
��������	�
����	��������������

������������������������������������ ����!����"���������������

�##��"$�%�%#��

������&�������������'''��(��� ������

© 2010, IJARCS All Rights Reserved 195

ISSN No. 0976-5697

Crosstalk: A Scalable Crossprotocol Monitoring System For Anomaly Detection

Iamuna S, Hari Kishore

School of IT and Engg.

VIT University,

Vellore, India

Iamunas66@yahoo.co.in

Jeyanthi. N.*
School of IT and Engg.

VIT University,

Vellore, India

njeyanthi@vit.ac.in

Abstract: As there is a relentless growth in IP, Monitoring is important both in the case of operations of a network and the services that run on it.

Operators on the network perform monitoring on various purposes such as traffic engineering, Quality of Service, security and detection of faults

and misconfigurations. Monitoring and detection of anomalies in a network is a very challenging problem. The most common forms are botnet

detection and Denial of Service attacks. Many of these anomalies use several protocols to carry out their works. Botnets uses IRC to control and

SMTP to send out spam. Another example is VoIP where calls tend to be split into signalling and media traffic as in the case with SIP and RTP.

These have to be detected using cross-protocol correlation. In addition to cross-protocol correlation, monitoring needs to be done in a distributed

fashion, since traffic from a particular attack or misconfigurations may cross different monitoring points in the network. While previous work

has looked into the area of cross-protocol detection [2] , it has focused on single-point solutions, and so did not scale nor could it correlate attack

traffic traversing more than one monitoring point. This raises a serious scalability issues while designing, which needs to monitor large quantities

of traffic and also to aggregate results to provide network wide anomaly detection. In this paper we introduce Crosstalk - a scalable and efficient

protocol to detect anomalies using cross-protocol correlation in a distributed fashion. Evaluation of detecting anomalies in distributed system

does not show how it would scale under heavy load. For the purposes of evaluating Crosstalk’s scalability and performance, we focused on SIP-

based VoIP attacks. Here, we used network simulator and evaluate the performance. Based on CDR (Call Detail Record) and on the traffic the

results simulated and anomaly is detected. The probes monitor the network and collect the data in bloom filters and export the measurements to

the mediators and collector in DAT tree structure. Based on the application the results were simulated.

Keywords: Cross talk, CDR, Denial of Service attack, SIP, RTP, Voice over IP, DAT.

I. INTRODUCTION

Monitoring large networks in order to detect anomalies is
inherently difficult for several reasons. Many of these
anomalies require cross-protocol correlation in order to be
detected. Botnet, for example, often use several protocols to
coordinate activities and to carry out attacks (e.g., IRC for
control and SMTP to send out spam). An important place
where cross-protocol correlation needed is VoIP in which calls
tend to be split into signaling and media traffic, as is the case
with SIP and RTP. In addition to cross-protocol correlation,
monitoring needs to be done in a distributed fashion, since
traffic from a particular attack or misconfigurations may cross
different monitoring points in the network. Making matters
more difficult is the relentless growth of IP traffic volume,
nearly doubling every two years.

Crosstalk, a scalable architecture that gathers data from a
potentially large set of distributed monitoring probes, and
performs cross-protocol correlation to detect network
anomalies. While previous work has looked into the area of
cross-protocol detection it has focused on single-point
solutions, and so did not scale nor could it correlate attack
traffic traversing more than one monitoring point.

II. CROSS TALK’S ARCHITECTURE

Crosstalk’s architecture consists of three main features that
allow it to perform distributed detection in a scalable way:
leveraging Distributed Aggregation Trees (DATs), taking
advantage of probabilistic data structures (e.g., Bloom filters),
and using a novel mechanism called backtracking (BT).

A. Distributed Aggregation Trees

 The simple approach of exporting data from several

monitoring probes to a centralized location clearly does not
scale. In order to cope with this scalability issue, efforts both in
the research and standardization communities have focused on
creating tree-based hierarchies, whereby monitoring probes
export measurements to intermediate nodes called mediators.
These in turn perform some sort of data reduction operation
(e.g., aggregating packet counts) and export the results up the
tree hierarchy. In the final step the root, which is a special
mediator called a collector, stores the aggregated results.
Ideally we would like to have a way of deriving such a tree-
based topology dynamically in order to adapt to traffic
conditions.

Figure 1. Chord fingers

The basic insight behind a DAT is that Chord’s fingers
already provide a tree structure. In order to illustrate this,figure
1(a) shows a regular Chord network with dotted lines
representing the path from each node to node N24 (perhaps the
responsible node for a particular key); figure 1(b) then shows

Jeyanthi. N. et al, International Journal of Advanced Research in Computer Science, 1 (3), Sept –Oct, 2010, 195-198

© 2010, IJARCS All Rights Reserved 196

these same connections but this time drawn as a tree. As canbe
seen, for any given key, Chord naturally builds a tree rooted at
the node responsible for that key. In this way, each key has its
own DAT, with all the DATs sharing the same peer-to-peer
infrastructure. Within each DAT, intermediate nodes (i.e., all
nodes except the leaves of the tree) can aggregate data as it
travels towards the root, thus providing scalability.

.

B. Probabilistic Data Structures

Clearly nodes in the DAT will need to export information
about the monitored data, and this will consume bandwidth.
Another consideration for real-time monitoring and detection is
being able to perform the cross-protocol correlation quickly. To
achieve both of these goals we rely on probabilistic data
structures, and more specifically Bloom filters (BFs).

Our attack detection application works as follows: each of
the probes monitors all the on-going SIP and RTP traffic. The
SIP messages are parsed and, for each call, the two end-points
of the media traffic are located by examining the SDP data; as
for the RTP traffic, the two end-points simply correspond to the
source and destination addresses of the messages.

 Our method assumes the probes to synchronously and

periodically export their probabilistic summaries of the

monitored traffic.

The monitored data is used to fill two Bloom filters:

 • A Bloom filter for keeping track of the end-points
of the media traffic corresponding to SIP calls that have been
terminated (or redirected) within the last measurement period.

 • A Bloom filter for keeping track of the end-points of
the RTP sessions that have been terminated (or redirected)
within the last measurement period.

Clearly, the hash functions associated with these BFs must
be the same so that the RTP and SIP endpoints associated with
the same call are hashed into the same bit positions. Once these
BFs are created, they are exported to the nearest mediator (i.e.,
the parent of the probe in the DAT). The mediator then joins all
of the SIP BFs and all the RTP BFs received from its sons by
performing a bitwise “OR”, thus obtaining two summarized
BFs that it forwards to its own mediator.

C. Backtracking

While some applications might be content to only receive
the summarized data from a DAT’s collector, others will use
such summarized data as a trigger for retrieving more detailed
information (e.g., packet headers) at the monitoring probes,
perhaps to determine the cause of the trigger. In addition,
Bloom filters carry a low but non-negligible probability of false
positives, and so we need a way to verify whether a result is
valid or just a false positive. In order to accomplish these goals
we introduce a mechanism called backtracking. The idea

behind it is simple: when exporting Bloom filters to nodes in
the DAT, keep a copy of them locally so that the system can
track back to the original probes that monitored the traffic.

The detection of the anomalous behavior is achieved by a
node in the DAT performing a bit-wise “XOR” of the RTP and
SIP BFs: if two bits in the same position are different, that
means that either the data stream or the control stream has not
been terminated. In that case, all of the node’s children receive
a backtracking request which includes the indices of the
unmatched bits (i.e., the set bits that appeared in one BF but not
the other). Each intermediate node then checks such bits
against its cached aggregated BFs, and, if at least one among
those is set, it propagates the BT request to its children. Such a
procedure is repeated recursively until all the probes which
have logged relevant information are reached.

Figure 2 shows the process in greater detail. Probes P0 and
P3 monitor traffic and export data about it in the form of
Bloom filters, depicted as a set of squares with each square
representing a bit in the filter (note that the figure is simplified
for explanatory purposes: normally an entry in the Bloom filter
would use up several bits, and more than one Bloom filter
would be used to represent the protocols to be correlated). In
addition, probes, as well as mediators, keep a local copy of
exported Bloom filters, shown in the figure in grey. As the
exported filters travel up the tree, mediators perform a bitwise
operation to combine the filters, which eventually reach the
collector C. Upon receiving all the combined data, C correlates
Bloom filters from different protocols and, depending on the
application, triggers a backtracking request to all its immediate
mediators, in this case M4 and M5. The request includes the
collector’s Bloom filter (shown in white), which the mediators
use to compare it with their locally stored state by performing a
bitwise operation: if the number of set bits in the resulting filter
is higher than a user-defined threshold, the backtracking
request is propagated to all of the mediator’s children;
otherwise, no relevant probes exist in this area of the DAT and
the backtracking process finishes. Eventually the back tracking
message arrives at the probes, in this case P0and P3. In section
IV we provide an evaluation of the costs associated with this
mechanism and show its applicability even in large networks.

Figure 2. Network moniotr

III. EVALUATION

In this section we provide extensive simulation results to
show the performance of Crosstalk, and in particular that of the
VoIP attack detection application. Please note that throughout
this section we use the term report to mean the Bloom filters
exported between probes and mediators as a result of the
monitoring and aggregation process.

Jeyanthi. N. et al, International Journal of Advanced Research in Computer Science, 1 (3), Sept –Oct, 2010, 195-198

© 2010, IJARCS All Rights Reserved 197

 A. Setup

 In order to assess the performance of our solution, we
evaluated several performance parameters through extensive
simulations. In greater detail, we extended the Oversim overlay
network simulator [14] by implementing a new application
module with Crosstalk’s basic functionality and which runs on
top of the Chord. The input to the simulation consists of Call
Data Records (CDRs), in order to match the format used by our
VoIP data set (a CDR is a short record of a VoIP
communication, including fields like caller, callee, and call
duration). To have control over their distribution, CDRs are fed
to the simulated monitoring probes by a centralized CDR
dispatcher module: each node is assigned a given range of the
overall hash ID space and each CDR is handed over to the
responsible node (based on its source address).

In order to simulate the fact that RTP and SIP traffic for
the same call may traverse different paths, two separate copies
of the same CDR, representing in turn the RTP and SIP traffic
associated with a given call, are assigned to two distinct probes
by using two independent hash functions. Such a choice is
rather conservative, since in a significant fraction of the real
cases, the two traffic streams are likely to follow the same path,
but this approach is still useful to show that our system can
cope with even this extreme case. It is worth noting that the
simulated probes are actually nodes on the DATs, meaning that
they can act as probes for one key but as mediators (and even
collector) for others simultaneously. Regarding CDR
generation, we took two approaches. First, we generated CDRs
randomly by setting the timestamps and the call durations
according to a Poisson process (such a simple model has been
extensively used in the field of telephone traffic measurement).
The purpose here was to be able to effectively tune and change
the simulation parameters to show the performance of the
system. In the second approach we relied on an extensive data
set gathered from a large VoIP operator in order to demonstrate
Crosstalk’s applicability to a real world scenario. In both cases
we modified the CDRs at a certain rate (set as a percentage of
the total CDRs) in order to simulate malicious calls.

IV. PERFROMANCE ANALYSIS

In this section we present simulation results based on
generated CDRs in order to assess the system’s performance
and scalability. Crosstalk’s VoIP application depends on a
number of different parameters:

• Bloom filter size, which affects several factors such as the
missed detection rate, the bandwidth consumed and how much
state nodes in the DAT keep.

• The call rate, in other words, how much traffic the
system needs to monitor, export, and correlate.

• The measurement interval, which determines how long
the probes keep data locally before exporting (longer intervals
result in lower overheads but increase the detection delay).

• The anomaly rate, or percentage of malicious calls,
which increases the costs associated with backtracking
requests.

• The number of probes, equal in our case to the number
of nodes in the p2p system, affecting the DAT’s topology and
therefore the messaging overhead, the amount of aggregation,
and the detection delay.

A.Bloom filter size and call rate:

For the first experiment we took a look at the first two
parameters and their relationship to false negatives and
positives. In other words, given a certain call rate, how would

an operator deploying Crosstalk dimension the Bloom filter
size (which affects things like bandwidth consumption) so that
the false negative and positive rates are relatively low? To this
end, consider that missed detections (i.e., false negatives)
happen when a collision in one BF causes a match with a “true”
set bit in the other BF, resulting in the “XOR” matching
operation to return 0 (the misdetection). Because the cause is
the collision within a BF, all the well-known results about BF
performance evaluation and dimensioning apply to our system.
In particular, as the number of keys in the BFs equals the call
rate � times the measurement period T, the missed detection
(md) probability can be expressed as:

P(md) = (1−(1− 1M) K � T)K �(1−e−K�TM)K
Where M stands for the BF size (in bits) and K for the

number of hash functions (which is set to an optimal value
depending on the other parameters).

To get a feel for the system’s performance we rely on this

model and on our CDR database, which shows a peak call rate
well below 100 calls per second. Even if we assume that since
more and more users are migrating from PSTN to VoIP such a
figure will increase in the future by an order of magnitude, our
system can handle the resulting traffic volume (1,000
calls/sec.): exporting data every 10 seconds and using 17KB-
wide BFs yields a target missed detection probability of 10−3,
while using 34KB-wide BFs yields a target missed detection
probability of 10−6. For a measuring infrastructure made up of
1,000 probes the total reporting traffic adds up to only few
MB/sec.

B.Measurement interval

If the BF size does not vary, a longer measurement period
implies a larger number of keys in the BF, and, in turn, an
increased missed detection probability. On the other hand, of
course, this involves lower bandwidth consumption, as data
summaries are exported less frequently. Depending on the
operational constraints, the previously presented mathematical
model allows finding out a good trade-off; we do not present
more extensive results here due to space constraints.

C.Anomaly rate

The next parameter we looked at was the anomaly rate,
and in particular how it affects the costs related to backtracking
(BT). Backtracking is triggered by either a detected anomaly or
a false positive. Assuming a well dimensioned system with a
low false positive rate (e.g., less than 1%) and no anomalies,
simulation results show about an order of magnitude difference
between export messages and BT messages. Arriving at more
precise figures is difficult since the actual number of
backtracking messages generated depends on the number of
probes which have to be reached by a BT request and on the
topology of the tree. Having said that, we ran a simulation to
get a feel for the effects of the anomaly rate on the system, and
in particular the cost of backtracking.

Jeyanthi. N. et al, International Journal of Advanced Research in Computer Science, 1 (3), Sept –Oct, 2010, 195-198

© 2010, IJARCS All Rights Reserved 198

The figure shows that, unless a very unrealistic scenario is

assumed (a network where one in ten calls is malicious), the
fraction of BT messages is small (usually an order of
magnitude smaller) with respect to the number of reports,
which proves that the BT mechanism can locate the relevant
probes without flooding the DAT with messages. Further, the
behavior of the system improves as the number of nodes
increases. These figures can be even further improved by
reducing the size of each BT message. Observe that the Bloom
filter obtained through a bit-wise “XOR” of the aggregated SIP
and RTP reports must have a very limited number of set bits (in
fact, the number of such bits should be lower than the number
of malicious calls times the number of hash functions), which
lends itself to compression. In order to effectively compress
such a “sparse” bitmap, it is sufficient to include the indices of
the set bits within the BT message: the resulting message size
would be roughly some dozens of bytes, which is negligible
when compared to the bandwidth consumed by the reporting
messages.

D.Number of nodes

The number of probes does not affect the accuracy of our
system (that, in fact, depends on the overall number of
monitored calls) but rather the aggregation and backtracking
delay and the overall bandwidth consumption. The former
depends on the depth of the tree, which, in turn, grows
logarithmically with the number of probes. On the other hand,
the overall bandwidth consumption due to the report messages
grows linearly with the number of probes (each additional
probe corresponds to an additional edge on the tree, which, in
turn, corresponds to an additional report being transmitted). As
for the BT requests, their amount depends on several variables,
but we already showed their bandwidth consumption to be
negligible with respect to that of the report messages.

V. CONCLUSIONS AND FUTURE WORK

We have presented Crosstalk, a scalable and distributed
monitoring system for detecting cross-protocol anomalies. We
have implemented a VoIP attack detection application over it
and presented extensive simulation results on a large VoIP data
set. In addition, we used a mathematical model to show that
Crosstalk performs well even when presented with much higher
loads than those conveyed by current VoIP infrastructures.

The results confirm that Crosstalk can scale to a very large
number of monitoring probes, deal with a large call rate of
1,000 calls/sec and a high percentage of anomalous calls, all

while using small Bloom filter sizes of only dozens of KB. The
system can be easily tuned to achieve arbitrarily small missed
detection rates with a limited increase in terms of overhead.
Moreover, in case missing an anomaly is not acceptable, a
slight change in the system layout allows Crosstalk to fulfill
such a requirement. One of the topics we did not discuss due to
space constraints is tree topologies. The DATs we used relied
on Chord’s normal routing algorithm, which can result in
unbalanced trees, especially when the DAT contains a large
number of nodes. Towards a solution, previous work [16]
modified Chord to provide (almost) balanced binary trees.
While certainly an improvement, what we would like is not
only to have a mostly balanced tree, but also the ability to
control its depth; in other words, controlling the trade-off
between scalability through aggregation (achieved with deeper
trees) and aggregation delay and messaging overheads (reduced
by using shallower trees). We are currently working on an
algorithm to achieve this.

VI. REFERENCES

[1] Symantec Corporation, “Internet Security Threat Report
Volume XI,”
http://www.symantec.com/enterprise/threatreport/index.js
p, March 2007.

[2] Y.-S. Wu, S. Bagchi, S. Garg, N. Singh, and T. Tsai,
“Scidive: A stateful and cross protocol intrusion detection
architecture for voice-over-ip environments,” in DSN
’04: Proceedings of the 2004 InternationalConference on
Dependable Systems and Networks.

[3] B. Barry and A. Chan, “Towards intelligent cross protocol
intrusion detection in the next generation networks based
on protocol anomaly detection,” in The 9th International
Conference on Advanced CommunicationTechnology,
2007, pp. 1505–1510.

[4] P. Yalagandula and M. Dahlin, “A scalable distributed
information management system,” in SIGCOMM ’04:
Proceedings of the 2004conference on Applications,
technologies, architectures, and protocolsfor computer
communications. New York, NY, USA: ACM, 2004, pp.
379–390.

[5] R. Zhang, X. Wang, X. Yang, and X. Jiang, “Billing
attacks on sipbasevoipsystems,” in WOOT ’07:
Proceedings of the first USENIXworkshop on Offensive
Technologies. Berkeley, CA, USA: USENIX Association,
2007, pp. 1–8.

[6] M. Cai and K. Hwang, “Distributed Aggregation
Algorithms with Load-Balancing for Scalable Grid
Resource Monitoring,” Parallel andDistributed Processing
Symposium, International, vol. 0, p. 123, 2007.

[7] Sven Ehlert, Dimitris Geneiatakis, Thomas Magedanz,
“Survey of network security systems to counter SIP-based
denial of service attacks,” University of the Aegean,
Greece.

[8] Chung-Hsin Liu, Chun-Lin Lo, “The simulation for the
VoIP DDoS attacks,” 2008 , International Conference on
MultiMedia and Information Technology

