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Abstract: As there is a relentless growth in IP, Monitoring is important both in the case of operations of a network and the services that run on it. 

Operators on the network perform monitoring on various purposes such as traffic engineering, Quality of Service, security and detection of faults 

and misconfigurations. Monitoring and detection of anomalies in a network is a very challenging problem. The most common forms are botnet 

detection and Denial of Service attacks. Many of these anomalies use several protocols to carry out their works. Botnets uses IRC to control and 

SMTP to send out spam. Another example is VoIP where calls tend to be split into signalling and media traffic as in the case with SIP and RTP. 

These have to be detected using cross-protocol correlation. In addition to cross-protocol correlation, monitoring needs to be done in a distributed 

fashion, since traffic from a particular attack or misconfigurations may cross different monitoring points in the network. While previous work 

has looked into the area of cross-protocol detection [2] , it has focused on single-point solutions, and so did not scale nor could it correlate attack 

traffic traversing more than one monitoring point. This raises a serious scalability issues while designing, which needs to monitor large quantities 

of traffic and also to aggregate results to provide network wide anomaly detection. In this paper we introduce Crosstalk - a scalable and efficient 

protocol to detect anomalies using cross-protocol correlation in a distributed fashion. Evaluation of detecting anomalies in distributed system 

does not show how it would scale under heavy load. For the purposes of evaluating Crosstalk’s scalability and performance, we focused on SIP-

based VoIP attacks. Here, we used network simulator and evaluate the performance. Based on CDR (Call Detail Record) and on the traffic the 

results simulated and anomaly is detected. The probes monitor the network and collect the data in bloom filters and export the measurements to 

the mediators and collector in DAT tree structure. Based on the application the results were simulated.  
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I. INTRODUCTION  

Monitoring large networks in order to detect anomalies is 
inherently difficult for several reasons. Many of these 
anomalies require cross-protocol correlation in order to be 
detected. Botnet, for example, often use several protocols to 
coordinate activities and to carry out attacks (e.g., IRC for 
control and SMTP to send out spam). An important place 
where cross-protocol correlation needed is VoIP in which calls 
tend to be split into signaling and media traffic, as is the case 
with SIP and RTP. In addition to cross-protocol correlation, 
monitoring needs to be done in a distributed fashion, since 
traffic from a particular attack or misconfigurations may cross 
different monitoring points in the network. Making matters 
more difficult is the relentless growth of IP traffic volume, 
nearly doubling every two years. 

Crosstalk, a scalable architecture that gathers data from a 
potentially large set of distributed monitoring probes, and 
performs cross-protocol correlation to detect network 
anomalies. While previous work has looked into the area of 
cross-protocol detection it has focused on single-point 
solutions, and so did not scale nor could it correlate attack 
traffic traversing more than one monitoring point. 

II. CROSS TALK’S ARCHITECTURE 

Crosstalk’s architecture consists of three main features that 
allow it to perform distributed detection in a scalable way: 
leveraging Distributed Aggregation Trees (DATs), taking 
advantage of probabilistic data structures (e.g., Bloom filters), 
and using a novel mechanism called backtracking (BT). 

 
 

A. Distributed Aggregation Trees 

 
       The simple approach of exporting data from several 

monitoring probes to a centralized location clearly does not 
scale. In order to cope with this scalability issue, efforts both in 
the research and standardization communities have focused on 
creating tree-based hierarchies, whereby monitoring probes 
export measurements to intermediate nodes called mediators. 
These in turn perform some sort of data reduction operation 
(e.g., aggregating packet counts) and export the results up the 
tree hierarchy. In the final step the root, which is a special 
mediator called a collector, stores the aggregated results. 
Ideally we would like to have a way of deriving such a tree-
based topology dynamically in order to adapt to traffic 
conditions. 

 
Figure 1.  Chord fingers 

The basic insight behind a DAT is that Chord’s fingers 
already provide a tree structure. In order to illustrate this,figure 
1(a) shows a regular Chord network with dotted lines 
representing the path from each node to node N24 (perhaps the 
responsible node for a particular key); figure 1(b) then shows 
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these same connections but this time drawn as a tree. As canbe 
seen, for any given key, Chord naturally builds a tree rooted at 
the node responsible for that key. In this way, each key has its 
own DAT, with all the DATs sharing the same peer-to-peer 
infrastructure. Within each DAT, intermediate nodes (i.e., all 
nodes except the leaves of the tree) can aggregate data as it 
travels towards the root, thus providing scalability. 

 
. 

B. Probabilistic Data Structures 

Clearly nodes in the DAT will need to export information 
about the monitored data, and this will consume bandwidth. 
Another consideration for real-time monitoring and detection is 
being able to perform the cross-protocol correlation quickly. To 
achieve both of these goals we rely on probabilistic data 
structures, and more specifically Bloom filters (BFs). 

Our attack detection application works as follows: each of 
the probes monitors all the on-going SIP and RTP traffic. The 
SIP messages are parsed and, for each call, the two end-points 
of the media traffic are located by examining the SDP data; as 
for the RTP traffic, the two end-points simply correspond to the 
source and destination addresses of the messages. 

     Our method assumes the probes to synchronously and 

periodically export their probabilistic summaries of the 

monitored traffic. 
 
The monitored data is used to fill two Bloom filters: 
 

          • A Bloom filter for keeping track of the end-points 
of the media traffic corresponding to SIP calls that have been 
terminated (or redirected) within the last measurement  period. 

         • A Bloom filter for keeping track of the end-points of 
the RTP sessions that have been terminated (or redirected) 
within the last measurement period. 

Clearly, the hash functions associated with these BFs must 
be the same so that the RTP and SIP endpoints associated with 
the same call are hashed into the same bit positions. Once these 
BFs are created, they are exported to the nearest mediator (i.e., 
the parent of the probe in the DAT). The mediator then joins all 
of the SIP BFs and all the RTP BFs received from its sons by 
performing a bitwise “OR”, thus obtaining two summarized 
BFs that it forwards to its own mediator. 

C. Backtracking 

While some applications might be content to only receive 
the summarized data from a DAT’s collector, others will use 
such summarized data as a trigger for retrieving more detailed 
information (e.g., packet headers) at the monitoring probes, 
perhaps to determine the cause of the trigger. In addition, 
Bloom filters carry a low but non-negligible probability of false 
positives, and so we need a way to verify whether a result is 
valid or just a false positive. In order to accomplish these goals 
we introduce a mechanism called backtracking. The idea 

behind it is simple: when exporting Bloom filters to nodes in 
the DAT, keep a copy of them locally so that the system can 
track back to the original probes that monitored the traffic. 

The detection of the anomalous behavior is achieved by a 
node in the DAT performing a bit-wise “XOR” of the RTP and 
SIP BFs: if two bits in the same position are different, that 
means that either the data stream or the control stream has not 
been terminated. In that case, all of the node’s children receive 
a backtracking request which includes the indices of the 
unmatched bits (i.e., the set bits that appeared in one BF but not 
the other). Each intermediate node then checks such bits 
against its cached aggregated BFs, and, if at least one among 
those is set, it propagates the BT request to its children. Such a 
procedure is repeated recursively until all the probes which 
have logged relevant information are reached. 

Figure 2 shows the process in greater detail. Probes P0 and 
P3 monitor traffic and export data about it in the form of 
Bloom filters, depicted as a set of squares with each square 
representing a bit in the filter (note that the figure is simplified 
for explanatory purposes: normally an entry in the Bloom filter 
would use up several bits, and more than one Bloom filter 
would be used to represent the protocols to be correlated). In 
addition, probes, as well as mediators, keep a local copy of 
exported Bloom filters, shown in the figure in grey. As the 
exported filters travel up the tree, mediators perform a bitwise 
operation to combine the filters, which eventually reach the 
collector C. Upon receiving all the combined data, C correlates 
Bloom filters from different protocols and, depending on the 
application, triggers a backtracking request to all its immediate 
mediators, in this case M4 and M5. The request includes the 
collector’s Bloom filter (shown in white), which the mediators 
use to compare it with their locally stored state by performing a 
bitwise operation: if the number of set bits in the resulting filter 
is higher than a user-defined threshold, the backtracking 
request is propagated to all of the mediator’s children; 
otherwise, no relevant probes exist in this area of the DAT and 
the backtracking process finishes. Eventually the back tracking 
message arrives at the probes, in this case P0and P3. In section 
IV we provide an evaluation of the costs associated with this 
mechanism and show its applicability even in large networks. 

 

 
Figure 2.  Network moniotr 

III. EVALUATION 

In this section we provide extensive simulation results to 
show the performance of Crosstalk, and in particular that of the 
VoIP attack detection application. Please note that throughout 
this section we use the term report to mean the Bloom filters 
exported between probes and mediators as a result of the 
monitoring and aggregation process. 



Jeyanthi. N. et al, International Journal of Advanced Research in Computer Science, 1 (3), Sept –Oct, 2010, 195-198 

© 2010, IJARCS All Rights Reserved   197 

 A. Setup 

      In order to assess the performance of our solution, we 
evaluated several performance parameters through extensive 
simulations. In greater detail, we extended the Oversim overlay 
network simulator [14] by implementing a new application 
module with Crosstalk’s basic functionality and which runs on 
top of the Chord. The input to the simulation consists of Call 
Data Records (CDRs), in order to match the format used by our 
VoIP data set (a CDR is a short record of a VoIP 
communication, including fields like caller, callee, and call 
duration). To have control over their distribution, CDRs are fed 
to the simulated monitoring probes by a centralized CDR 
dispatcher module: each node is assigned a given range of the 
overall hash ID space and each CDR is handed over to the 
responsible node (based on its source address). 

In order to simulate the fact that RTP and SIP traffic for 
the same call may traverse different paths, two separate copies 
of the same CDR, representing in turn the RTP and SIP traffic 
associated with a given call, are assigned to two distinct probes 
by using two independent hash functions. Such a choice is 
rather conservative, since in a significant fraction of the real 
cases, the two traffic streams are likely to follow the same path, 
but this approach is still useful to show that our system can 
cope with even this extreme case. It is worth noting that the 
simulated probes are actually nodes on the DATs, meaning that 
they can act as probes for one key but as mediators (and even 
collector) for others simultaneously. Regarding CDR 
generation, we took two approaches. First, we generated CDRs 
randomly by setting the timestamps and the call durations 
according to a Poisson process (such a simple model has been 
extensively used in the field of telephone traffic measurement). 
The purpose here was to be able to effectively tune and change 
the simulation parameters to show the performance of the 
system. In the second approach we relied on an extensive data 
set gathered from a large VoIP operator in order to demonstrate 
Crosstalk’s applicability to a real world scenario. In both cases 
we modified the CDRs at a certain rate (set as a percentage of 
the total CDRs) in order to simulate malicious calls. 

IV. PERFROMANCE ANALYSIS 

In this section we present simulation results based on 
generated CDRs in order to assess the system’s performance 
and scalability. Crosstalk’s VoIP application depends on a 
number of different parameters: 

 

• Bloom filter size, which affects several factors such as the 
missed detection rate, the bandwidth consumed and how much 
state nodes in the DAT keep. 

• The call rate, in other words, how much traffic the 
system needs to monitor, export, and correlate. 

• The measurement interval, which determines how long 
the probes keep data locally before exporting (longer intervals 
result in lower overheads but increase the detection delay). 

• The anomaly rate, or percentage of malicious calls, 
which increases the costs associated with backtracking 
requests. 

• The number of probes, equal in our case to the number 
of nodes in the p2p system, affecting the DAT’s topology and 
therefore the messaging overhead, the amount of aggregation, 
and the detection delay. 

 

A.Bloom filter size and call rate: 

For the first experiment we took a look at the first two 
parameters and their relationship to false negatives and 
positives. In other words, given a certain call rate, how would 

an operator deploying Crosstalk dimension the Bloom filter 
size (which affects things like bandwidth consumption) so that 
the false negative and positive rates are relatively low? To this 
end, consider that missed detections (i.e., false negatives) 
happen when a collision in one BF causes a match with a “true” 
set bit in the other BF, resulting in the “XOR” matching 
operation to return 0 (the misdetection). Because the cause is 
the collision within a BF, all the well-known results about BF 
performance evaluation and dimensioning apply to our system. 
In particular, as the number of keys in the BFs equals the call 
rate � times the measurement period T, the missed detection 
(md) probability can be expressed as: 

P(md) = (1−(1− 1M) K � T )K �(1−e−K�TM )K 
Where M stands for the BF size (in bits) and K for the 

number of hash functions (which is set to an optimal value 
depending on the other parameters). 

 

 
 
To get a feel for the system’s performance we rely on this 

model and on our CDR database, which shows a peak call rate 
well below 100 calls per second. Even if we assume that since 
more and more users are migrating from PSTN to VoIP such a 
figure will increase in the future by an order of magnitude, our 
system can handle the resulting traffic volume (1,000 
calls/sec.): exporting data every 10 seconds and using 17KB-
wide BFs yields a target missed detection probability of 10−3, 
while using 34KB-wide BFs yields a target missed detection 
probability of 10−6. For a measuring infrastructure made up of 
1,000 probes the total reporting traffic adds up to only few 
MB/sec. 

B.Measurement interval 

If the BF size does not vary, a longer measurement period 
implies a larger number of keys in the BF, and, in turn, an 
increased missed detection probability. On the other hand, of 
course, this involves lower bandwidth consumption, as data 
summaries are exported less frequently. Depending on the 
operational constraints, the previously presented mathematical 
model allows finding out a good trade-off; we do not present 
more extensive results here due to space constraints. 

C.Anomaly rate 

The next parameter we looked at was the anomaly rate, 
and in particular how it affects the costs related to backtracking 
(BT). Backtracking is triggered by either a detected anomaly or 
a false positive. Assuming a well dimensioned system with a 
low false positive rate (e.g., less than 1%) and no anomalies, 
simulation results show about an order of magnitude difference 
between export messages and BT messages. Arriving at more 
precise figures is difficult since the actual number of 
backtracking messages generated depends on the number of 
probes which have to be reached by a BT request and on the 
topology of the tree. Having said that, we ran a simulation to 
get a feel for the effects of the anomaly rate on the system, and 
in particular the cost of backtracking. 
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The figure shows that, unless a very unrealistic scenario is 

assumed (a network where one in ten calls is malicious), the 
fraction of BT messages is small (usually an order of 
magnitude smaller) with respect to the number of reports, 
which proves that the BT mechanism can locate the relevant 
probes without flooding the DAT with messages. Further, the 
behavior of the system improves as the number of nodes 
increases. These figures can be even further improved by 
reducing the size of each BT message. Observe that the Bloom 
filter obtained through a bit-wise “XOR” of the aggregated SIP 
and RTP reports must have a very limited number of set bits (in 
fact, the number of such bits should be lower than the number 
of malicious calls times the number of hash functions), which 
lends itself to compression. In order to effectively compress 
such a “sparse” bitmap, it is sufficient to include the indices of 
the set bits within the BT message: the resulting message size 
would be roughly some dozens of bytes, which is negligible 
when compared to the bandwidth consumed by the reporting 
messages. 

D.Number of nodes 

The number of probes does not affect the accuracy of our 
system (that, in fact, depends on the overall number of 
monitored calls) but rather the aggregation and backtracking 
delay and the overall bandwidth consumption. The former 
depends on the depth of the tree, which, in turn, grows 
logarithmically with the number of probes. On the other hand, 
the overall bandwidth consumption due to the report messages 
grows linearly with the number of probes (each additional 
probe corresponds to an additional edge on the tree, which, in 
turn, corresponds to an additional report being transmitted). As 
for the BT requests, their amount depends on several variables, 
but we already showed their bandwidth consumption to be 
negligible with respect to that of the report messages. 

 

V. CONCLUSIONS AND FUTURE WORK 

We have presented Crosstalk, a scalable and distributed 
monitoring system for detecting cross-protocol anomalies. We 
have implemented a VoIP attack detection application over it 
and presented extensive simulation results on a large VoIP data 
set. In addition, we used a mathematical model to show that 
Crosstalk performs well even when presented with much higher 
loads than those conveyed by current VoIP infrastructures. 

The results confirm that Crosstalk can scale to a very large 
number of monitoring probes, deal with a large call rate of 
1,000 calls/sec and a high percentage of anomalous calls, all 

while using small Bloom filter sizes of only dozens of KB. The 
system can be easily tuned to achieve arbitrarily small missed 
detection rates with a limited increase in terms of overhead. 
Moreover, in case missing an anomaly is not acceptable, a 
slight change in the system layout allows Crosstalk to fulfill 
such a requirement. One of the topics we did not discuss due to 
space constraints is tree topologies. The DATs we used relied 
on Chord’s normal routing algorithm, which can result in 
unbalanced trees, especially when the DAT contains a large 
number of nodes. Towards a solution, previous work [16] 
modified Chord to provide (almost) balanced binary trees. 
While certainly an improvement, what we would like is not 
only to have a mostly balanced tree, but also the ability to 
control its depth; in other words, controlling the trade-off 
between scalability through aggregation (achieved with deeper 
trees) and aggregation delay and messaging overheads (reduced 
by using shallower trees). We are currently working on an 
algorithm to achieve this. 
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