
Volume 2, No. 5, Sept-Oct 2011 

International Journal of Advanced Research in Computer Science 

RESEARCH PAPER 

Available Online at www.ijarcs.info 

© 2010, IJARCS All Rights Reserved     6 

ISSN No. 0976-5697 

Register Allocation and Instruction Scheduling for an Efficient Retargetable Compiler 

Dr. Manoj Kumar Jain* and Veena Ramnani 
Department of Computer Science 

Mohanlal Sukhadia University Udaipur, 
Rajasthan, India 

manoj@cse.iitd.ernet.in, ramnaniv@yahoo.com 
 

Abstract: System designers increasingly employ compilers not only for pure application programming after an ASIP’s architecture is fixed but 
also for architecture exploration. During exploration, the designer tunes the initial architecture for a given application or application set. This 
tuning requires an iterative, profiling based methodology, by which the designer evaluates the cost-performance ratios of many potential 
architecture configurations. If C or C++ application programming is intended, the designer should apply a compiler-in-the-loop type of 
architecture exploration, thus avoiding a compiler and architecture mismatch. 
The compiler designers often have difficulty ensuring good code quality because an instruction set designed primarily from a hardware 
designer’s viewpoint fails to support their efforts. This problem is taken care by retargetable compilers. These compilers take processor 
description as input so that the machine code can be generated according to this description. Like traditional compilers, the code quality of 
retargetable compilers depends on the back end of the compiler. This paper describes a new register allocation and instruction scheduling 
technique. 
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I. INTRODUCTION 

Modern system-level design libraries frequently consists 
of  Intellectual Property (IP) blocks such as processor cores 
that span a spectrum of architectural styles , ranging from 
traditional DSPs and superscalar RISC , to VLIWs and 
hybrid ASIPs. Embedded systems facilitate easy re-design 
of processor-memory based systems. The designer can 
incorporate modifications in the behavior and operation 
aspect of the architecture late in the design stage. ASIP are a 
compromise between the non-programmable ASICs and 
general purpose processors (GPP). 

ASIP design [1][2][3][4] allows a wide range of memory 
organizations and hierarchies to be explored and customized 
for the specific embedded application. The ASIP designer is 
faced with the task of rapidly exploring and evaluating 
different architectural and memory configurations. 
Furthermore, shrinking time-to-market has created an urgent 
need to automatically generate compiler/simulator tool-kit. 
There are two approaches for performance estimation using 
ASIP design: scheduler based approach and simulator based 
approach. 
A. Scheduler Based Approach: In scheduler based 

approach the problem is formulated as a resource 
constrained scheduling problem. The application is 
scheduled to generate an estimate of the cycle count. 

B. Simulator Based Approach: A  retargetable compiler is 
constructed for each architecture to be evaluated. This 
compiler is used to generate code. This generated code 
is given as input to a retargetable simulator which is 
also designed for the same architecture under 
evaluation. This simulator generates the performance 
estimates and other statistics. 
 
 

II. RETARGETABLE COMPILERS 

Retargetable compilers are a promising approach for 
automatic compiler generation. A compiler is said to be 
‘retargetable’ if it can be used to generate code for different 
processor architectures by reusing significant compiler 
source code. This has resulted in a paradigm shift towards a 
language-based design methodology using Architecture 
Description Language (ADL) for embedded System-on-
Chip (SOC) optimization, exploration of architecture 
/compiler co-designs and automatic compiler/simulator 
generation. However, whatever approach is used, the 
performance depends on the back end of the compiler i.e. 
instruction selection, register allocation and instruction 
scheduling. 

In this paper, we have discussed new approaches for 
both register allocation and instruction scheduling. 

III. REGISTER ALLOCATION 

The register allocation phase lies between optimization 
and the final code generation. When generating intermediate 
code, we freely use as many variables as required. 
Afterwards, we simply translate variables in the 
intermediate language one-to-one into registers in the 
machine language. Processors, however, do not have an 
unlimited number of registers, so we need register allocation 
to handle this conflict. The purpose of register allocation is 
to map a large number of variables into a small number of 
registers. This can often be done by letting several variables 
share a single register, but sometimes there are simply not 
enough registers in the processor. In this case, some of the 
variables must be temporarily stored in memory. This is 
called spilling. 

Register allocation can be done in the intermediate 
language prior to machine code generation, or it can be done 
in the machine language. In the latter case, the machine code 
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initially uses symbolic names for registers, which the 
register allocation turns into register numbers. Doing 
register allocation in the intermediate language has the 
advantage that the same register allocator can easily be used 
for several target machines (i.e. for retarget ability: it just 
needs to be parameterized with the set of available 
registers). 

However, there may be advantages to postponing 
register allocation after machine code has been generated. In 
machine code generation phase, several instructions may be 
combined to a single instruction, and in the process a 
variable may disappear. Then, there is no need to allocate a 
register to this variable, but if we do register allocation in 
the intermediate language we will do so. Furthermore, when 
an intermediate language instruction needs to be translated 
into a sequence of machine-code instructions, the machine 
code may need an extra register (or two) for storing 
temporary values. 

We have used a variation of linear scan algorithm [13] 
which is basically a global register allocation algorithm, and 
is not based on graph coloring.  

A. Existing Register Allocation Approaches: 
Global register allocation has been studied extensively in 

the literature. The predominant approach, first proposed by 
Chaitin in [5], is to abstract the register allocation problem 
as a graph coloring problem. Nodes in the graph represent 
live ranges (variables, temporaries, virtual/symbolic 
registers) that are candidates for register allocation. Edges 
connect live ranges that interfere, i.e., live ranges that are 
simultaneously live at atleast one program point. Register 
allocation then reduces to the graph coloring problem in 
which colors (registers) are assigned to the nodes such that 
two nodes connected by an edge do not receive the same 
color. If the graph is not colorable, some nodes are deleted 
from the graph until the reduced graph becomes colorable. 
The deleted nodes are said to be spilled because they are not 
assigned to registers. The basic goal of register allocation by 
graph coloring is to find a legal coloring after deleting the 
minimum number of nodes. 

Chaitin's algorithm also features coalescing, a technique 
that can be used to eliminate redundant moves. When the 
source and destination of a move instruction do not share an 
edge in the interference graph, the corresponding nodes can 
be coalesced into one, and the move eliminated. 
Unfortunately, aggressive coalescing can lead to uncolorable 
graphs, in which additional live ranges need to be spilled to 
memory. [6] and [7] have focused on graph coloring and 
removed unnecessary moves in a conservative manner so as 
to avoid introducing spills. 

Some simpler heuristic solutions also exist for the global 
register allocation problem. For example, lcc [8] allocates 
registers to the variables with the highest estimated usage 
counts, places all others on the stack, and allocates 
temporary registers within an expression by doing a tree 
traversal. Linear scan can be viewed as a global extension of 
a special class of local register allocation algorithms that 
have been considered in the literature [8] [9] [10] [11] which 
in turn takes their inspiration from an optimal off-line 
replacement algorithm that was studied for virtual memory 
[12]. Since the original description of the linear scan 
algorithm in [13], Traub in [14] have proposed a more 
complex linear scan algorithm, which they call second-
chance bin packing. At a high level, the binpacking schemes 

are similar to linear scan, but they invest more time in 
compilation in an attempt to generate better code. The 
second-chance binpacking algorithm both makes allocation 
decisions and rewrites code in one pass. The algorithm 
allows a variable's lifetime to be split multiple times, so that 
the variable resides in a register in some parts of the 
program and in memory in other parts. It takes a lazy 
approach to spilling, and never emits a store if a variable is 
not live at that particular point or if the register and memory 
values of the variable are consistent. 

Binpacking can emit better code than linear scan, but it 
does more work at compile time. Unlike linear scan, 
binpacking keeps track of the “lifetime holes" of variables 
and registers (intervals when a variable maintains no useful 
value, or when a register can be used to store a value), and 
maintains information about the consistency of the memory 
and register values of a reloaded variable. The algorithm 
analyzes all this information whenever it makes allocation 
or spilling decisions. 

B. The Revised Linear Scan Algorithm: 
We have used a variation of linear scan algorithm 

proposed by Poletto in [13]. The original algorithm is used 
for global allocation, but we have employed the same 
methodology for local allocation as well, taking care of the 
variables which are being used across the block. We shall be 
performing the register allocation considering the 
intermediate representations i.e. three address code already 
generated. We also assume some kind of ordering on this 
three-address code. 

For every basic block, we calculate the starting point of 
use and the last point of use of the variables, constants and 
temporary variables. As we scan each line to find the use of 
the above, we cross the block boundary to find the last use. 
For every variable and constant we note down the use in the 
basic block as well as the last use in the whole program. 
Calculating the last use in the program, gives us the last 
basic block where the variable will be used. The advantage 
of finding the last use in block and last use in program helps 
the register allocator decide on two things: 
a. If the variable is being used in the current block and 

has no use outside the block , the register allocator will 
free the register after the point of last use in the basic 
block 

b. If the variable has the last use in program outside the 
current basic block , the register allocator will not free 
the register  immediately on exit from the block 

We are not keeping separate registers for global and 
local allocation. Initially, all the registers are used for local 
allocation. On exit from the basic block, only the registers 
holding values which have no next use will be freed and rest 
registers will be maintained as it is. Demarking the registers 
for local and global allocation leads to under utilization of 
registers and unnecessary spilling. Priority of register 
allocation is given to variables to be used within the current 
basic block i.e. given a set of registers; the allocator would 
try to keep all the variables to be used within a basic block 
in the registers. In the process, it may spill variables if they 
are not required in the current block. 

For local allocation, when we need to allocate a register 
to some variable/constant/temporary and there is no free 
register, then the register allocator calls a procedure 
free_register, which will search – 
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a. For  register holding variable/constant/temporary 
which are dead i.e. which are no longer required 
locally or globally  

b. If no such register is found, then it searches for register 
holding variable/constant not required locally but 
globally and they will be freed i.e. the contents are 
removed and not spilled. 

c. If the register allocator fails to find such a register 
satisfying (1) and (2) i.e. the register allocator is not 
able to find a register that can be freed, then spilling is 
performed. 

As can be observed, spilling is the last option. Spilling 
will select a register based on the usage count of the 
variable/constant/temporary it is holding. The one with the 
lowest usage count will be spilled. 

At  the end of each basic block or at the entry of the next 
basic block , we will not load all the variables with last use 
in program in following blocks, in the registers because this 
approach may not leave empty registers for local 
variables/constants/temporaries. But, definitely , we would 
free the registers holding values which are dead. 

Global allocation does not require another algorithm.It is 
being taken care of as we are allocating registers for local 
values. Since we have calculated the last use of the value in 
program , we know which variables/constants will be used 
outside the basic block and we try to keep them in register 
as long as possible , till the register is required for local 
allocation. In that case, we spill these values to 
accommodate local values and these global values will be 
loaded as and when required like local variables. 

At the time of spilling , if we have more than one global 
value that has so next use in the current basic block , but is 
live on exit , we use the following criteria for selecting the 
register to spill : 

i. Lowest usage count 
ii. Distance of next use from the current line 
Generally , we have two terms register allocation and 

register assignment.Register allocation is to decide which 
values will reside in registers and Register assignment is in 
which value should each value reside. 

In our approach , there is no such thing like register 
allocation as every variable/constant/temporary is being 
assigned a register and if a free register is not available 
either a register is freed or spilled.Also , we have mentioned 
initially that we are not demarking registers for local and 
global allocation , hence every register can be used to hold 
every variable/constant/temporary ,whether inside the basic 
block or across the block boundary for global use. It is 
observed that this approach minimizes unnecessary memory 
loads and stores , which reduces the code size and cycle 
count drastically. Also , not reserving registers for global 
and local usage helps proper utilization of registers. 

The formal algorithm for the above methodology is 
given below : 
Procedure last_use_info () 
For every basic block do 
          For every variable/constant/temporary do 
             Begin 
                Calculate the last use in basic block 
     Calculate the last use in program 
             End 
End Procedure 
Procedure get_free_register () 

For all the registers in the register_file do 
Begin 
If the register is holding a value which is dead, mark  it as  
“empty” 
If the register is holding a value that will not be used in the 
current block 
But will be required globally, mark it as “empty” 
End 
Return the empty register 
End Procedure 
Procedure register_allocator() 
       Call last_use_info 
        Initialize all registers to “empty” 
         For every basic block do 
           begin  
             For every variable/constant/temporary do 
                  Begin 
   Reg=Get_free_register () 
   if there is a free register then 
                       Allocate reg to the 
variable/constant/temporary 
      else 
      Find registers holding values which will not be   
used in the block 
      Select the one with least usage count 
          Spill the value in the selected register 
    End if 
       End 
  At the end of the basic block: 
        Free the registers, which are holding values 
which are dead  
           End 
End Procedure 

IV. INSTRUCTION SCHEDULING 

Instruction scheduling, an important optimization in 
modern compilers, attempts to minimize the execution time 
for a set of instructions by orchestrating the order of their 
execution. Scheduling is particularly important for wide-
issue machines, where instruction level parallelism (ILP) is 
a key source of performance, as it is responsible for 
presenting sets of instructions for concurrent execution. 

In order to generate high-quality code for modern 
processors, a compiler must aggressively schedule 
instructions, maximizing resource utilization for execution 
efficiency. For a compiler to produce such code, it must 
avoid structural hazards by being aware of the processor’s 
available resources and of how these resources are utilized 
by each instruction.  

The problem facing an instruction scheduler is to reorder 
machine code instructions to minimize the total number of 
cycles required to execute a particular instruction sequence. 
Unfortunately, sequential code executing on a pipelined 
processor inherently contains dependencies between some 
instructions. Any transformations performed during 
instruction scheduling must preserve these dependencies in 
order to maintain the logic of the code being scheduled. In 
addition, instruction schedulers often have a secondary goal 
of minimizing register lifetimes. 

Because of the overlap of the execution of instructions in 
a pipeline structure, the results of an instruction issued in 
cycle i will not be available until cycle i+n, where n is the 
length of the appropriate pipeline constraint (i.e.: the latency 
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of the instruction). If an instruction issued between cycles i 
and i+n attempts to reference the result of the instruction 
issued at cycle i, a data dependency has been broken. An 
interlocked pipeline will detect this situation and stall the 
execution of the offending instruction until cycle i+n, 
wasting valuable processor cycles. Even worse, on a 
pipeline without interlocks the code will produce incorrect 
results, since the value being referenced will be the result of 
some other operation. 

Automatically finding an optimal schedule for a code 
sequence is NP-complete in its most general form (with 
arbitrary pipeline constraints), since all legal schedules must 
be examined to determine the optimal one.  

a) Types of Dependencies: 
In practice, three types of data dependency need to be 

considered. 
i. A true or read-after-write (RAW) dependency 

occurs when one instruction reads the result written 
by another. The read instruction must follow the 
write instruction by a suitable number of cycles for 
the result to be read without stalling. 

ii. An anti or write-after-read (WAR) dependency 
occurs when one instruction writes over the 
operand of another. The read instruction must 
occur before the write instruction by a suitable 
number of cycles for the value to be safely read 
without stalling the write instruction. 

iii. An output or write-after-write (WAW) dependency 
occurs if two instructions write to the same target, 
with the result of the logically first instruction 
never being used. 

 The first two types of dependencies – read-after-write 
and write-after-read dependencies – are "real" in the sense 
that they represent the genuine logic of the program. Any 
write-after-write dependencies are usually artifacts of either 
the compilation process or structured programming 
practices, and can often be removed by dataflow 
optimizations such as dead-code elimination or partial 
redundancy elimination. 

In addition to data dependencies, it is important to 
remember that programs also contain control dependencies 
which specify the logical structure of the program and the 
order in which certain operations must be performed. For 
example, the then part of an if statement should not be 
executed until the test has been performed, and then only if 
the test was true. Loops, conditionals, function calls and so 
on all represent control dependencies.  

A. Existing Approaches for Instruction Scheduling: 
There have been many heuristic attacks on the 

instruction scheduling problem. Most of these have followed 
the general approach set down by John Hennessy and 
Thomas Gross in 1983 [15] is based on standard list 
scheduling. Another notable approach is the modification of 
Sethi-Ullman expression evaluation to compensate for some 
forms of pipeline delays [16], however that approach cannot 
easily be extended to handle the more complex scheduling 
problems presented by modern superscalar processors.  

List scheduling approaches work by maintaining a ready 
list which contains all the instructions that can legally be 
executed at a particular point in time. The scheduler 
repeatedly chooses an instruction from the ready list, 
removes it from the list and issues it (inserts it into the final 

schedule). This in turn makes other instructions ready, and 
these are added to the list. The key to the whole process is 
the set of heuristics used to select the best instruction to 
issue. 

In general, scheduling heuristics are used in 
combinations, called priority functions, to try to select the 
best instruction to be issued for a particular situation. 
Although there are literally hundreds of popular heuristics in 
use today, they can be grouped into a few broad categories 
as in [17]. 

B. The Revised List Scheduling Algorithm: 
In our approach we have used a variation of list 

scheduling algorithm, in the sense we have combined 
register allocation with list scheduling. The three-address 
code is converted to the machine code; the instruction 
selection phase selects appropriate opcode from the 
instruction set and the registers are allocated to the 
operands. Once the machine code is generated, we perform 
instruction scheduling. 

In order to perform scheduling, we need to calculate data 
dependencies for which we create dependency graph or data 
precedence graph (dpg). The nodes of the data precedence 
graph are the machine code instructions. The dependencies 
are calculated between instruction operands i.e. the registers 
and the memory addresses. The data dependencies are 
depicted by drawing edges between the nodes. The 
dependency is calculated between register and memory 
operands and not the actual operands. Since, instruction 
scheduling is only about reordering the instructions, so as to 
produce an optimal sequence; we don’t need to perform 
register allocation again. 

Using the above approach solves the phase ordering 
problem as well. The phase ordering problem is to decide 
whether to perform instruction scheduling before or after 
register allocation. In our approach, we are performing 
instruction scheduling after register allocation. Since the 
scheduling is performed considering register and memory 
operands, no false dependencies are created, hence there is 
no need to perform repeated register allocation and 
scheduling. 

First, the dpg (data precedence graph) is built, each 
instruction is a node and the data dependency between 
instructions is shown by drawing edges between them. Next, 
priorities are assigned to each node in the graph. There are 
several different heuristics that can be used to assign 
priorities. A common and effective strategy is to use the 
latency-weighted depth of the node. The depth of a node n is 
the length (number of nodes) of the longest path in the dpg 
from n to some leaf (including n and the leaf). The latency-
weighted depth is computed the same way, but the nodes 
along the path are weighted using the latency of the 
operation the node represents. 

The formula below shows how the priority of a node is 
calculated: 
 
priority (n) =    latency (n)           if n is a leaf. 
                           max (latency (n) + max (m, n) єE (priority (m))   
            otherwise 

If two or more nodes have the same priority as calculated 
with the above formula, we calculate the no.of dependents 
of the nodes and the one with highest no. of dependents is 
selected, because delaying the node (or instruction) with 
large number of dependents will result in a longer schedule.   

http://en.wikipedia.org/wiki/Register_allocation�
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The algorithm maintains two lists: ready and active.  
Ready consists of all the instructions that are ready to be 
scheduled i.e. all its predecessors have been scheduled. 
Active consists of instructions that are being implemented. 
Initially, ready consists of nodes with no predecessors. 
Starting at cycle 1, the list scheduler places operations into 
the schedule cycle by cycle. Any operation that is “ready” at 
cycle X (i.e. all its operands have been computed and 
satisfies resource constraints), is a candidate to be scheduled 
at cycle X. The priorities computed in the previous step are 
used to determine which ready operation to schedule, by 
selecting the highest priority operation first. Any tie in the 
priority of two operations is broken in favor of the 
instruction with more no. of dependents. The instruction is 
selected, removed from ready and moved to active. 

At every clock cycle, we check whether any instruction 
already in active list has completed execution, then we free 
the resources assigned to that instruction and remove it from 
active list. If this instruction has instructions depending on 
it, they are now placed in the ready list as they can now be 
scheduled. This process continues till ready and active have 
no elements or in other words there are no instructions to be 
scheduled. 
The formal algorithm is given below: 
Input: Data Precedence Graph (DPG) with priorities 
assigned to each node 
Output: A schedule containing all nodes in the graph that 
satisfies the precedence constraints in the DPG and the 
resource constraints of the machine 
Algorithm: 
Cycle = 1 
Ready = Leaves of DPG  
Active = ф 
While (Ready U Active <> ф) 
{ 
  For op= (all nodes in Ready in descending priority order) 
  If (a functional unit exists for ‘op’ to start at ‘cycle’) 
  { 
   -remove ‘op’ from Ready and add ‘op’ to Active 
  - add ‘op’ to schedule at time ‘cycle’ 
  - make operands available in registers and allocate a 
register for target 
  } 
   
 End for 
 Cycle = cycle +1 
 Update the Ready Queue 
} 
 
For op= (all nodes in Active) 
 If (‘op’ finishes at time ‘cycle’) 
 { 
  -remove ‘op’ from Active 
  - Check nodes waiting for ‘op’ in DPG and add to 
‘ready’ – if all operand are       available 
 } 
End for  

V. CONCLUSIONS 

In this paper we have given new approaches for register 
allocation and instruction scheduling. The objective for 
these two approaches is to generate efficient code in terms 
of reduced cycle count .In the approach for register 
allocation ,there is nothing like allocation i.e. selection of 
values which will reside in registers, as our algorithm 
allocates register to every value. Our algorithm also does not 
require def-use analysis. Instead, we linearly scan the code 
to know the last use of a value in the program. We try to 

retain a value in register till its last use point is crossed. The 
above approach reduces spilling and unnecessary moves. 
The approach employed for list scheduling avoids the phase 
coupling problem by combining register allocation with 
scheduling. 
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