
Volume 3, No. 1, Jan-Feb 2012

International Journal of Advanced Research in Computer Science

RESEARCH PAPER

Available Online at www.ijarcs.info

© 2010, IJARCS All Rights Reserved 352

ISSN No. 0976-5697

Some Observations on Bug Fixing Process and Defect Density of Open Source Software

Vinay Tiwari*, Dr. R.K. Pandey
University Institute of Computer Science and Applications

R.D. University, Jabalpur, India

vinaytiwari999@gmail.com

Abstract: With the success of open source software, software development is now categorized by two development methodologies. First is the

traditional closed source or proprietary software development where software development is carried out in a discipline environment and in
systematic manner and the other one is open source development where no definite development methodology exists. Opponents of open source
software argued that open source software is not developed by following the software engineering principles like project planning, analysis, system
level designing, testing etc., causes more defects compare to proprietary software. Similarly it is also argued that, since there is no post release
appropriate technical/customer support as in the case of proprietary software bug fixing is poor in the open source software. On contrary OSS
proponent believes that due to active involvement of internet user in online forums of OSS projects, identification and fixing of bugs is much faster.
This paper analyzes the arguments made by both the communities and compares the defect density of open source software vs. proprietary software
on the basis of available data and also analyzes the bug reporting and fixing process of open source software. Results of various surveys and analysis

results on bug count, defect density of OSS by various researchers/agencies are also incorporated in defect density analysis. Various views of
researchers on the bug fixing process of OSS are studied and analyzed and a theoretical study is made to examine the defect density and bug fixing
process of Open Source Software.

Keywords: Open Source Software (OSS), Proprietary Software, Bug Fixing, Bug Repository, Bug Tracking, Software Defect Density

I. INTRODUCTION

The open source software during the last decade has got

phenomenal success among the software users and developers.
The story starts with the success of Linux, Apache and

MySQL and nowadays, thousands of open-source software

packages can be found and freely downloaded online. Open

Source Project Hosting Websites like SourceForge, Google

Code, GitHub, Codeplex, Launchpad etc. not only providing

open source packages to the users but also providing

development platform to the developers and still thousands of

open source projects are in developing stages at these sites.

The successful development of open source software is

because of the growth of the Internet, which makes possible

the collaboration among programmers on a much larger scale
that was possible before. Generically open source refers to a

program in which the source code is available to the general

public for use and/or modifications from its original design

free of charge, [01] whereas in the conventional commercial

software the end product is in the form of binary object code

and the source code was assumed to be private information.

Open source software is having major impact on software

and its production processes. Open Source Software

developers have produced systems with functionality that is

competitive with similar proprietary software developed by

commercial software organizations. The success of open

source software demonstrates the alternative form of software
development processes. Software development is undergoing a

major change from being a fully closed software development

process towards a more community driven open source

software development process [02]. Software development

process is now split into two development models. First is the

conventional or closed source software development model,

where the software is developed in controlled environment

and by following strict software engineering principles. Here

source code is owed by the company or individual and only

binary codes are distributed under a licensing agreement to

authorized users. These software are also referred as

proprietary software. Second is the open source software

development model where the software is not necessarily

developed under controlled environment or by following

traditional software engineering processes. Here source code

is also released with the binary code and Users and developers
have a license to share, view, use and modify the code and to

distribute any improvement they make. However, open design

is not an idea that everyone accepts, even now. Opponents of

open source software argue that if the software is in the public

domain, then potential hackers have also had the opportunity

to study the software closely to determine its vulnerabilities'

[3]. Whereas people in the open source and free software

community often argue that making source code available to

all is good for security. Users and experts can pore over the

code and find vulnerabilities [4].

Development methodology of open source software is also
quite distinct from that of traditional software development

methods. For example software design before the development

and software testing before the release is hardly carried out in

the OSS development. Which leads the release of buggy

software than the proprietary software as most of the bugs can

be swallowed during testing phase. This paper theoretically

analyzed the arguments made by both communities in the

published reports, and trying to find out the answers to

questions such as: how the defects/bugs reported and removed

in Open source systems, whether the open source software has

more defects as compare to their counterpart, defect densities

of open source and proprietary software, reasons for less or

Vinay Tiwari et al, International Journal of Advanced Research in Computer Science, 3 (1), Jan –Feb, 2012,352-359

© 2010, IJARCS All Rights Reserved 353

more bugs on OSS as compared to proprietary software. The

comparisons are made on the basis of available data released

by various researchers/research agencies and various vies of

researchers are studied and analyzed in support of various

arguments.

II. OPEN SOURCE SOFTWARE DEVELOPMENT

As per open source initiative [01] ―open source is a

collaborative development method for software that harnesses

the power of distributed peer review and transparency of

process to develop code that is freely accessible. The promise

of open source is better quality, higher reliability, more

flexibility, lower cost, and an end to predatory vendor lock-

in‖. Von Hippel [05] clarified that ―Open source software

development is a unique form of innovation. The developers—
especially users—engage in innovation, development and

consumption of a product without the direct involvement of

manufacturers‖. Proprietary model of traditional software

companies provide only binary code to the users and withhold

source code, in contrast to this, open-source software is

distributed under nonrestrictive licensing terms that generally

include access to the source code, so that the users can study,

modify, or improve it and further share the knowledge among

individuals and group of people as well. Open Source software

development is a different, somewhat orthogonal approach to

the development of software systems where much of the

development activity is openly visible, development artifacts
are publicly available over the Web, and generally there is no

formal project management regime, budget or schedule [06].

The Cathedral and the Bazaar [07] is the most frequently

cited description of the open-source development

methodology. In this book, Raymond makes the distinction

between two kinds of software development. The first is the

conventional closed source development. This kind of

development methods are, according to Raymond, like the

building of a cathedral; central planning, tight organization

and one process from start to finish. The second is the

progressive open source development, which is more like an
―a great babbling bazaar of differing agendas and approaches

out of which a coherent and stable system could seemingly

emerge only by a succession of miracles.‖ The Cathedral

model represents the traditional commercial software

development style, using small teams, tight management

control, and long release intervals. The Bazaar model

represents the style of releasing early often involving a large

number of pool of developers working on the product.

According to an Apache case study [08] the usually mentioned

main differences between commercial and open-source

projects are:

a. Open-source systems are built by potentially large
numbers (i.e., hundreds or even thousands) of

volunteers.

b. Work is not assigned; people undertake the work they

choose.

c. There is no explicit system-level design, or even detailed

design

d. There is no project plan, schedule, or list of deliverables.

For commercial software engineers it might be surprising
that open-source projects relying on far less design documents,
contracts, project plans or development processes can have
success. The main strength of open source development is a
well-defined community with common interests which is
involved either in continuously evolving its related products or
in using its results [09]. OSS is developed by loosely
organized communities of participants located around the
world and working over the Internet and remarkably, most
participants contribute without being employed, paid, or
recruited by the organization [10]. Open Source developers
have typically been end users of the open source software they
develop and sometimes many end-users often participate in
and contribute to OSS development efforts by providing
feedback, bug reports, and usability concerns. Thus Open
source development is oriented towards the joint development
of a community of developers and users concomitant with the
software system of interest. OSS development is often less
structured but the users of the systems are encouraged to
directly participate as part of the development community.

In OSS development, every user has access to the source
code and can thus directly participate in the continuous
improvement of the software package. It is not necessary that
every user be developer they can participate in OSS
development by various roles depending upon their skills,
technical expertise and level of involvement. Users can
involved by providing feedback, helping new users,
recommending the project to others, testing and reporting or
fixing bugs, requesting new features, writing and updating
software, creating artwork, writing or updating documentation,
translating etc. All of these contributions help to keep a project
active and strengthen the community. The project team and the
broader community will therefore welcome and encourage
participation, and attempt to make it as easy as possible for
people to get involved. Depending upon the responsibilities
OSS development community is classified as [11] Core
developers - writing most of the code and generally responsible
for software architecture, co-developers contributing code
infrequently or only on some part of the project, active users
providing feedback and bug reports as well as participating in
discussions and helping each other in using the software,
Passive users who just use the program. The success of the
open source project attributed to the large spheres of co-
developer and active users who find and solve various issues in
the software.

III. WHAT IS BUG/DEFECT

―Bug‖ the computer software definition, ―an unexpected

defect, fault, flaw, or imperfection.‖ A software bug is the

common term used to describe an error, flaw, mistake, failure,

or fault in a computer program or system that produces an

incorrect or unexpected result, or causes it to behave in
unintended ways. The term ―defect‖ refers to something that is

wrong with a program. A defect, in fact, is anything that

detracts from the program’s ability to completely and

effectively meet the users needs. A defect is thus an objective

thing. It is something one can identify, describe and count.

According to Webster [12], defects and bugs are ―sort of the

same thing‖. The common software practice of referring to

software defects by the term ―bugs‖. Presence of hidden bugs

or program code defects is a major problem with software.

Vinay Tiwari et al, International Journal of Advanced Research in Computer Science, 3 (1), Jan –Feb, 2012, 352-359

© 2010, IJARCS All Rights Reserved 354

Studies have shown that it is virtually impossible to

eliminate all bugs from large programs. Bugs in software are

inevitable irrespective of software development methodology.

These bugs are caused by several reasons like complex code,

human error i.e. mistakes or error made in program source

code, poor design logic, lack of testing, Vague or incomplete

requirements or Misunderstanding of the requirements,

Misapplication of technology, Compromises made in design to

meet delivery schedules etc. Few are also caused by compilers

producing incorrect code. It is noticeable that bugs may or

may not causes failures. Some bugs have only a subtle effect
on the program's functionality [13], and may thus lie

undetected for a long time. For example, defects in dead code

will never result in failures. More serious bugs may cause the

program to crash or freeze leading to a denial of service.

Others qualify as security bugs and might for example enable

a malicious user to bypass access controls in order to obtain

unauthorized privileges. According to the pentagon and the

software engineering Institute at Carnegie Mellon University,

there are typically 5 to 15 bugs in very 1000 lines of code

while commercial software typically has 20 to 30 bugs for

every 1,000 lines of code. A measuring term Defect Density is
used to compare the relative number of defects in various

software components. Defect Density [14] is "amount of

defects found in total length or size of program code". It is

measured by number of confirmed defects detected in

software/component during a defined period of

development/operation divided by the length or size of the

software/component. Defect density is generally compared by

number of defects per thousand lines of source codes (KLOC).

For example The NASA has a defect density of 0.004

bugs/KLOC. Measuring defect density is the easiest way to

judge whether a program is ready to release.

IV. BUG MANAGEMENT IN OSS

Software defects are inevitable and it is a common practice

for software to be released with unknown / known bugs. There

are various reasons for not fixing of bugs in the released
product like, lack of time to developers, fixing bug could be

expensive or delay finishing the project or fixing may bring

the chance of introducing new unknown bugs or developers

think the bug is non critical and may be fixed in the

subsequent release/patch.

A suitable bug management process can minimize the

number of defects in software. Bugs management is the

process of reporting and tracking the progress of bugs/defects

from discovery through to resolution. Bug management

process focus on the preventing the defects, catching the

defects as early as possible, and minimizing their impact on

the project. Most big software projects maintain two lists of
"known bugs"— those known to the software team, and those

to be told to users. Unknown bugs are reported by the

customer when having problem with the released product.

User send bug report through customer support to its

developers, who, they hope, eventually provides some kind of

solution i.e. a bug fix. Since all commercial proprietary

software companies distribute their software products in

compiled form i.e. binary code, customer has to depend upon

software manufacturer monopoly on bug fixing. But often

within proprietary software companies bug fixing is not given

a high priority unless it creates a significant commercial issue.

Bugs do not get fixed unless this brings a profit, and upgrades

become expensive [15]. Often the people experiencing a bug

are a minority of the users and the users are so locked in to

using the software that they have to wait until the software

company decides to fix the problem, nobody else can see the

bug in the code so nobody else can fix it. Open source

software is released with the source code and user have a

choice to control the upgrade process and to decide which bug
to fix and when. In the open source world there is often large

communities around popular projects and many people who

may not have the time to develop software full time, can

devote some time to finding and indeed fixing bugs. In the

open source world bug finding and fixing is near enough a

sport enjoyed by many.

In earlier open source projects, bug reporting and tracking

was done through the emails, IRC channels, or through instant

messaging. Interested contributors and wide spread

communities of the project discuss about patch reviews,

design decision, project planning, future plan etc. All source
changes are submitted as patch files to the developers' mailing

list, when those interested manually apply them and test on

their own systems. If the core developers approve it, the patch

is then eventually committed to the source repository or

incorporated into the next version placed on an ftp site [16].

Today open source projects uses more sophisticated bug

tracking system or web-based application bug repositories that

keep track of the change request and bugs found in a system.

These bug repositories are used to report and track the

problems of the software system, keep track of the change

request, bugs found in a system and the potential
enhancements. Proponents of open source software

development believe that allowing the users of the software to

easily report, and sometimes help fix, bugs improves the

quality of the software produced [17]. In these bug

repositories the user of the software has full access. Most Big

open source project have associated with their own bug

repository while other may have open bug repository like

Bugzilla, Mantis, Track Jira etc. There are several potential

advantages to the use of an open bug repository, these

repositories not only providing bug modification progress to

the developers but also ease of reporting bug to the users. This

helps in identifying the more problems with the system, more
problems might be fixed because more developers might

engage in problem solving, and developers and users can

engage in focused conversations about the bugs, allowing

users input into the direction of the system [18].

A bug report in a open source projects often contains the

request ID, title of the bug report, the description of the bug

which contains the effects of the bug and the necessary

information for a developer to reproduce the bug, possible

fixes or when another bug report is marked as a duplicate of

this report. Figure 1 shows the portion of a bug report at

sourceforge.net. Reporters and developers sometimes may
also provide attachments to reports. These attachments

provide additional information about the bug, such as a

screenshot of the erroneous behavior. This step is sometimes

Vinay Tiwari et al, International Journal of Advanced Research in Computer Science, 3 (1), Jan –Feb, 2012,352-359

© 2010, IJARCS All Rights Reserved 355

known as bug gathering. During bug gathering reported bugs

may be duplicate, provide incomplete information or may not

represent real defects. [19]. Therefore in the second step such

noises are removed. This step is known as bug filtering. Final

phase is the bug analysis where the filtered data is organized

into bug-frequencies for fixed time periods.

Figure 1: A Portion of the bug report at sourceforge.net source [19]

Bug priority refers to the need as to how urgently bug is

required to be fixed. It describes the importance of the bug.

There are five levels of Bug Priority, Level 5 Immediate: Bug

should be fixed as early as possible as it is blocking
development/testing work. Level 4 Urgent: this type of bug;

blocks the usability of the large portion of the product and

must be fixed before the next planned release. Level 3 High:

Seriously broken, but not as high impact should be fixed

before next major release. Level 2 Normal: Either a fairly

straightforward workaround exists or the functionality is not

very important and/or not frequently used. Level 1 Low: The

bug is not all that important. Bug priority may change

according to the schedule of testing.

When a bug report is submitted its status is set to either

NEW or UNCONFIRMED, depending on the conventions of

the project. Once a developer has been either assigned to or
accepted responsibility for the report, the status is set to

ASSIGNED. Assigned Bug is resolved by resolutions Invalid:

if the bug is in some way not valid, Duplicate: if the bug is

repeated more than once, Fixed: The bug is checked and

tested, Wontfix: The bug is described a bug which will never

be fixed, Worksforme: all attempts at reproducing this bug

were futile, and reading the code produces no clues as to why

the described behavior would occur. When bug is duly fixed

its status is set to be verified. If the bug is detected again its

status is reopened and bug status is set closed when the bug is

fixed and confirmed its absence.
Akinori Ihara et el [20] has explained the bug modification

process using a bug tracking system is represented in figure 2.

Bug modification process consisting of three different phases.

First one is untreated phase which is focuses on a sub-process

where bugs are reported into a bug tracking system but have

not been accepted nor assigned to anyone. The modification

phase is a second phase which is a sub-process where bugs are

substantially modified. In this phase, a reported bug is

accepted to be fixed and then assigned to developers. If the

developers finish to modify the bug, the state of the bug

transits to ―bug resolved‖. The final phase is the verification

phase, which is a sub-process where members in charge of

quality assurance verify that modified bugs are correctly

resolved.

V. OBSERVATIONS ON BUG AND DEFECT

DENSITY OF OSS

Figure 2: Bug modification process using a bug tracking system source [20]

The claim of open source community that open-source

development results in better and more secure software was
first examined by the Code-analysis firm Coverity [21]

founded by Stanford university Computer Science Research

Center. Five Stanford University computer science researchers

after four year analysis of the 5.7 million lines of Linux source

code they found that the Linux kernel programming code is

better and more secure than the programming code of most

proprietary software and had far fewer defects than the

industry average. Their approach reported 985 defects in the

5.7 million lines of code in the, that make up the Linux kernel,

well below the industry average for commercial enterprise

software. According to data from Carnegie Mellon University,
a typical program of similar size would usually have more

than 5,000 defects. Windows XP, by comparison, contains

about 40 million lines of code, with new bugs found on a

frequent basis. The study identified 0.17 bugs per 1,000 lines

of code in the Linux kernel. Of the 985 bugs identified, 627

were in critical parts of the kernel. Another 569 could cause a

system crash, 100 were security holes, and 33 of the bugs

could result in less-than-optimal system performance. Another

newer report of Coverity in 2005, found that defect densities

were very low and had even gone down further. Their follow-

up analysis of Linux kernel 2.6.12 found that all six critical

defects they had found in their earlier study of Linux kernel
2.6.9 had been fixed. This study found an average of 0.16

defects/KSLOC, down from 0.17 defects/KSLOC, even

though the amount of code had increased, and ―Although

contributors introduced new defects, these were primarily in

non-critical device drivers.‖

On Feb 11, 2003 Reasoning (A software research firm

formed at Stanford University) published a study comparing

the Linux TCP/IP stack to commercially developed TCP/IP

stacks [22]. This comparison showed that an active, mature

Open Source project may have fewer defects than similar

Vinay Tiwari et al, International Journal of Advanced Research in Computer Science, 3 (1), Jan –Feb, 2012, 352-359

© 2010, IJARCS All Rights Reserved 356

commercial projects. Specifically, Reasoning lined up the

Linux TCP/IP implementation from the 2.4.19 Linux kernel

against five commercial implementations. The company used

automated tools to look five kinds of defects in code: Memory

leaks, null pointer dereferences, bad de-allocations, out of

bounds array access and un-initialized variables. Reasoning

found 8 defects in 81,852 lines of Linux kernel source lines of

code (SLOC), resulting in a defect density rate of 0.1 defects

per KSLOC. In contrast, the three proprietary general-purpose

operating systems (two of them versions of UNIX) had

between 0.6 and 0.7 defects/KSLOC; thus the Linux kernel
had a smaller defect rate than all the competing general-

purpose operating systems examined. The rates of the two

embedded operating systems were 0.1 and 0.3

defects/KSLOC, thus, the Linux kernel had an defect rate

better than one embedded operating system, and equivalent to

another.

In 2003, Reasoning, Inc also performed a defect analysis

of the Apache web server and Tomcat, which is a mechanism

for extending Apache with Java Servlets, by using their defect

discovery tool. For Apache, the tool found 31 defects in

58,944 source lines, a defect density of 0.53 defects per
thousand lines of source code (KSLC). In a sampling of 200

projects totaling 35 million lines of code, 33% had a defect

density below 0.36 defects/KSLC, 33% had a defect density

between 0.36 and 0.71 defects/KSLC, and the remaining 33%

had a defect density above 0.71 defects/KSLC. For Tomcat,

the tool found 17 software defects in 70,988 lines of Tomcat

source code. The defect density of the Tomcat code inspected

was 0.24 defects/KSLC.

In a similar manner to the previous studies, on December

2003, Reasoning announced its analysis results comparing

MySQL with various proprietary programs. MySQL had
found 21 software defects in 236,000 source lines of code

(SLOC), producing a defect density of 0.09 defects/KSLOC.

Using a set of 200 recent proprietary projects (totaling 35

million SLOC), the same tools found a defect rate of 0.57

defects/KSLOC, over six times the error rate.

Mockus et el and later Dinah-Trong et al[23] measure and

compares the defect density of apache code and FreeBSD with

four commercial projects and find that the defect density of

Apache and FreeBSD is smaller than the commercial systems

after the feature test.

In an another report by Coverity after analyzing the

software quality of popular open source project, The average
defect density for these 32 open source packages that analyzed

by them was 0.434 defects per thousand lines of code. While

most popular open source packages Linux, Apache, MySQL,

and Perl/PHP/Python showed significantly better software

security and quality above the baseline with 0.290 defects per

thousand lines of code. Coverity’s recent open source integrity

report published in 2010 on smartphone based popular

operating system Android Foryo, says that The Android kernel

has better than industry average defect density (one defect for

every 1,000 lines of code). Android Kernel 2.6.32 has about

half the defects that would be expected for similar software of
the same size.

Ioannis Samoladas et el [24] studied almost 6 million lines

of code, tracking several programs over time, using the

maintainability index (chosen by the Software Engineering

Institute as the most suitable tool for measuring the

maintainability of systems). Using their measurements, they

concluded that OSS ―code quality appears to be at least equal

and sometimes better than the quality of [closed source

software] code implementing the same functionality.‖ They

conjectured that this ―may be due to the motivation of skilled

OSS programmers...‖.

VI. DISCUSSION

Any software tends to be buggy because of several causes.

Apart from other some of the causes from which open source

gain the advantages are as follows:

a. Miscommunication: Lack of communication or

miscommunication between parties at any stage in the
development phase is the common reason for the

software defects. In proprietary development

environment developers develop system for other. In the

requirement gathering phase communication error like

vague, incomplete, ambiguous or non-specific

requirements causes defects in the software, because the

developers would have to deal with the problems that are

not clearly understood. This situation is not arises in the

open source development as the developers are

developing software in which they have interest and

clearly understand the problem and knows what is to be

develop.
b. Last minutes changes: Last minute change in the

requirement, change in tools/ platform, late design

changes can require last minute code changes, which are

likely to introduce errors. In OSS projects generally

development starts with the need of developers so the

problem is definite and well understood at the beginning

of the project by the developers. Therefore these types of

last minutes changes are not occur in OSS development

causing more reliably ands less buggy code generation.

c. Commercial pressure: OSS software are developed in

accordance with purely technical requirements. It does
not require to think about commercial pressure that often

degrades the quality of the software. Commercial

pressures make traditional software developers pay more

attention to customers’ requirements than to security

requirements, since such features are somewhat invisible

to the customer.

d. Scheduling or Time pressure: The fixed schedule

imposed on the software developers also degrades the

quality of the software [25]. In a proprietary

development Customers, business owners or managers

want things done fast and often have little awareness of

how long it may take to create a piece of software, giving
the development team a highly unrealistic deadline to

complete a project. Because of the time pressure it is

probable that compromises are made in

requirement/design to meet delivery schedules.

Programmers are not having enough time to design,

develop and test their code and forcing them to release

software that's possibly not ready which leads to errors

and defects. On the other hand open source projects are

Vinay Tiwari et al, International Journal of Advanced Research in Computer Science, 3 (1), Jan –Feb, 2012,352-359

© 2010, IJARCS All Rights Reserved 357

largely immune from ―time-to-market‖ pressures [26]

Programmers/developers have no deadlines or

scheduling pressure. It is released if and when it is ready,

which generally means that there has been an honest

attempt to identify unknown bugs and that all known

bugs have been fixed. A system is released only when

the project owners are satisfied that the system is mature

and stable.

e. Programming Error or Poor coding practices: In a

proprietary development programmers can make

mistakes because of their poor training, lack of interest in
the project, pressure to quickly turning out the code

resulting unclear and non understandable code. It’s tough

to maintain and modify code that is badly written or

poorly documented; the result is bugs. Whereas in Open

source development developers join projects because of

their interest, and write code with more care and

creativity because developers are working only on things

for which they have a real passion. The absence of code

development pressure results a well written and

documented code.

f. Human Factor: Bugs may also be introduced due to
distractions, high stress level, and low knowledge level

of technology. OSS development is a part time activity

and developers working only on the technologies in

which they have confidence and participated in open

source projects for challenge, reputation building,

improving skills, altruism and for fun.

In the open source model often it is argued that source

code availability allows faster software evolution. The idea is

that multiple contributors can be writing, testing, or debugging

the product in parallel, which supposed to accelerate software

evolution. Open Source proponent often quote the ―Linus
Law‖ given by Eric Raymond ―Given enough eyeballs, all

bugs are shallow‖ means the more people who can see and

test a set of code, the more likely flaws will be caught and

fixed quickly. This maxim can be verified by the series of

study and analysis on open source and commercial software

comparisons, conducted by reasoning. Reasoning found that

defect density of open source software is comparable to the

proprietary software. In the first study the Linux TCP/IP stack

was compared to commercial developed TCP/IP stacks and

the comparison showed that an active, mature open source

project may have fewer defect than a similar commercial

project. In the second study, where pre release Apache http
server v2.1 was compared with the less mature commercial

code and it was found that open source and commercial

software start at a very similar defect density. i.e. open source

and commercial software have a very similar quality. In the

third open source study mature Tomcat 4.1.24 application

server code was compared with proprietary code it was found

that Tomcat showed a defect density similar to proprietary

code at a similar point in the development life cycle. In the

next open source code inspection project on the request of

developers, MySQL4.0.16 open source database was

compared and it was found that the defect density of MySQL
is about 6 times lower the average of comparable proprietary

projects

Reasoning [27] validated these findings by plotting a graph

between defect density and time to observe the approximation

of the change in defect density over time. Given the limited

data, Reasoning sees Open Source as being faster, on average,

than commercial efforts at removing defects from software.

This is not as expected, since commercial software companies

often invest considerably in testing tools and time in order to

meet reliability requirements demanded by their customers. It

should be noted that Open Source can end up with fewer

defects. Because the new evidence shows that both

development environments are likely to start with a similar
number of defects, the core of the difference must be after

development starts. In that time period, the main difference is

the number of developers actually looking at the code.

Commercial software companies are more likely to have

sophisticated tools; however, they are unlikely to have

achieved the same level of peer review that Open Source code

can achieve, which is critical in finding defects.

Figure 3: Benefits of peer review source [27]

Thus in open source development peer review process

drive excellence in design since large amount of developers

globally contributing and analyzing the code, making OSS
secure and constantly increasing the quality as open source

software code is available publicly. In the case of Linux, about

1,200 programmers have contributed bug fixes and other code.

This means if a bug is reported in Linux, a couple dozen

programmers begin looking for it, and many bugs are

corrected within hours. The quality and security of Linux is

accelerate through the addition of several ―automated‖ eyes.

This Linux axiom points to the fact that when a bug becomes

an issue, many people have the source code, and it can be

quickly resolved without the help of a vendor [28]. Various

studies on successful open source project reveals that ―In
successful open source developments, a group larger by an

order of magnitude than the core will repair defects, and a yet

larger group (by another order of magnitude) will report

problems‖.

Openness in the OSS is another key benefit. Openness of

the source code allows faster software evolution since multiple

contributors writing, testing, or debugging the product in

parallel and sharing development efforts among the group

members. Openness of the communities allows users who

experience a bug in the software to locate that bug and to fix it

accordingly. The openness of the review process usually
makes it possible to resolve the conflicts through discussion.

Vinay Tiwari et al, International Journal of Advanced Research in Computer Science, 3 (1), Jan –Feb, 2012, 352-359

© 2010, IJARCS All Rights Reserved 358

Community members can work together based on the recorded

information to resolve conflicts. Opponents of OSS software

argue that ―if the software is in the public domain, then

potential hackers have also had the opportunity to study the

software closely to determine its vulnerabilities‖ [29]. But the

fact is looking at the code , which can often be more than

1,00,000 lines is a very inefficient way of finding insecurities,

indeed a lot of people have found many insecurities in Internet

Explorer and Windows without seeing a line of code.

Anderson proved a theorem that it does not matter whether the

system is open or closed. Opening a system enables the
attacker to discover vulnerabilities more quickly, but it helps

the defenders exactly as much.

Proprietary software often passes through a beta testing

before the final release. But this beta testing is not effective at

correcting remaining bugs because the team that developed the

software is the same one attempting to fix bugs and the

remaining bugs can not be easily found as the developers has

too many built in assumptions about the code. Developers in

proprietary organization are mainly not users and therefore

they do not know which functionalities to develop or improve

first or simply where the bugs are. On the contrary, open-
source communities benefit considerably from a ―users as

innovators‖ organization [30], and attract numerous

heterogeneous developers which, using their own idiosyncratic

experience, correct various bugs and suggest various new

developments. In OSS development active user community

which is involved in bug-fixing, testing, bug-reporting,

documentation, release management etc., helps the developers

community to stay concentrated on their work and also

enables extensive testing and efficient bug fixing. Participants

of project are generally well aware of who the experts are for a

particular type of bug. Bug fixing is allotted to particular
expert group and severe defects may also be fixed within

hours of their detection. Sometime micro-competition may

occur when multiple participants work on a single bug which

also resulting a quicker bug fixing. Raymond also suggests

that debugging is even more efficient when users are co-

developers, as is most often the case in open-source projects.

In OSS development most developers start out as users and

therefore guide their development efforts from the user's

perspective.

According to CIO magazine’s report. [31] The average

time to resolve an application problem is 6.9 days for

enterprise developers and 6.7 days for software vendors. Ten
percent of those problems take 10 days to solve. Evans Data

Corporation (EDC) after conducting a survey of several

hundred open-source and Linux developers reported that ―The

average time between discovery and solution of a serious bug,

for 36 percent of open-source developers is less than eight

hours. Hours, Not days, Not a week‖. Thus the open-source

development process is much, much faster at fixing bugs than

the proprietary-software development process.

VII. CONCLUSIONS

In this paper studies are made on the defect density of OSS

as compare to proprietary software and bug management

practices in open source software. Open-source software

development presents an approach that challenges the

traditional, closed-source development approaches. For the

some of the popular open source software, various analysis

and studies suggest that the open source software having

defect density below the industrial average. Although this may

not prove that OSS will always be less buggy or of highest

quality, but it clearly shows that OSS can be of high quality.

Although, open source projects not following the traditional

development methods, do not having well-designed

development process, planed resources but open source

communities are constantly creating and improving their
working methodologies.

The peer review process drive excellence in design and

open source development model benefits from the "many

eyes" approach. Bug identification and reporting is much

better and bug fixing is fast, as compare to proprietary

software. Only open source has a plan for fixing bugs in the

environment where they’re discovered. Bug repositories also

playing important role in OSS development. Information

stored here is useful for the developers and researchers to

understand the development process like development

methodology, roles of people, level of involvement, bug
reporting, automated bug assignment etc. Studies also suggest

that in later versions, OSS having less or even zero bugs

because of quick identification fast fixing of bugs. This causes

the popularity of OSS among software users. In alone

SourceForge site software like VLC media player, 7-Zip,

eMule, Filezilla, Smart package of Microsoft's core fonts,

Portable Software/USB having more than 10,00,000 weekly

downloads. Not only users, developers also associating with

OSS movement to enhance their skills. As of July 2011, the

SourceForge repository hosts more than 300,000 projects and

has more than 2 million registered users. In last 2-3 years open
source project involvement has increased more than 50%.

Software development companies are also taking part in

the open source movement and using OSS component for their

product. They usually use the beta versions of OSS; report

bugs or fix bugs and often release software with added

functionality. Android operating system for smart phone is a

good example of this. The whole operating system is open

source, but OEMs can add proprietary software on top of it for

custom applications for their devices. Analyst firm Gartner

also estimated that by next 2 years, at least 80% of

commercial software packages would include elements of

open source technology. Clearly the future of the software is
the hybrid form of OSS and proprietary software.

VIII. REFERENCES

[1] Open source Initiatives, http://www.opensource.org/docs/osd.

[2] Amit Deshpande, Dirk Richle, (2008), The total growth of Open
source, Proceedings of the fourth conference on Open Source
Systems (OSS 2008), Springer Verlag.

[3] K Brown, \Opening the Open Source Debate", 2002, Alexis de
Toqueville Institution, at

http://www.adti.net/html_files/defense/opensource_whitepaper.p
df.

[4] Ross Anderson, Open and Closed Systems Are Equivalent (That
Is, in an Ideal World)., Perspectives on Free and Open Source
Software, p127,2005.

Vinay Tiwari et al, International Journal of Advanced Research in Computer Science, 3 (1), Jan –Feb, 2012,352-359

© 2010, IJARCS All Rights Reserved 359

[5] Von Hippel, Eric (2001), ―Innovation by User Communities:
Learning from Open Source Software.‖ MIT Sloan Management
Review, Summer 2001.

[6] Yi Wang, Defeng Guo EMOS/1: An Evolution Metrics Model
for Open Source Software, source internet.

[7] Eric S. Raymond, (1999), The Cathedral and the Bazaar:
Musingson Linux and Open Source by an Accidental
Revolutionary, O’Reilly & Associates.

[8] Mockus Audris, Fielding Roy T. and Herbsleb James (2000), A
Case Study of Open Source Software Development: The Apache
Server. ACM.

[9] Gacek, C. and Arief, B., The many meanings of open source,
IEEE Software, Vol. 21, No. 1, pp. 34-40, 2004.

[10] C horng-Guang W., James H. G., Clifford E. Y, An empirical
analysis of open source software developers' motivations and
continuance intentions, Information & Management, Vol. 44,
No. 3,pp. 253-262, 2007.

[11] Otso Kivekas, Free/Open Source Software Development:
Results and Research Methods,Master thesis, pp. 18,2008.

[12] http://www.websoftwareqa.com/2011/01/defects-vs-bugs-are-
they-different/, accessed on nov. 2011.

[13] Software bug - Wikipedia, the free encyclopedia
,en.wikipedia.org/wiki/Software_bug .

[14] Linda Westfall, Defect Density,
http://www.westfallteam.com/Papers/defect_density.pdf.

[15] Yogesh Suman & A K Bhardwaj, Open Source Software and
Growth of Linux: The Indian Perspective , DESIDOC Bulletin
of Information Technology , Vol. 23, No.6 , pp. 9-16, November
2003.

[16] D. Cubranic. ―Open-source software development.‖ Workshop
on Software Engineering over the Internet, held as part of the
IEEE/ACM International Conference on Software Engineering
(ICSE'99), 1999.

[17] A. Mockus, R. T. Fielding, and J. D. Herbsleb. Two case studies
of open source software development:Apache and mozilla.
ACM Trans. Softw. Eng. Methodol., 11(3):309–346, 2002.

[18] John Anvik, Lyndon Hiew and Gail C. Murphy, Coping with an
Open Bug Repository, downloaded from
citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.116.

[19] Cobra Rahmani, Harvey Siy, Azad Azadmanesh, An
Experimental Analysis of Open Source Software Reliability,

www.cse.buffalo.edu/srds2009/.../cobra-open-source-srds09-
camera.

[20] Akinori Ihara, Masao Ohira, Ken–ichi Matsumoto, An Analysis
Method for Improving a Bug Modification Process in Open
Source Software Development, IWPSE-Evol’09, August 24–25,
2009, Amsterdam, The Netherlands.

[21] http://www.coverity.com/html/research-library.html
#CaseStudies, accessed october 2011.

[22] http://www.reasoning.com/downloads.html, accessed october
2011.

[23] Trung Dinh-Trong and James M. Bieman, Open Source
Software Development: A Case Study of FreeBSD Proc. Tenth
Int Software Metrics Symposium 2004

[24] Wheeler David A. (2007) Why Open Source Software / Free
Software (OSS/FS, FLOSS, or FOSS)? Look at the Numbers!
Available at http://www.osepa.eu/site_pages /News/43/ Why
OSS_Look_at_the_numbers_Wheeler_2007.pdf. retrieved on
15.4.2011.

[25] Pfaff Ben, David Ken, Why open source software is better for
society than proprietary closed source software. Available at
http://benpfaff.org/writings/anp/oss-is-better.html retrieved on
15.4/2011.

[26] M. W. Godfrey and Q. Tu, ―Evolution in Open Source Software:
A Case Study,‖ Proceedings of International Conference on
Software Maintenance (ICSM'00), 2000.

[27] http://www.reasoning.com/downloads.htmlMySQL_White_Pap
er4 retrieved october 2011.

[28] Crowston, K. & B. Scozzi. 2004. Coordination practice within
FLOSS development teams: the bug fixing process. Paper
presented at the first International Workshop on Computer
Supported Activity Coordination, Porto, Portugal.

[29] K Brown, \Opening the Open Source Debate", 2002, Alexis de
Toqueville Institution, at
http://www.adti.net/html_files/defense/opensource_whitepaper.p
df.

[30] Von Hippel E. (1988), The sources of innovations, MIT Press.

[31] Matt Asay, Open-source vs. proprietary software bugs: Which
get squashed fastest?, accessed from:
http://news.cnet.com/8301-13505_3-9786034-16.html on
october 2011.

