
Volume 2, No. 6, Nov-Dec 2011

International Journal of Advanced Research in Computer Science

RESEARCH PAPER

Available Online at www.ijarcs.info

© 2010, IJARCS All Rights Reserved 194

ISSN No. 0976-5697

Simulator for Identifying the Importance of Software Reuse in Cost Estimation Model

Mr. Aman Kaushik*
Deptt. Computer Science Engineering

University Institute of Engineering & Technology, KUK

Kurukshetra, India

er.amankaushik@gmail.com

Abstract: Software reuse is the process of implementing or updating software systems using existing software assets. Assets may be designs,

requirements, test cases, architectures etc. Idea behind code reuse is that a partial or complete computer program written at one time can be

written into another program at later time. In this paper we use the concept of reuseability and implement with the help of simulator, which

calculate the efforts of different type of project with and without reuseability. Simulator also calculate the mean relative error between original

effort and calculated efforts. To achieve all these goals,we implement the simulator in high level language. Purpose of simulation is to shed light

on the underlying mechanisms that control the behavior of a system. The simulator will calculate total efforts for the projects. On the basis of

this estimation reuse manager will decide how to allocate resources for different phases, how to decide work within a phase

Keywords: Random number, Reusable Assets, Simulator , Box Muller transformation, simulation.

I. INTRODUCTION

Reuse is to use an item more than once. Reuse is the

application of existing solution to new problems. Reuse can

reduce the time spent in creating solutions by avoiding

duplicated efforts. In software engineering the concept of

reuse has been explored and has been reported to be very

beneficial. This includes conventional reuse where the item

is used again for the same function and new-life reuse where

it is used for a new function. Software reuse is the process of

implementing or updating software systems using existing

software assets. Software asset is simply another term for

source code. Software assets, or components, include all

software products, from requirements and proposals, to

specifications and designs, to user manuals and test suites.

Anything that is produced from a software development

effort can potentially be reused [1]. Organizations which

face the difficulties and costs associated with the

development of software have turned to the reuse of existing

software or using commercial off-the-shelf (COTS) software

as an option. Reuse, whether involving home-grown or

COTS components, certainly promises lower cost, better

quality, a decrease in risk, and the potential for a less

stressful development process. Many such efforts succeed,

but the promises of decreased cost and risk are not always

realized. Requirements, algorithms, functions, business

rules, architecture, source code, test cases, input data, and

scripts can all be reused. Architecture is a key for reuse.

II. REUSE BENEFITS

A. Increased Dependability:

Reused software that has been tried and tested in

working system should be more dependable than new

software. The initial use of the software reveals any design

and implementation faults. These are then fixed, thus

reducing the number of failures when the software is reused

[2].

B. Reduced Process Risk:

If software exists, there is less uncertainty in the costs of

reusing that software than in the cost of development. This

is an important factor for project management as it reduces

the margin of error in project cost estimation. This is

particularly true when relatively large software components

such as sub system reused.

C. Effective Use Specialists:

Instead of application specialists doing the same work on

different project, these specialists can develop reusable

software that encapsulate their knowledge.

D. Accelerated Development:

Bringing system to market as early as possible is often

more important than overall development costs. Reusing

software can speed up system production because both

development and validation time should be reduced.

Software products are expensive. Software project

managers are worried about the high cost of software

development and are desperately look for ways to cut

development cost. A possible way to reduce development

cost is to reuse parts from previously developed software. In

addition to reduced development cost and time, reuse also

leads to higher quality of the developed products since the

reusable components are ensured to have high quality [3].

III. SIMULATION

Simulation is defined as the process of designing a

model of a real system and conducting experiments with this

model for the purpose either of understanding the behavior

of the system or evaluating various strategies within the

limits imposed by a criterion or a set of criteria for the

operation of the system.Once a simulation is in the use,

running it on new data or with new parameters is usually

just a matter of few keystrokes or dragging and dropping a

different life. Depending upon the variables being

deterministic or random, the simulation models can be

classified as

Aman Kaushik, International Journal of Advanced Research in Computer Science, 2 (6), Nov –Dec, 2011, 194-198

© 2010, IJARCS All Rights Reserved 195

a) Deterministic Simulation

b) Stochastic Simulation

a. In deterministic simulation, a system is simulated under

well determined conditions. This kind of simulation is

useful to observe the behavior of system in certain

particular cases, to discover errors in the design or in the

implementations, to build examples, etc. In this kind of

simulations, only one run is needed and there is no truly

random variable involved.
b. In Stochastic simulation, system performance is

measured. This is useful to see if the system has good

response time under average conditions, to compare

different implementations of the same system, or totally

different systems that have the same output. It is useful

to classify the system being simulated into separate

categories depending upon the degree of randomness

associated with behavior of the system in its simulated

environment. A system that relies heavily upon random

behavior is referred to as a stochastic system [4].

A. Need for Simulation:

Simulation is used to observe the dynamic behavior of a

model of real or imaginary system. Indeed by simulating a

complex system one is able to understand its behavior at low

cost. To simulate the behavior of complex systems,

simulators are designed and developed. A simulator is a

collection of hardware and software systems which are used

to mimic the behavior of some entity or phenomenon.

Simulators may also be used to analyze and verify

theoretical models which may be too difficult to grasp from

a purely conceptual level. As such, simulators provide a

crucial role in both industry and academia.

IV. PROPOSED MODEL

The simulator will calculate the effort for the project

over several simulation runs. After calculated efforts there

will be clear idea to reuse managers how to allocate

resources.

A. Introduction:

In computer science and software Engineering,

reusability is the likelihood a segment of source code that

can be used again to add new functionalities with slight or

no modification. Reusable modules and classes reduce

implementation time, increase the likelihood that prior

testing and use has eliminated bugs and localize code

modification when a change in implementation is required.

The issues relating to managing the development process

of a project are handled through project management,

because a development process does not specify how to

allocate resources to the different activities, how to divide

work within a phase. Software project management is an

interpolation of project planning, project monitoring and

termination. Planning is necessary for quality software. It is

essential the knowledge about the effort estimation foe a

good planning. On the basis of effort estimation cost of a

project can be determined. Software cost estimation is

necessary for resources allocation and bidding [5]. There are

different models available.

Simulator will calculate efforts for the different type of

projects over several simulation runs. The simulator will

calculate efforts and mean relative error for different type of

projects. We have administered the historical data to

COCOMO 81 model and identified that no cost model gives

the exact estimate of a software project. This is due to the

fact that a lot of productivity factors are not contemplated in

estimation process. Software reuse is being eclipsed

although most of the contemporary software projects are

based on object oriented development where no component

is made from scratch (Inheritance). After using the concept

of reuse size of software should be considered. And after

calculated optimal size, we can measure the optimal efforts

for the software. On the basis of efforts estimation reuse

managers can decide how to allocate resources to the

different activities, how to divide work within a phase. We

can modify the parameter size. The concept of reuse plays

very important role in the industries. [6].

Effective size of existing software can be calculated as

Effective size = existing size * (0.4 * redesign% + 0.25 *

reimplementation% + 0.35 * retest %)

Effective size of new software can be calculated as

Effective size1 = new code + existing size * (0.4 *

redesign% + 0.25 * reimplementation% + 0.35 * retest %)

Reuse% = (RSI/Total Statement) * 100

RSI (Reused Source Instruction)

Formula used for calculation the efforts for the project is

EFFORT = a *

Effective Size of a project measures in KLOC (Kilo Lines of

Code).

EAF is effort adjustment factor, which will be calculated

using cost drives

A cost estimation model calculates efforts using a

function of program size and a set of cost drivers attributes.

Value of a, b depends on the complexity of software.

EAF which will be calculated using cost drivers factors.

Ex. required reliability, database size, application exp. Etc.

EFFORT for project will be determined in person-month

using formula.

The projects are categorized into three types:

a. Organic

b. Semidetached

c. Embedded

These categories roughly characterize the complexity of

the project with organic projects being those that are

relatively straight forward and developed by a small team,

and embedded are those that are ambitious and high

requirements for such aspects as interfacing and reliability.

The constant a, b for different system are:

Table 1 Constants value for different system

System A B

Organic 3.2 1.05

Semi detached 3.0 1.12

Embedded 2.8 1.20

For cost driver factors there can be different scale. The

rating scale for RELY can be very low, low, high, very high.

Ex 0.75, 0.88, 1.00, 1.5.

To calculate EAF multiply all these cost drive attributes.

EAF can be different for different projects and there is

possibility that rating scale for cost driver attributes can be

changed. On generation of random numbers and using Box

Muller Transformation for different rating scale for cost

driver attributes are calculated

Aman Kaushik, International Journal of Advanced Research in Computer Science, 2 (6), Nov –Dec, 2011, 194-198

© 2010, IJARCS All Rights Reserved 196

The is the mean value and the the standard

deviation

According to standardized normal distribution function

and generating random numbers from the standardized

normal distribution function the following relation called the

Box-Muller transformation.

S= * cos (2 * π * r2))

Where r1 and r2 are two uniform random numbers in the

range (0.1) and s is the desired sample from the standardized

normal distribution.

Now the value of cost driver attributes P[i] based on the

Box Muller Transformation is

P[i] = *s +

Thus a number of samples of P[i] will be generated.

Relative error = ((calculated effort-original effort) / (original

effort)))*100

B. Uncertainties in Effort Estimation:

Effort estimation can perform at any point in software

life cycle. As the effort of the project depends on the nature

and characteristics of the project, the accuracy of the

estimation will depend on the amount of reliable

information we have about final product. There is a great

deal of uncertainty represent a range of possible final

products, not one precisely defined product. Hence, the

effort estimation based on this type of information cannot be

accurate. Estimate at this phase of project can be off by as

much as a factor of four from the actual final effort

C. Algorithms to Calculates the Effort for the Project:

This algorithm calculates the efforts for a project by

simulating it for a large no. of times.

It uses two functions namely:

a. EFFORT(), to calculate efforts for the different

type of projects.

b. PRODUCE(), to generate random samples of cost

driver attributes.

D. EFFORT (a,b,,eaf,e,n,m,size, nlen, relerr,

oref):

a. len 1

b. size1 exsize2 * (0.4 * redesign% + 0.25 *

reimp% + 0.35 * retest%)

c. esize1 new code + size1

d. e a * (

e. while len < nlen

f. eaf 1

g. do produce(,p,m)

h. for k 1 to m

i. do eaf eaf * p[m]

j. do e1 e * eaf

k. relerr ((e1– oref) / oref) * 100

PRODUCE (,p,m)

a. for i 1 to m

b. do r1 random(dum1)

c. r2 random(dum2)

d. v (sqrt(-2 * (r1))*cos(r2))

e. p[i] [i] * v) + [i]

E. Genereation of random numbers using Box

Muller Transformation:

Table 2 Notation and terms used

Sr.No Term Meaning

1 n No. of project

2 nlen No. of simulation runs

3
[i]

Standard Deviation of Cost Driver

4 e Initial Effort

5 i Variable

6 x Random values

7 EAF Effort adjustment factor

8 P Cost driver attribute

9 size Size

10 a Constant for different Projects

11 b Constant for different Projects

12 exsize2 size of existing software

13 size1 effective size of existing software

14 esize1 effective size of new software Using

existing software

15 Relerr relative errors

16 Oref original efforts

17
[i]

mean value for cost driver attribute

18 e1 Final effort

V. IMPLEMENTATION AND EXPERIMENTAL

RESULTS

In order to implement our proposed model, we

developed an Application which identifying importance of

software reuse in cost estimation. We have implemented the

Application using C++ programming language

Table 3 Input data for simulation

Project Type A B

Organic 3.2 1.05

Semi detached 3.0 1.12

Embedded 2.8 1.20

Table 4 Input data for the project

Project no. Size (KLOC) Original effort

1 50 47

2 40 66

3 22 60

4 2.5 312

Input value of =0.567, =0.007

Table 5 Calculated Effort for the Organic project

Project

no

Size

(KLOC)

Original

Effort

Calculated

effort

Relative

Error%

1 50 47 194 313

2 40 66 153 133

3 22 60 82 36

4 2.5 312 6.6 -99

Table 6 Calculated Effort for the Semi detached project

Project

no

Size

(KLOC)

Original

Effort

Calculated

effort

Relative

Error%

1 50 47 239 410

2 40 66 186 183

3 22 60 95 59

4 2.5 312 8 -97

Table 7 Calculated Effort for the Embedded project

Aman Kaushik, International Journal of Advanced Research in Computer Science, 2 (6), Nov –Dec, 2011, 194-198

© 2010, IJARCS All Rights Reserved 197

Project

no

Size

(KLOC)

Original

Effort

Calculated

effort

Relative

Error%

1 50 47 306 551

2 40 66 234 254

3 22 60 114 90

4 2.5 312 8 -97

Graph. 1. shows COCOMO81 Intermediate model chart with given values.

In given chart X-axis shows Size of the project and Y-

axis shows Efforts. This chart shows calculated effort of

different type of projects as Organic, Semidetached,

Embedded projects. As described in the chart when size of

project is 50 then calculated efforts for the Organic Type of

project is 194, for the Semidetached Type of project is 239

and for the Embedded Type of project is 306

VI. CALCULATE SIZE OF SOFTWARE WITH

REUSING

Calculation of size when we are using the existing

software in development of new software:

Size of existing software = 20.

Effective size of new developed software:

New code=40

Effective size= new code + size of existing software*

(0.4*25% +.25 *10% + 0.35 * 18%)

 = 40 + 20*(0.148)

 = 42.96

Table 8 Calculated efforts for the Organic project using existing software

Project

no

Old

Size

New

Size(KLOC)

Original

Effort

Calculated

effort

Relative

Error%

1 50 42 47 162 244

2 40 34 66 134 103

3 22 20 60 74 23

4 2.5 2.5 312 6 -98

Table 9 Calculated Effort for the Semi detached project using existing

software

Project

no

Old

Size

New

Size(KLOC)

Original

Effort

Calculated

effort

Relative

Error%

1 50 42 47 198 319

2 40 34 66 156 136

3 22 20 60 86 43

4 2.5 2.5 312 6 -98

Table 10 Calculated Effort for the Embedded project using existing

software

Project

no

Old

Size

New

Size(KLOC)

Original

Effort

Calculated

effort

Relative

Error%

1 50 42 47 249 429

2 40 34 66 193 192

3 22 20 60 102 71

4 2.5 2.5 312 6 -98

Graph 2: Shows COCOMO81 Intermediate model chart with given values

In given chart X-axis shows Size of the project and Y-

axis shows Efforts. This chart shows calculated effort of

different type of projects as Organic, Semidetached,

Embedded projects. As described in the chart when size of

project is 42 then calculated efforts for the Organic Type of

project is 162, for the Semidetached Type of project is 198

and for the Embedded Type of project is 249.

VII. CONCLUSION

In this case study, simulator calculated efforts for the

projects by taking the value of a, b, size and cost driver

attributes. Cost driver attributes are calculated by Box

Muller Transformation after generating random number

between 0 and 1. After simulation for 1000 simulation runs,

the efforts for the project were calculated. In this relative

error between original effort and calculated effort were

calculated. So we identify total efforts to make a software

component reusable by using Box Mulller Transformation

for various cost driver attributes. Reusable components can

be produced and re-engineered effectively in a large scale if

we can formulate objective and reusable guidelines and

apply them systematically.

Simulation has been applied in diverse fields, ranging

from aerospace to energy production and commendable

work has been done in these fields. Simulators approximate

the real phenomenon in a better way compared to the

repeated testing process in software development house.

Software Reuse is the application of existing solutions to

new problems. Reuse can reduce the time spent in creating

solutions by avoiding duplicate efforts. In computer science

and software engineering, reusability is the likelihood a

segment of source code that can be used again to add new

functionalities with sight or no modification. Reusable

modules and classes reduce implementation time, increase

the likelihood that prior testing and use has eliminated bugs

and localize code modifications. In order to diverse a

measurement model or qualitative guidelines for evaluating

reusable components, the factors that are known to influence

reuse must be identified. The factors include coupling,

cohesion and complexity. In software reuse, many

components are available which can be modified to make

them reusable

Aman Kaushik, International Journal of Advanced Research in Computer Science, 2 (6), Nov –Dec, 2011, 194-198

© 2010, IJARCS All Rights Reserved 198

VIII. REFERENCES

[1]. Benbasat, I., Goldstein, D.K. and Mead, M., “The case

Research strategy in studies of IJOPM information

systems”, MIS Quarterly, September 1987, pp. 369-86.

15,12

[2]. Benediktsson, O., Dalcher, D.: “Developing a new

Understanding of Effort Estimation in Incremental

Software Development Projects. Proc. Intl. Conf. Software

& Systems Engineering and their Applications”

(ICSSEA’03), December 2-4, 2003, Paris, France. Volume

3, Session 13, ISSN 1637-5033, 10 p.

[3]. Anda, B.: “Comparing Effort Estimates Based on Use

Cases with Expert Estimates. Proc. Empirical Assessment

in Software Engineering” (EASE 2002), Keele, UK, April

8-10, 2002, 13p.

[4]. Jørgensen, M., Moløkken, K.: “Situational and Task

Characteristics Systematically Associated With Accuracy

of Software Development Effort Estimates”. Proc.

Information Resources Management Association

Conference (IRMA 2003), pp. 824-826.

[5]. CH.V.M.K.Hari, Prof. Prasad Reddy P.V.G.D, J.N.V.R

Swarup Kumar, G.SriRamGanesh.” Identifying the

Importance of Software Reuse in COCOMO81,

COCOMOII”. International Journal on Computer Science

and Engineering Vol.1(3), 2009,pp.3-6

[6]. Moløkken, K., Lien, A.C., Jørgensen, M., Tanilkan, S.S.,

Gallis, H., Hove, S.E.: “Does Use of Development Model

Affect Estimation Accuracy and Bias”? Proc. Product

Focused Software Process Improvement: 5th International

Conference, PROFES 2004, Kansai Science City, Japan,

April 5-8, 2004. Springer-Verlag, ISBN: 3-540-21421-6.

pp. 17-29.

[7]. Barry W. Boehm. Software risk management: Principles

and practice. IEEE Software, pages 32{41, January 1991.

[8]. Barry Boehm, Bradford Clark, Ellis Horowitz, Chris

Westland, Ray Madachy, Richard Selby. “Cost models for

future software life cycle processes:” COCOMO 2.0

[2005].

[9]. Verner, J.M., Evanco, W.M.: State of the Practice: “Effect

of Effort Estimation on Project Success”. Proc. of the Intl.

Conf. On Software & Systems Engineering and their

Applications (ICSSEA’03), Vol. 3, Session 13,10p.

[10]. Jørgensen, M.: “Top-down and Bottom-up expert

Estimation of Software Development Effort. Information

and Software Technology”, vol.46 (2004), pp. 3-16.

[11]. P.K. Suri, Neeraj Garg. “Simulator for evaluating

Reliability of Reusable Components in a Domain

Interconnection Network”. In IJCSNS International Journal

of Computer Science and Network Security, VOL.8 No.3,

2008.pp.4-6.

