
Volume 2, No. 6, Nov-Dec 2011

International Journal of Advanced Research in Computer Science

RESEARCH PAPER

Available Online at www.ijarcs.info

© 2010, IJARCS All Rights Reserved 130

ISSN No. 0976-5697

A New Solution for Travelling Salesman Problem By Genetic Algorithm

Shirin Hatami*
Young research club, Islamic Azad University,

Babol-branch, Babol, Iran

Shirin_hatami@yahoo.com

Morteza Babazadeh
Faculty member of Islamic Azad University,

Babol-branch, Babol, Iran

Morteza_babazade@yahoo.com

Abstract: In this paper we have proposed a new solution for TSP. in the beginning of the algorithm we produce pool of solutions randomly and

then we try to obtain better solutions by mutation, cross over and selection best chromosomes. We have designed a special kind of cross over

and mutation operator in this algorithm. Each chromosome has a fitness that represents length of a tour and an importance number that

represents number of links in proposed tour of chromosome.

Keywords: TSP; Genetic Algorithm; NP-complete

I. INTRODUCTION

There are many algorithms for solving TSP problem.
Some of these algorithms can find the optimal solution of
this problem. For example dynamic programming[1]. The
main weakness of this algorithm is the execution time of
them. They have a complexity greater than polynomial
functions that called NP-Complete algorithms. Some other
algorithms try to solve this problem in an acceptable time.
For example greedy method[2]. But these solutions cannot
guarantee to obtain an optimum tour for salesman. In this
paper we have used genetic algorithm to solve this problem.
So first we have to determine inputs of algorithm. We have a
matrix that represents a map and the roads between them.

each row and each column equivalent a city. ijm in matrix

M represents distance of a direct road between cities i and

j . If there is no any road between cities i and j then ijm

will be . Fig 1 shows a map and its equivalent matrix. In
this paper we have supposed that all roads are flat and there
is now any difference between roads.

Figure 1. samples

II. CHROMOSOME

In proposed chromosome we have n genes where n is
number of cities. Gene number one contains the first city in
tour. The second gene contains next city in tour and so on.
Finally the last gene represents the city that we have to go to
the first city from it. For example for the graph in Fig 1 we
have a chromosome by 4 genes. (1,3,4,2) , (2,3,4,1),etc are
sample configuration for this chromosome. Although some
of this configuration are not a valid solution for our problem.

Each chromosome has a fitness that represents length of

tour in this chromosome. Another field for measuring
chromosome efficacy is importance number. Importance
number is number of valid trips between cities that proposed
by a separate chromosome. For example importance number
of (2, 3, 4, 1) is 3 because there are direct road between cities
3 and 4, cities 4 and 1, cities 1 and 2. But there is no any
direct road between cities 2 and 3. Obviously maximum
value of importance number will be n where n is number of

cities. For many chromosomes the value of fitness is ,
because it is possible that there was no any direct road
between proposed trips by chromosome. By importance

number we can judging between chromosomes that have
value in their fitness to create better generation. Now we
have to introduce proposed mutation and cross over
operators. Fitness and importance number of each
chromosome, evaluate by algorithm in Fig 2

}
;

}
;

)!(
;

];1[.

;1
)(

];[.
{

)1(
;0

;0
{

)(

numberandfitnessreturn

number
mif

mfittnessfitness
igeneschl

else
l
niif

igeneschk

ntoifor
number
fitness

Chchromosomecaculatefunction

kl

kl

Fig2. Algorithm of calculating fitness & importance number

III. CROSS OVER OPERATOR

In each chromosome, the value of genes has to different
and n cities had to be distribution in n genes. In fact we
have permutation for cities in genes. So we have a cyclic
cross over operator that after cross overing we will obtain
chromosomes with considering this limitation.

mailto:Shirin_hatami@yahoo.com
mailto:Morteza_babazade@yahoo.com

Shirin Hatami et al, International Journal of Advanced Research in Computer Science, 2 (6), Nov –Dec, 2011, 130-131

© 2010, IJARCS All Rights Reserved 131

Suppose that we two chromosome like A= (1,3,4,2,5,6)
and B=(4,5,6,1,3,2) and we want to execute cross over
operation on them to create child C. In the beginning we
select the first gene of A that equals 1 and put this gene in
child chromosome as first gene(c= (1,*,*,*,*,*)). Whereas
the first gene in B is equal 4, we have to put city 4 from A to
C(c= (1,*, 4,*,*,*)). Now 4 from A placed on third gene of
child and in third gene B contains 6 so c=(1,*,4,*,*,6).then 6
placed on child and then c=(1,*,4,2,*,6). Now 2 placed on
forth gene in B contains 1, that number 1 previously copied
to children.in this moment cycle is finished. We have to
select the reminder genes from B. finally the child is equal
C= (1, 4, 5, 2, 3, 6). As you see we have succeed to build a
new children from two parents by using of a cyclic cross
over.

IV. MUTATION

For mutation operator we select one gene from
chromosome and then exchange it to another number. For
example suppose that in (1, 2, 3, 4, 5, and 6) after mutation
number 3 convert to 5. Accordingly we have to change
number 5 to 3 in chromosome. Finally we (1, 2, 5, 4, 3, 6) as
a new tour.

V. SELECTION

As we explained before we have a fitness and a
importance number in each chromosome. All chromosomes

that have a fitness less than will be select for next
generation, because these are complete tours for salesman.
Then will sort the reminder chromosomes on importance
number and select best of them. Finally 5% of reminder
chromosomes will be select randomly.

VI. EVALUATION ALGORITHM MODEL

For evaluation proposed algorithm first we implement
proposed algorithm, classical algorithm based on branch and
bound and a classic intelligent method. Input graph has
created randomly. We can just determine number of cities.
Map created by set randomly the proximity matrix row to
row.

0 5 10 15 20 25 30
0

0.5

1

1.5

2

2.5

3

3.5

4
x 10

4

number of nodes

e
x
e
c
u
ti
o
n
 t

im
e

branch & bound

intelligent

proposed

Figure 3. efficiency of algorithm

execution time of classical intelligent, branch & bound
and the proposed method has shown in Fig 3. As you see for
about 25 city, branch and bound is better. For this beyond the
proposed algorithm and the classical intelligent method are
better.

For determine difference between proposed method and
classical intelligent method we have solved several random
problems by both algorithms and the solutions shown in Fig
4. In all executions basic population is 1000, probability of
mutation is 0.1 and number of generation is 20.

20 25 30 35 40 45 50 55 60 65 70
100

120

140

160

180

200

220

240

260

280

number of nodes

s
o
lu

ti
o
n
 t

o
u
r

le
n
g
th

intelligent

prposed

Figure4. compares algorithms

VII. CONCLUSION

Soft computing is the best method for solving Tsp
because all the existence classic method is NP-complete. By
these algorithms we can find an optimum solution in an
acceptable time for travelling salesman problem.

VIII. REFERENCES

[1] Richard Newpolitan;kewmars naeemipoor. Algorithm design

[2] Ellis Horowitz,Sartaj Sahni;Sanguthevar Raja. Sern,

Computer Algorithm

[3] Milena Karova; Vassil Smarkov; Stoyan Penev, Genetic

operators crossover and mutation in solving the TSP problem,

International Conference on Computer Systems and

Technologies - CompSysTech’ 2005, pages IIIA.20-1 to

IIIA.20-6

[4] Chiung Moon ; Jongsoo Kim ; Gyunghyun Choi ; Yoonho

Seo, An efficient genetic algorithm for the traveling salesman

problem with precedence constraints, European Journal of

Operational Research 140 (2002) 606–617

[5] J. Renaud; F.F. Boctor; J. Ouenniche, A heuristic for

thepickup and delivery traveling salesman problem,

Computers and Operations Research 27 (2000) 905–916.

