prefetching or 

 exploiting the overlap of processor computations with data 
accesses has proven effective in tolerating long memory 
latencies [2, 9]. Successful prefetching can reduce miss rates, 
but scheduling the prefetching requests is still a challenge. 
Prefetching too far ahead not only wastes the embedded 

system’s valuable power but may also cause cache pollution, 
since the prefetched data may displace data that will be used 
prior to the prefetched data. This in turn leads to additional 
misses and wasted energy. On the other hand prefetching too 
late will not hide the latency. In our reconfigurable cache we 
can use unused cache areas as prefetch buffers to avoid cache 
pollution. We use prefetching for both array data items and 
instructions at L-1 cache level. The prefetching areas can be 
implemented in cache arrays with minor hardware changes. 

Figure 6 shows the percentage improvement in power 
consumptions and cache access time when using prefetching 
at L-1 level for both array and L-1 instruction caches, 
compared to the base cache system. As can be seen, for all 
the benchmarks there is a significant reduction in cache 
access times and power consumption. The data in Figure 6 
accounts for the additional power needed for prefetching. In 
Figure 7 we present the percentage improvement in terms of 
execution cycles of an application using prefetching (along 
with our scalar, victim and array caches) when compared to 
the base cache system. As we can see for benchmark ―ri‖ we 
obtain as much as 85% reduction in number of execution 
cycles. The average reduction in execution cycles is 47%. 
Again for benchmarks ―bc‖ and ―ad‖ we did not achieve any 
reductions in numbers of execution cycles as both have less 
than 10% load and store instructions (Table 1). 

 
 
 

 
Figure. 6. Percentage of power and access time reduction with prefetching for (a) instruction and (b) data caches 

 



Afrin Naz et al, International Journal of Advanced Research in Computer Science, 3 (1), Jan –Feb, 2012,114-122 

© 2010, IJARCS All Rights Reserved    120 

 

Figure. 7. Percentage reduction of execution cycles after implementing prefetching 

b) Hardware optimization techniques with branch  
prediction tables: Modern processors utilize speculative 
execution of instructions using branch prediction, instruction 
reuse (or value prediction) and function reuse technique to 
improve performance [13]. It has been found that many 
instructions and functions, are repeatedly executed with the 
same inputs, producing the same outputs [13]. These 
behaviors can be exploited to reduce the number of 
instructions/functions executed dynamically as follows: by 
buffering the previous results of instructions and functions, 
future dynamic instances of the same instructions (or 
functions) can use the results from previous executions by 
looking up the buffered information [13]. For branch 
instructions, branch decisions are correlated and can be 
predicted. Branch predictions along with branch target 
buffers have been used to eliminate pipeline stalls and 
improve instruction level parallelism (ILP). Until recently 
these optimization techniques have been studied for 
embedded applications because all such techniques require 
additional hardware that lead to additional silicon area and 

increased power budgets. Since we can save some cache 
resources using our reconfigurable designs, the saved space 
can be used to build needed look-up tables to implement 
these techniques in embedded systems. In this section we 
compare the percentage improvement in the number of 
execution cycles for each application using branch prediction 
when compared to the base cache system without branch 
prediction. In this study we used combined prediction with 
both bimodal predictor and 2-level adaptive predictor. The 
table size for bimodal predictor is 2048 and for 2-level 
predictor is 1024 with a history width of 8. The meta-table 
size of combined predictor is 1024. For all of the 
applications, we achieve enough space from L-2 instruction 
and data caches to accommodate space for these predictors 
(see Figure 4). Figure 8 shows the percentage improvement 
in number of execution cycles for each benchmarks using 
branch prediction when compared to the base cache system 
without branch prediction. For loop intensive benchmark ―ff‖ 
we achieved 75 % reduction in execution cycle, since for 
such applications branch prediction can be very accurate. 

 

 

Figure. 8. Percentage reduction of execution cycle after implementing branch prediction 

B. Shut Down Portions of Level two Instruction and Data 

Caches:  

The most important concern for the designers of any 
embedded system is the power consumed by applications. As 
our proposed design for L-1 instruction and data caches 
result in reductions in the number of misses, translating into 
fewer accesses in L-2 caches, we may shut down unused 
portions of L-2 cache. In this section we explore the power 
savings from such shut downs. This requires us to model 
both static and dynamic power consumed by cache 
memories. In previous sections we only accounted for 

dynamic power since all cache portions are left active (not 
shut down). In Figure 9 we show the percentage reduction in 
total power consumption (both dynamic and static) for (a) 
instruction and (b) data caches. In each figure we show the 
power reductions with and without prefetching. Here for 
prefetch buffer we are using area saved from L-1 instruction 
and data caches (and not from L-2 cache savings). It should 
be mentioned that although prefetch consumes additional 
power, the benefits achieved in terms of reduced cache 
misses outweighs the extra cache and hardware needed for 
prefetch. 
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Figure. 9. Percentage of dynamic and static power reduction without and with prefetching for (a) instruction and (b) data caches 

 

VI.   PREVIOUS WORK  

In [10] the authors proposed a reconfigurable data cache 
architecture for general purpose processors, focusing on one 
particular option of using the saved silicon area; namely for 
―instruction reuse‖. In [1] authors proposed ―selective cache 
ways‖ to selectively disable portions of a data cache, trading 
off performance with power. In our research we provided a 
detailed analysis of silicon area savings, reduction in 
execution cycles and power consumed when our 
reconfigurable cache structures are used. We also perform 
detailed analyses of achieving additional performance 
improvement by using saved silicon area for prefetching and 
branch prediction. We included reconfigurability for both L-
1 and L-2 caches. Work by Zhang et al [17-19] is closely 
related to our research, as they evaluate reconfigurable 
unified data caches for embedded applications. Later in [4] 
the authors analyzed the possibilities of reconfigurability of 
L-2 caches. Unlike their work, we do not see set-associativity 
as an important reconfigurable design parameter. In our 
design, both our array and scalar caches are designed as 
direct mapped caches, and we use victim caches to reduce 
conflict misses of scalar data. Several studies have been 
reported on split data caches [14, 12, 8, 15] but none of these 
studies explored reconfigurability. Moreover, previous split 
cache investigations relied on dynamic detection of locality 
types (spatial versus temporal). We use compile time 
analysis to identify array and scalar accesses. 

VII. CONCLUSION  

In this paper we introduced a novel cache architecture for 
embedded microprocessor platforms. When using our 
proposed caches for embedded applications, our results show 
excellent reductions in both memory size and memory access 
times, translating into reduced power consumption and 
improved overall execution times. Our cache architecture 
reduces the cache area by as much as 95% for L-1 instruction 
and 67% for L-1 data caches, access times by as much as 
72% for L-1 instruction and 36%, for L-1 data caches and 
power consumption by as much as 75% for L-1 instruction 
and 67% L-1 data caches respectively when compared with 
an 8k byte L-1 instruction and 8k byte L-1 data caches. 
These reductions can be profound when working with small 
L-1 caches often found in embedded systems. For L-2 
instruction cache we achieved on average 50% improvement 
in power and more than 80% reduction in access times. 
Whereas for L-2 data cache the average improvement is 50% 

in power and more than 60% in access times. We also show 
that the saving in cache sizes resulting from our designs can 
be used for other processor features including instruction and 
data prefetching, branch prediction buffers. We evaluate the 
potential benefits of such techniques for embedded 
applications. We also explored the energy savings if the 
unused cache partitions are shut down. 
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