
��������	�
����	�
�������������

������������������������������������ ����!����"��������
�������

�#
#��"$�%�%#��

������&�������������'''��(��� ������

© 2010, IJARCS All Rights Reserved 152

ISSN No. 0976-5697

A Survey on Methodologies and Techniques for Detection and Prevention of Phishing

Attacks

M. Nirmala

School of Information Technology and Engineering,
VIT University,
Vellore, India

mnirmala@vit.ac.in

K. Naveen Kumar
School of Information Technology and Engineering,

VIT University,
Vellore, India

naveenwashere@gmail.com

L. D. Dhinesh Babu*
School of Information Technology and Engineering,

VIT University
Vellore, India

lddhineshbabu@vit.ac.in

Abstract: Privacy, security and integrity of the users' data over internet depend on a single piece of user information which is normally a
‘password’. It is very important for the user to keep it as secure and safe as possible in order to prevent the information from being revealed to an
adversary who can misuse it. But most of the time we fail. Knowingly or unknowingly we tend to give away these secrets to others, resulting in a
huge loss or embarrassment. Such secrets, mainly the username and password are often given away to attackers over the internet and become
victims of what is known as a phishing attack. Phishing is a technique where the attackers masquerade as a trustworthy entity and trick us to
submit our credentials, mostly our usernames, passwords and credit card details etc. In this paper we shall take you around various techniques
and methodologies available to prevent such a theft. We also present the reasons why the current techniques and tools could not prevent these
attacks.

Keywords: Abuse and crime involving computers, authentication, cyber cash, digital cash, online fraud detection and theft, phishing, security
and protection

I. INTRODUCTION

Phishing technique was described in detail in a paper
presentation at the International HP Users Group, Interex [26]
in the year 1987. The phising attack on AOL in the year 1995
attracted the attention of security experts’ world over and it
came to limelight as a major security threat. AOL soon came
up with security meas-ures to counter this threat. Then evolved
the security issue of targeting specific users on the internet, and
this was later termed as spear phishing [25]. In certain high
profile cases, where the targets were the top offcials of huge
organizations, it was given with the name whaling [26]. The
use of the term ‘Phishing’ was first officially recorded in the
year 1996 following the AOL episode.

Initially the attackers sent emails with a link, asking the
users to follow it to change their usernames, etc, in the name of
“Account Verification”, “Verify Billing Information”, and so
on. This slowly spread from emails to targeting users on Instant
Messaging (IM) services. This forced AOL to widely advertise
informing its users through various messages and IM services
telling “no one working at AOL will ask for your password or
billing information”, etc.

The first known attack over a payment system was recorded
in 2001(. It was against a payment system known as E-gold [8].
By 2004 phishing was recognized as a fully industrialized part
of the economy of crime. The most recent data [1, 2] tells us
that there were 55, 698 attacks on the first half of 2009. The
figure [2] here shows the statistics of the year 2009 based on
the reports received by them.

Figure-1: The number of unique phishing websites detected by the APWG
during the third quarter of 2009[2]

3.6 million adults lost US $3.2 billion in the year 2007 [1,
26]. Phishing has seen a transition from AOL to IMs, IMs to
financial institutions, social networking sites, and file sharing
websites and to almost everything on the internet. Apart from
the attacks on the web, phishing exists in various other forms as
vishing (voice phishing, which is also known as phone
phishing), SMSishing (phishing through SMS), etc.

II. SOME KNOWN PHISHING ATTACKS

• Link manipulation: it is a technique where an email is
sent by the attacker with a link in it. The anchor text
of the link appears to be legitimate but upon clicking,
it takes us to a site that looks exactly similar to the
orig-inal one. For example the link

L. D. Dhinesh Babu et al, International Journal of Advanced Research in Computer Science, 1 (3), Sept –Oct, 2010, 152-159

© 2010, IJARCS All Rights Reserved 153

http://www.abccorporation.com may appear to be the
original website address of ABC Corporation but it
doesn’t take us to the legitimate site.

• Another old technique is to use the ‘@’ symbol to
spoof the sites. For example
http://www.mycollege.com@notmycollege.com takes
us to a site which is www.notmycollege.com rather
than what it claims to be i.e., www.mycollege.com.
This is called spoofing [1] a website.

• A further problem of link manipulation is with respect
to the visually similar sites. For example, the website
www.paypal.com looks similar to www.PayPal.com
or www.Paypal.com. Attackers make use of such
mistakes committed by the users’ to their advantage in
order to steal their information. Attackers also took
advantage of an already existing flaw known as IDN
Spoofing or homograph attack [6], using open URL
redirectors on the websites of trusted organizations to
disguise malicious URLs with a trusted domain.

• Filter Evasion: many security firms designed
techniques to filter out phishing sites based on the
content, links, etc in the web pages. But such filters
were evaded by the attackers by using images, instead
of text [1, 9].

• Website Forgery: many websites that support online
payments and secure transactions have unique address
bar. They come with either the company’s symbol or
with a color or a lock symbol, etc, to show that those
sites belong to the original company and are secure.
Attackers used Java Script commands [1] to change
the address bar and deceive the users. It basically dealt
with forging the website’s scripts to their advantage.
These attacks later came to be known as Cross-site
scripting (or CSS) [1] attacks.

• Phone phishing: phishng was not limited to forging
websites alone; there was a next level of this attack
which came to be known as phone phishing. People
received phone calls claiming that they were from the
bank where they held accounts. After gaining the trust
of the user, they got all the sensitive bank information
which was enough to clean the users’ accounts by
claiming that the bank had been experiencing
problems with the accounts and the information was
essential to sort the problems.

• Pop-up windows: the attackers successfully forwarded
the client to the bank’s legitimate website. Then they
used a pop-up window [26] requesting the username
and password, as if it were being asked by the bank
itself. This was a tricky one since it was really
difficult to check the authenticity of the pop-up
window.

Many tools, strategies and solutions were proposed and put
in use to overcome phishing. We shall now look at various
solutions that came and went till now and those that are still in
use.

III. PHISHING REMEDIES

Anti-phishing measures were implemented in various
ways. Some were just design solutions for strong
authentication; some were used as plug-ins in browsers,
toolbars and few others as part of login procedures. Here we
divide these anti-phishing strategies into various categories as:
user training, security solutions and tools (toolbars and plug-
ins). Each one of these techniques is analysed and then
discussed below.

A. Use Training

As users tended to ignore the warnings given by the tools,
an initiative to train the users on the aspects of phishing was
taken. Users were given information on how could they be
tricked into phishing attacks. The most basic approach was to
post articles and materials on websites that taught the users,
how to detect and prevent phishing. Whereas the most
interactive way was to let users assess their knowledge on
phishing through some web-based tests. Few sites put up some
flash based games where the user had to indentify which site
was a phish and whish wasn’t based on some rules. It made the
whole training more fun and productive.

Phishing education was also conducted in a class-room
setting, as had been done by Robila and Ragucci [14]. The idea
of sending fake phishing emails [13] to test users’ vulnerability
had been explored by several groups. Typically, at the end of
such studies, all users were given additional materials to teach
them about phishing attacks. This approach had been used with
Indiana University students and West Point cadets, as well as
with employees at a New York state office. This study was
conducted in two phases. In the first phase the participants were
tried to detect phishing sites without any training and were
tested for their ability. In the second phase, they were given
materials on phishing and then tested again. On comparison the
studies showed significant improvement.

B. Security Solutions

Security solutions could be further classified into two
groups such as third party certifications and authentication
mechanisms. Most of these solutions could be implemented
independent of the browsers used and their versions. We shall
now look at various security solutions in detail.

• Humboldt: A Distributed Phishing Disruption System
Humboldt works by submitting poisonous fake data to phishing

web sites that cannot be distinguished from the input of
actual data submitted by phishing victims [31]. The
poisonous data collected by a phisher is in such a way that
it produces detectable behaviors when the phisher attempts
to use it. This provides a mechanism for tracking activities
associated with identity theft. Humboldt is evaluated to
show how effective it is in disrupting phishing operations
with very low overhead.
Poisonous data from Humboldt is not distinguishable from
the data submitted by real phishing victims, not only in
terms of the data alone, but also in the way the data is
submitted;

• The submission of poisonous data was coordinated among
Humboldt clients so that it could prevent detectable
behavior which would make postprocessing by phishers
easier and also it could avoid the risk of launching DDoS
attacks against those innocent machine that hosted the
phishing site; and

• Data submission from Humboldt was also automated,
without requiring manual intervention from users.
With enough clients, Humboldt could inject a significant
amount of fake data into the phisher’s database [31]. It
either disrupted the phishing campaign or exposed the
phishers when they tried to use those fake credentials—
which were generated and recorded by Humboldt—on the
real web sites they were pretending to be.

The SEFAP Mechanism: The SEFAP system is an extendable,
signature-based, and secure email system. The SEFAP [35]
consists of three layers: presentation layer, business layer and
database information layer. Only the presentation layer is

L. D. Dhinesh Babu et al, International Journal of Advanced Research in Computer Science, 1 (3), Sept –Oct, 2010, 152-159

© 2010, IJARCS All Rights Reserved 154

accessible by users and the other two lower layers are
protected and accessible to system administrators only.

SEFAP consisted of a SEFAP client, SEFAP server, and
database server which communicate through a secure channel.
SEFAP authenticates the origin of incoming email and takes
appropriate actions to suspicious phishing email in order to
mitigate phishing attacks. SEFAP was designed to adopt
signature schemes. Since each original email server already has
its unique domain name on the Internet, domain level system
parameters were designed to be generated by the SEFAP server
located in each physical email server.
The SEFAP server provided six sub-services [35]: sys-tem
management module, signature-scheme based parameters setup
module, private key extraction module, verification module,
synchronization module and dispatcher module. The system
management module specifies a signature scheme for the
current email server system. It could also add a new signature
scheme into the SEFAP system and delete an old signature
scheme from the SEFAP system. Thus, SEFAP could be
updated for a new signature scheme though uploading the new
signature-scheme component to the SEFAP system.

The signature-scheme-based parameter setup module
generated domain system parameters under a selected scheme.
The private key extraction module generated its user’s private
key which is then delivered it to its user with a secure channel.
The verification module provides the signature verification
service even if the outgoing email server uses a different
signature scheme from the incoming email server, and instructs
the email server to take appropriate actions to unidentified
emails. The synchronization module dealt with the domain
parameter synchronization operation and publication.

The dispatcher module provided the most efficient process
schedule to verify incoming email. The SEFAP client located at
the sender’s machine was made responsible for signing email
when the user instructed the email server to send an email
message. The SEFAP client also is in charge of system
parameters license synchronization including checking the
parameter version, expiration, and signature scheme
identification using an efficient synchronization algorithm.
These modules provide a tight layer of security to ensure that
the emails sent and received between the server and user does
not contain any spoofed mails or links to phishing sites.

C. Security Solutions

The strategy of this technique was to provide protection
without the giving any burden of work to the user. The
phishing sites were detected and removed from the web
silently. Also the fraud emails and messages were detected and
deleted [6, 15]. But the problem here was that we cannot
achieve cent percent accuracy every time. By the time a
phishing site was detected, it would have been online for long
enough to snare unsuspecting victims. According to the Anti-
Phishing Working Group (APWG), phishing sites manage stay
online on average for 4.8 days [2].

D. Warning Users

A number of tools were developed to warn users that the
website they are visiting was likely to be fraudulent or
legitimate. They either provided explicit warnings or provided
interfaces that helped people notice that they may be on a
phishing website. Ye and Sean and Dhamija [4] and Tygar
developed prototype “trusted paths” for the Mozilla web
browser that was designed to assist users in verifying that their
browser has made a secure connection to a trusted site. More
common were few toolbars which provided indication of
overall safety of the website by flashing red or green lights on

the browsers [7, 11, and 18]. But they had their share of
weaknesses:

• First, it required people to install special software
(although newer versions of web browsers had such
software included).

• Second, user studies showed that users often did not
understand or act on the indications or warnings
provided by toolbars.

• Third, a recent study shows that some anti-phishing
toolbars are not very accurate, and even the best
toolbars may miss over 20% of phishing websites.

Even though many techniques already existed to pre-vent
phishing, the rapid growth in the attacks called for more better
and strong solutions. Since then many solutions were proposed
ranging from quick fixes to substantial redesigns. All these
proposals were evaluated based on four security properties: the
limited human skills property, general purpose graphics
property, the golden arches property, the unmotivated user
property and the barn door property. Few proposals addressed
most of these properties whereas few failed to do so. Attempts
to solve the phishing problem were again divided into three
approaches: going for Third party certifications, designing
direct authentication mechanisms, and Anti-Phishing tools.

E. Third Party certifications

• Hierarchical and distributed trust models
Third party certification includes hierarchical trust models,

like Public Key Infrastructure (PKI), which were proposed
long ago as a solution for users to authenticate servers and
vice-versa. In PKI, chains of Certificate Authorities (CAs)
vouch for identity by binding a public key to a entity in a
digital certificate. The Secure Sockets Layer (SSL), now
known as Trans-port Layer Security (TLS), both rely on PKI.
The problem here was that, in the typical use of SSL today
only the server is authenticated. Even with the wide use of
one-sided SSL (in the form of server digital certificates signed
by a trusted CA), there were problems. As examined in their
task analysis, certificates had been falsely issued, and most
users did not have the know-ledge or skill to understand digital
certificates and the delegation of trust.
Other third party approaches included “web of trust”
distributed trust models (e.g., Pretty Good Privacy) and the use
of third party seals to indicate trusted websites (e.g. Verisign
Seal Program and TRUSTe [23]). By displaying seals as
graphics that can be easily copied, trusted seal programs
ignored the “general purpose graphics” property.

• Trustbar
The “Trustbar” proposal was again a third party

certification solution, where websites logos were certified. A
“trusted credentials area” was created as a fixed part of the
browser window [1]. This area was used to present credentials
from the website, such as logos, icons and seals of the brand
that had been certified by trusted certificate authorities or by
peers using a PGP “web of trust”. Strength of this solution was
that it did not rely on complex security indicators. However,
careful consideration had to be given to the “general purpose
graphics” and “golden arches” properties. Because, since the
logos do not change, they could be easily copied and the
credentials area of the browser could be spoofed (e.g., an
attacker can draw an image of the credentials area into the top
portion of an un-trusted webpage to make it appear trusted).
Therefore, careful consideration had to be given to the design
of an indicator for insecure windows so that spoofed

L. D. Dhinesh Babu et al, International Journal of Advanced Research in Computer Science, 1 (3), Sept –Oct, 2010, 152-159

© 2010, IJARCS All Rights Reserved 155

credentials could be easily detected. But there remained an
ambiguity in the cases where two sites used similar logos and
they were supposed to certify uniquely.

F. Direct Authentication

This approach included user authentication and server
authentication schemes.
a)Multi-Factor User Authentication: These schemes used a
combination of factors to authenticate the user. The factors can
be something you know (for example, a password or ATM
PIN), something you have (for example, a token or key) or
something you are (for example, biometrics).

• AOL Passcode
 America Online’s Passcode was proposed as a phishing
defense. This program distributed RSA SecurID [15, 16]
devices to members of AOL. The device generated a unique
six-digit numeric code and displayed it, every 60 seconds. This
could be then used as a secondary password while logging into
AOL website. This scheme reduced the value of collecting
passwords because the passwords were of no use for another
transaction. But however, they failed to prevent a man-in-the-
middle (MITM) attack where the attacker could lure a user to a
spoofed AOL website so that he/she can collect both the
primary and secondary passwords. These passwords can
immediately be presented by the attacker to AOL in order to
masquerade as the user. The Passcode program did however
raise the bar for phishing attacks today, but it has its own
issues; phishers would soon turn to this type of “live” MITM
attack, if the bar was raised everywhere. This again had a
problem. This scheme ignored the “limited human skills”
property, by not providing the user with any means
whatsoever to verify the correct identity of the server.

• Secondary SMS Passwords
 One of the other two factor user-authentication schemes
was issuing secondary passwords to users through Short
Message Service (SMS) as text messages on their cell phones.
This was again susceptible to MITM attacks. Originally these
two factor user authentication schemes were used to protect
the server from fraud rather than protecting the users from
phishing. This again ignored the “limited human skills
property”.

b) Server Authentication using Shared Secrets:

• Passmark and verified by Visa
 Shared secret schemes were one of the simplest ways to
authenticate web servers. In this technique, the user had to
share a secret such as an image and/or a pass phrase. This
secret will be later revealed by the server to the user to
authenticate itself [24]. The most obvious drawback of this
method was that the server had to display this secret in order
to authenticate itself to the user. So this gave a chance to the
attacker to capture and replay it. But this technique used the
concept of cookies. The server placed a cookie on the user
machine thus preventing MITM attacks. However, this did not
prevent the attack in which a rouge server instructed the
browser two identical windows, where one was legitimate and
the other one is a phish. By careful placement of the rouge
window, the attacker could make the user enter the username
and password into the phish rather than the original one. This
was done by spoofing the passmark [11] “re-registration”
process.

The passmark had to be re-registered in case the user
wished to uses a computer in which the cookie is already not
set or the cookie had been deleted [23]. Hence, the attacker
was able to redirect the user to a page where it claims that the
page has been deleted, in order to make the user re-register
again. The legitimate page that showed the error always asked
the user to ensure that he/she has reached this page by
manually typing the URL by hand [23]. The spoofed page
however did not include this error.

• ViWiD
 M. Topkara et al. proposed a novel scheme ‘ViWiD’,
which was based on watermarking and it is implemented it, for
mitigating phishing attacks. This was a mechanism to check
the integrity of logo images based on watermarking [30]. The
entire computation is performed on the company’s web server,
by ViWiD. It did not require installation of any tool or storage
of any data, such as keys or history logs, on the user’s
machine. The watermark message was designed so that is was
unique for every user and, it carried a shared secret between
the company and the user in order to thwart the ‘one size fits
all’ attacks.
Another effective approach to detection of Web page phishing
was proposed, which used Earth Mover’s Dis-tance (EMD). It
was used to measure the Web page’s visual similarity [29].
The involved Web pages were first converted into low
resolution images and then color and coordinate features were
used to represent the image signatures. After doing that EMD
[30] was used to calculate the signature distances of the
images of the Web pages.

 A number of attacks that required more difficulty were
possible (e.g., breaking the secure cookie, physical observation
of the secret image, discovering the potential range of images
and then guessing the image). However, spoofing required the
least amount of effort to defeat the most people, and was
expected that this type of spoofing attack would become
common if systems like Passmark were widely deployed.
Evidence suggested that users were able to correctly recognize
a large number of images. However, the problem was that if a
user is required to remember different images or passphrases
for a number of different servers, any difficulty in recognizing
an image could be exploited by an attacker. This scheme
ignores the “limited human skills”, “general purpose graphics”
and “golden arches” properties.

Server authentication using self-shared secrets

This authentication scheme required the user to share a secret
with his/her own device (for example web browser) rather than
the web server.

• SRD (Synchronized Random Dynamic) Boundaries
 Ye and Smith proposed “Synchronized Random Dy-namic
Boundaries” to secure the path from users to their browser
[28]. This scheme used a random number generator to set a bit
that determined whether the browser border is inset or outset.
The browser border alternates between inset and outset at a
certain frequency in concert with a reference window. The
strength of this solution was that it was good in recognizing
the “general purpose graphics” problem. In this technique,
rogue servers could not predict the random number which is
chosen by the browser, and therefore it was difficult to create

L. D. Dhinesh Babu et al, International Journal of Advanced Research in Computer Science, 1 (3), Sept –Oct, 2010, 152-159

© 2010, IJARCS All Rights Reserved 156

spoof windows that blink at the correct frequency. But a
weakness of this approach was that it ignores the “limited
human skills” property; dynamically “blinking” borders may
be easy to distinguish for the users, and frequent border
changes were likely to prove to be distracting. The security
depended on how many border frequency op-tions are
available and how many users can differentiate.

• YURL Petnames
 In the YURL proposal, the user's browser maintained a
mapping of a public key hash to petname. When a user visited
a page that is identified by a YURL, the browser displayed the
petname that the user previously associated with the public
key hash [24]. This helped in recognizing an un-trusted site if
the corresponding petname was not present. This was a very
simple scheme that required a small degree of personalization
for each website. But scheme ignored the “unmotivated user
property” because security relies on users to be motivated to
customize petnames for trusted sites. One advantage of this
technique was that the secret (the pet-name) was shared with
the user’s browser, rather than with the trusted server. Careful
consideration had to be given to the design of the un-trusted
state i.e., un-trusted windows had to be clearly marked as
having no petname. Otherwise, attackers could spoof the
petname display area in the browser and fool many users.
 The “limited human skills” property was also important.
Petnames relied on user’s memory to recognize, and to
associate the secret phrase with the correct website. It was
expected that users would choose predictable petnames. For
example, many users would choose “Google” for google.com.
The designers can encourage users to select unique petnames
to improve spoof resistance.

G. Anti-Phisihing tools

• eBay Toolbar
 The eBay Toolbar is a browser plug-in that eBay of-fered
to its customers. It helped keep track of auction sites for them.
The toolbar has a feature, known as AccountGuard [5], which
monitors web pages that users visit and provided a warning in
the form of a colored tab on the toolbar. The tab usually
appears grey, but turns green if the user is on an eBay or
PayPal site or red if the user is visiting a site that is known to
be a spoof by eBay [5]. The toolbar also allowed users to
submit suspected spoof sites to eBay. One big drawback to this
particular approach was that it only worked for eBay and
PayPal websites. Users would not want to maintain too many
toolbars that each and every site offers to detect phish.
However, it is not difficult to develop a generalized program
or tool for this. The main weakness was that there would
always be a period of time between the loading of a webpage
and the time taken for a spoof to be detected and also when the
toolbar can begin detecting spoofs for users. If spoofs are not
carefully confirmed, denial of service attacks is possible. This
indicates that some percentage of users will still be vulnerable
to spoofing. For these users, “the barn door” property means
that their personal data will not be protected.

• SpoofGuard
 SpoofGuard is an Internet Explorer browser plug-in that
examines web pages and warns users when a certain page has
a high probability of being a spoof. This calculation is
performed by carefully examining the domain name, links and
images and comparing them to the stored history and also by
detecting common characteristics of spoofed websites [19]. It

would make phishers to work harder to create spoof pages, if
used. However, SpoofGuard always had to stay one step ahead
of phishers, who could test their web pages against it. New
detection tests were continuously needed to be deployed as
phishers become more sophisticated.
 SpoofGuard made use of what is called PwdHash [19]. It
was an Internet Explorer plug-in that replaced a user’s
password with a one way hash of the password and the domain
name. So, the web server only received a domain-specific hash
of the password instead of the password itself. This was a
simple but useful technique in addressing the “barn door
property” and preventing phishers from collecting user
passwords. Both Spoof-Guard and PwdHash ignored the
“general purpose graphics” property by using a security
indicator (a traffic light) that can be easily copied.

• Spoofstick
 Spoofstick is again a toolbar extension for Internet Explorer
and Mozilla Firefox that provided basic information about the
website’s domain name. That is, if the user was visiting
Amazon, the toolbar would display "You're on amazon.com".
If the user was at a website site that was spoofed, the toolbar
instead displayes "You're on 20.191.132.45". This toolbar
helped users to detect attacks where the rogue website had a
domain name that is syntactically or semantically similar to a
legitimate site [20]. Unfortunately, the current implementation
of Spoofstick could easily be fooled by clever use of frames
when different websites were opened in multiple frames in the
browser window. This ignored the “limited human skills”
property, because, users had to be aware of the use of hidden
frames on a webpage. Spoofstick does address the “general
purpose graphics” property by allowing users to customize the
appearance of the toolbar.
 However, most of the above tools relied on primarily on
blacklists and lists of URLs that have been observed hosting
phishing attacks. Blacklists provided no protection from
attacks that were not already flagged as phishing. There were
considerable numbers of such missed attacks. Researchers had
proposed supplementing blacklists with Information Retrieval
(IR)-based tools [20]. However, an IR-based approach was
assumed to have generating false positives; legitimate websites
were being incorrectly flagged as phishing. False positives
undermined user’s trust in a tool and posed questions of legal
liability. This basically added more to the phishing ability of
the attackers.

• BayeShield: Conversational Anti-Phishing Interface
 To overcome the above problem, Peter Likarish et al, came
up with an idea of BayeShield user interface which acted as a
front-end to IR-based tools to identify phishing attacks with
high probability but still with a few false positives [12]. This
required one pre-requisite, to educate users through a series of
questions that lead to a conclusion whether the website was
legitimate or an attack. This was a lengthy process to be
followed every time a site was to be opened. Also, this worked
only 65% of the time providing correct solutions. Its tendency
to flag legitimate websites as an attack sometimes, pose to be
source of confusion to the users.

• iTrustPage
 iTrustPage is an anti-phishing tool that avoided full fledged
automation and instead went for user assistance to detect
phishing [21]. iTrustPage, also relied on external repositories

L. D. Dhinesh Babu et al, International Journal of Advanced Research in Computer Science, 1 (3), Sept –Oct, 2010, 152-159

© 2010, IJARCS All Rights Reserved 157

of information in order to prevent users from filling phishing
Web forms. With iTrustPage, users helped to decide whether
or not a Web page is legitimate. Since iTrustPage is user-
assisted, it avoided the false positives as well as the false
negatives associated with automatic detection of phish, to a
large extent. It was implemented as a downloadable extension
to FireFox. This it-self proved to be a disadvantage as it
limited the range of browsers on which this tool could be used.
Also, its use becomes difficult in organizational networks
where downloading is prohibited, for example universities,
etc.

• TruWallet
 TruWallet is a wallet-based authentication tool. It improved
the previously proposed or used solutions for protecting web-
based authentication. In contrast to other wallet-based
solutions, TruWallet [17] provided (i) strong protection for
users’ credentials and sensitive data by cryptographically
binding them to the user’s platform configuration based on
Trusted Computing technology, (ii) an automated login
procedure where the server is authenticated independently
from (SSL) certificates, thus limiting the possibility of attacks
based on hijacked certificates and allowing less dependency on
the SSL PKI model, and (iii) a secure migration protocol for
transferring wallet data to other platforms. This tool used a
small virtualization-based security kernel with trusted
computing support and works with standard SSL-based
authentication solutions for the web, where only minor
modifications and extensions were required. It was made
interoperable so that existing operating systems and
applications like web browsers could be re-used.

• SpamAssasin
 SpamAssasin is an open source spam filter. SpamAssasin
[18] identified spam signatures using a wide variety of local
and network tests. Using this made it very hard for spammers
to identify even a single aspect with which they could craft
their messages to work. A well designed, abstract API was
used to encapsulate its logic, so it could be integrated
anywhere in the email stream. It required very little
configuration. It was not required that the users should
continually update it with their mailing list memberships, mail
accounts, etc. Once classification was done, site and user-
specific policies could be applied against spam. Policies could
be applied on both mail servers. Later it could be done using
the user's own mail user-agent application. This tool helped in
filtering a large extent of the spam emails sent by the attackers
targeting the users.

• Dynamic security skins
 It is an interesting solution which has been proposed by R.
Dhamija et al. It involves the use of a so-called dy-namic
security skin on the user’s browser. It was implemented as a
plug-in for Mozilla. It allowed the remote server to prove its
identity to the user in a new and unique way. Only the user
could verify the server but it was very difficult for a phisher to
spoof. The disadvantage of this approach is that it doesn’t
conform to the “unmotivated user” property. It required effort
by the user. In fact, it required the user needs to be aware of
the phishing threat and check for any signs that the site he/she
is visiting is spoofed or not. It is to be noted that in a later
study, R. Dhamija et al. reported that more than 20% of the

users ignored the visual clues when surfing and that visual
deception attacks could fool even the most advanced users.

• PhishCatch
 The basic architecture of PhishCatch [32] consisted of a
module that could fetch emails, a module that could filter
emails and then classified them as phishing, Alerter that could
issue an alert to the user and the data warehouse that stored all
the information related to phishing emails.
 The PishCatch algorithm was designed to work with POP
and IMAP mail servers, to fetch the emails. Whenever a new
mail came in, the email was retrieved and split up into headers
and body. Once the email is stripped into its component parts,
the next step in the algorithm was to apply the phishing filters
on the email to detect a phishing email.
Firstly, the email is scanned for the presence of the text filters
defined in their algorithm. The number of text filters detected
in the email is recorded, which would be the weight of that
filter. The weight of the filter is then added to a list, Phishrank.
Phishrank is a list which contains a mapping of the phishing
filters to their respective weights.
 In the next step, the received domain mismatch is checked
in the email i.e., the domain similarity between the Received
from and ‘From’ fields in the email is verified. The first
Received ‘From’ and the ‘From’ fields are obtained from the
e-mail header. If both these fields did not have the same
domain, then it was assumed that the source address was
spoofed in the email and hence the appropriate weight was
assigned to the received domain mismatch filter.
 The principle behind the ranking system was that a rank
was assigned to each link based on the probability of it being a
phishing link. The probability was deduced by looking at
which filters the phishing link triggers. The identified phishing
link was stored and used for the information gathering and for
cross verification with PhishTank data. PhishTank is a
collaborative clearing house for data and information about
phishing on the Internet. PhishTank is a publicly available
phishing database that receives phishing links from users.
These links are voted upon by the users and based on the
number of votes the links receive, they are classified as
phishing links or not. Popular web browsers like Mozilla
Firefox use PhishTank data to detect phishing links and alert
the user about the phishing link.

• AntiPhish
 AntiPhish is again a browser extension or a plug-in that
provided protection to users’ against spoofed website type of
phishing attacks [33]. AntiPhish kept track of the sensitive
information that belongs to a user and it generated warnings
whenever the user accidentally attempted to give away such
information to a web site that was actually considered
untrusted. Automated form-filler applications were the
inspiration behind the development of AntiPhish. We must
have experienced many times in browsers such as Mozilla or
the Internet Explorer a functionality that allows form contents
to be filled automatically whenever a user desires. That
information is normally stored by the browser and is
automatically shown to us when we attempt to fill the form.
Such content is normally protected by a master password. The
browser uses symmetric DES algorithm for encryption and
decryption purposes. Upon entryof this password, a previously
filled login form, for example, will be automatically filled by
the browser whenever it is ac-cessed.

L. D. Dhinesh Babu et al, International Journal of Advanced Research in Computer Science, 1 (3), Sept –Oct, 2010, 152-159

© 2010, IJARCS All Rights Reserved 158

 This common functionality was taken one step further to
track where the information was being sent. Not only this
sensitive information was stored but also AntiPhish stored a
mapping of where this information actually belonged to. That
is, it also stored the domain of the web site where this
information was originally entered. The effectiveness of
private information preserving approach was totally dependent
on users. To keep their private information could prove to be
irritating works for the users. And it was not a good idea to
store private information which is mostly memorized by users
in a computer system.

• PhishingGuard
 The idea of PhishingGuard [34] is that a web site can be
identified by its IP address itself and most users have not so
many URLs related to their credentials or private information.
That’s why it made use of white list ap-proach.
Phishing URLs that had been reported to Anti Phish-ing
Working Group (APWG [1]) were analyzed and classified into
three representation types:

Type 1: Explicit Representation
Type 2: Similar Representation
Type 3: Spoofed Representation

When a user accessed a web site, the (URL, IP) informa-tion
was passed to what was known as the Access En-forcement
Facility(AEF) [34] to check if the web site was a Phishing site,
Phishing-suspicious, and DNS record for the URL had been
spoofed(pharmed) or not.
 Phishing Detection module’a work was to look up a URL
in Trust Site List same as passed URL from AEF. If those
URLs were same but the IP addresses are found different, then
the Phishing Detection module returned a sign of explicit
Phishing. On the other hands, for Trust Site List, Phishing
Warning module searched a URL that was similar to passed
URL from AEF. Phishing Warning message was shown to a
user by this similarity check.

 Apart from the tools and security solutions shown above
there are organizations like Anti-Phishing Work Group
(APWG), TRUSTe and NetCraft that provide anti-fraud and
anti-phishng services, online privacy seals, etc, to further
safeguard our websites and personal information from being
stolen by the attackers.
 Anti-Phishing Working Group (APWG) [1], is the global
pan-industrial and law enforcement association focused on
eliminating the fraud and identity theft that result from
phishing, pharming and email spoofing of all types.
TRUSTe is an independent, privately held organization based
in San Francisco, California. It is best known for its online
privacy seals. It has certified more than 3,500 websites which
include popular online portals and leading brands like Yahoo,
Microsoft, Facebook and Appli Inc. The world’s largest
privacy seal program is operated by it [22]. TRUSTe's pro-
fessional service offerings included consumer dispute
resolution, site reputation management, and vender evaluation
services as well as privacy policy generation.
 Netcraft is an Internet services company based in Bath,
England. It provides services like internet security, which
includes anti-fraud and anti-phishing services, application
testing, and automated penetration testing and code reviews
[10].

IV. DRAWBACKS AND CONCLUSION

Most of the anti-phishing tools here seem to have usability
problems [28]. Anti-phishing tools were able to identify all
fraudulent web sites without any false positives, but because of
usability problems, users could still fall victim to fraud. User
testing was needed to better understand how users reacted to
each different style of warning, for example, in eBay tool bar
when it flashes different colors. Future studies on anti-phishing
tools should also take into consideration, usability testing. A
technically sound tool is of little or no use if users are unsure of
what it is trying to communicate to them. Previous research has
examined the effectiveness of several techniques for informing
users about phishing [27]. However, it did not evaluate the
effectiveness of pop-up warnings, or the difference in user
reaction upon seeing a warning versus having a web site
blocked. Usability problems plague all varieties of software -
particularly security software. Poor usability, for an anti-
phishing tool, means the difference between correctly taking
someone away from a phishing site and then has them ignore
the warnings only to become a victim of identity theft.

V. REFERENCES

[1] Anti-Phishing Working group.
http://www.antiphishing.org/.

[2] Anti-Phishing Working Group, Global Phishing Survey:
Trends and Domain name use in 1H2009, 2009

[3] Core Street, Spoofstick,
http://www.corestreet.com/spoofstick/

[4] Dhamija, R. and Tygar, J. D. 2005. The battle against
phishing: Dynamic Security Skins. In Proceedings of the
2005 Symposium on Usable Privacy and Security,
SOUPS '05, vol. 93, ACM Press.

[5] eBay Toolbar, http://pages.ebay.com/ebay_toolbar/

[6] Evgeniy Gabrilovich and Alex Gontmakher. "The
Homograph Attack" (PDF), February 2002, ACM

[7] Federal Trade Commission, Phishing Alerts,
http://www.ftc.gov/bcp/conline/pubs/alerts/phishingalrt.ht
m

[8] Financial Cryptography, "GP4.3 - Growth and Fraud -
Case #3 - Phishing", December 30, 2005,
https://financialcryptography.com/mt/archives/000609.ht
ml.

[9] Mutton, Paul. "Fraudsters seek to make phishing sites
unde-tectable by content filters". Netcraft.
http://news.netcraft.com/archives/2005/05/12/fraudsters_s
eek_to_m
ake_phishing_sites_undetectable_by_content_filters.html.

[10] Netcraft, http://news.netcraft.com/

[11] PassMark Security, Protecting Your Customers from
Phishing Attacks- An Introduction to PassMarks,
http://www.passmarksecurity.com/

[12] Peter Likarish, Don Dunbar, Juan Pablo Hourcade, Eunjin
Jung, BayeShield: Conversational Anti-phishing User
Interface, Symposium On Usable Privacy and Security
(SOUPS) 2009, ACM.

[13] Ponnurangam Kumaraguru, Yong Rhee, Alessandro
Acquisti, Lorrie Faith Cranor, Jason Hong, Elizabeth
Nunge, Protecting People from Phishing: The Design and
Evaluation of an Embedded Training Email System, CHI
2007, ACM

[14] Robila, S. A., J. James and W. Ragucci. 2006. Don't be a
phish: steps in user education. ITICSE '06: Proceedings of

L. D. Dhinesh Babu et al, International Journal of Advanced Research in Computer Science, 1 (3), Sept –Oct, 2010, 152-159

© 2010, IJARCS All Rights Reserved 159

the 11th annual SIGCSE conference on Innovation and
technology in computer science education. pages 237-241,
ACM

[15] RSA Security, America Online and RSA Security Launch
AOL PassCode Premium Service, 2004,
http://www.rsasecurity.com/

[16] RSA Security, Protecting Against Phishing by
Implementing Strong Two-Factor Authentication, 2004,
https://www.rsasecurity.com/products/securid/whitepaper
s/

[17] Sebastian Gajek, Hans Löhr, Ahmad-Reza Sadeghi,
TruWallet: Trust-worthy and Migratable Wallet-Based
Web Authentication, STC’09, November 13, 2009, ACM

[18] SpamAssasin, http://spamassassin.apache.org/

[19] SpoofGuard, http://crypto.stanford.edu/SpoofGuard/

[20] SpoofStick, http://www.spoofstick.com/

[21] Troy Ronda, Stefan Saroiu and Alec Wolman, iTrustPage:
A User-Assisted Anti-Phishing Tool, EuroSys’08, 2008,
ACM

[22] TrustE, http://www.truste.org/

[23] Visa, Verified by Visa, http://www.visa.com/

[24] Waterken Inc., Waterken YURL Trust Management for
Humans, http://www.waterken.com/dev/YURL/Name/

[25] "What is spear phishing?",
http://www.microsoft.com/athome/security/email/spear_p
hishing.mspx

[26] Wikipedia, http://www.wikipeida.org/

[27] Wu, M., Miller, R. C., and Garfinkel, S. L. 2006. Do
security toolbars actually prevent phishing attacks?,
Proceedings of the SIGCHI Conference on Human
Factors in Computing Systems (Montréal, Québec,
Canada, April 22 - 27, 2006), ACM Press.

[28] Zhang, Y., S. Egelman, L. Cranor, and J. Hong, Phinding
Phish: Evaluating Anti-Phishing Tools. Proceedings of the
14th Annual Network and Distributed System Security
Symposium (NDSS 2007), ACM

[29] A. Y. Fu, W. Y. Liu, and X. T. Deng, “Detecting Phishing
Web Pages with Visual Similarity Assessment Based on
Earth Mover’s Distance (EMD)”. IEEE Transactions on
Dependable and Secure Computing, Vol.3, No.4, 2006,
pp.301-311, IEEE.

[30] Huajun Huang; Junshan Tan; Lingxi Liu; Countermeasure
Techniques for Deceptive Phishing Attack, New Trends in
Information and Service Science, 2009. NISS '09, 2009 ,
Page(s): 636 – 641, IEEE

[31] Knickerbocker, P.; Dongting Yu; Jun Li; Humboldt: A
distributed phishing disruption system, eCrime
Researchers Summit, 2009. CRIME '09.2009 , Page(s): 1
– 12, IEEE.

[32] Yu, W.D.; Nargundkar, S.; Tiruthani, N.; PhishCatch - A
Phishing Detection Tool , Computer Software and
Applications Conference, 2009. COMPSAC '09, 2009,
Page(s): 451 – 456, IEEE.

[33] Engin Kirda and Christopher Kruegel, “Protecting Users
against Phishing Attacks with AntiPhish”, 29th Annual
International Computer Software and Applications
Conference (COMPSAC’05), 2006, IEEE.

[34] JungMin Kang; DoHoon Lee; Advanced White List
Approach for Preventing Access to Phishing Sites,
Convergence Information Technology, 2007, Page(s): 491
– 496, IEEE.

[35] Qiong Ren; Yi Mu; Susilo, W.; SEFAP: An Email
System for Anti-Phishing, Computer and Information
Science, 2007. ICIS ‘07, 2007, Page(s): 782 – 787, IEEE.

AUTHORS

M. Nirmala received the M.Tech in Computer Science and
Engineering from Vellore Institute of Technology and is

working towards her PhD. She is currently an
Assistant Professor in the School of
Information Technology and Engineering at
VIT University, Vellore. Her research interests
include Computer and Network Security, High
Performance Computing and Software
Engineering.

K. Naveen Kumar is currently pursuing his

M.S in Software Engineering at VIT University where he
focused on Software Engineering methodologies, Computer

Networks and Security, and Computer fraud
and Security. He is a CISCO Certified
Network Associate. His research interests
include Intrusion Detection and Prevention
Systems, Malware Analysis, Reverse
Engineering and Software Architecture and
Design. His previous projects include,
developing a Malware detection tool, Web
automation tool for functional testing and he
is currently working on creating new

authentication mechanisms to prevent fraud and identity theft
involved in online transactions.

L. D. Dhinesh Babu received the M.E in Computer Science
and Engineering from the University of Madras in 2001 and is
working towards his PhD at VIT University. He is currently

the Division Leader for Software
Engineering Division in the School of
Information Technology and Engineering at
VIT University, Vellore, India. He is also the
Programme Manager for M.S.(Software
Engineering) at VIT University. His research
interests include Cloud, Grid and Distributed
Computing, Computer and Software
Security, Software Engineering, Design

Patterns and Image Processing.

