
Volume 2, No. 5, Sept-Oct 2011

International Journal of Advanced Research in Computer Science

RESEARCH PAPER

Available Online at www.ijarcs.info

© 2010, IJARCS All Rights Reserved 6

ISSN No. 0976-5697

Register Allocation and Instruction Scheduling for an Efficient Retargetable Compiler

Dr. Manoj Kumar Jain* and Veena Ramnani
Department of Computer Science

Mohanlal Sukhadia University Udaipur,
Rajasthan, India

manoj@cse.iitd.ernet.in, ramnaniv@yahoo.com

Abstract: System designers increasingly employ compilers not only for pure application programming after an ASIP’s architecture is fixed but
also for architecture exploration. During exploration, the designer tunes the initial architecture for a given application or application set. This
tuning requires an iterative, profiling based methodology, by which the designer evaluates the cost-performance ratios of many potential
architecture configurations. If C or C++ application programming is intended, the designer should apply a compiler-in-the-loop type of
architecture exploration, thus avoiding a compiler and architecture mismatch.
The compiler designers often have difficulty ensuring good code quality because an instruction set designed primarily from a hardware
designer’s viewpoint fails to support their efforts. This problem is taken care by retargetable compilers. These compilers take processor
description as input so that the machine code can be generated according to this description. Like traditional compilers, the code quality of
retargetable compilers depends on the back end of the compiler. This paper describes a new register allocation and instruction scheduling
technique.

KeyWords : ASIP Design, Retargetable compilers, register allocation , instruction scheduling.

I. INTRODUCTION

Modern system-level design libraries frequently consists
of Intellectual Property (IP) blocks such as processor cores
that span a spectrum of architectural styles , ranging from
traditional DSPs and superscalar RISC , to VLIWs and
hybrid ASIPs. Embedded systems facilitate easy re-design
of processor-memory based systems. The designer can
incorporate modifications in the behavior and operation
aspect of the architecture late in the design stage. ASIP are a
compromise between the non-programmable ASICs and
general purpose processors (GPP).

ASIP design [1][2][3][4] allows a wide range of memory
organizations and hierarchies to be explored and customized
for the specific embedded application. The ASIP designer is
faced with the task of rapidly exploring and evaluating
different architectural and memory configurations.
Furthermore, shrinking time-to-market has created an urgent
need to automatically generate compiler/simulator tool-kit.
There are two approaches for performance estimation using
ASIP design: scheduler based approach and simulator based
approach.
A. Scheduler Based Approach: In scheduler based

approach the problem is formulated as a resource
constrained scheduling problem. The application is
scheduled to generate an estimate of the cycle count.

B. Simulator Based Approach: A retargetable compiler is
constructed for each architecture to be evaluated. This
compiler is used to generate code. This generated code
is given as input to a retargetable simulator which is
also designed for the same architecture under
evaluation. This simulator generates the performance
estimates and other statistics.

II. RETARGETABLE COMPILERS

Retargetable compilers are a promising approach for
automatic compiler generation. A compiler is said to be
‘retargetable’ if it can be used to generate code for different
processor architectures by reusing significant compiler
source code. This has resulted in a paradigm shift towards a
language-based design methodology using Architecture
Description Language (ADL) for embedded System-on-
Chip (SOC) optimization, exploration of architecture
/compiler co-designs and automatic compiler/simulator
generation. However, whatever approach is used, the
performance depends on the back end of the compiler i.e.
instruction selection, register allocation and instruction
scheduling.

In this paper, we have discussed new approaches for
both register allocation and instruction scheduling.

III. REGISTER ALLOCATION

The register allocation phase lies between optimization
and the final code generation. When generating intermediate
code, we freely use as many variables as required.
Afterwards, we simply translate variables in the
intermediate language one-to-one into registers in the
machine language. Processors, however, do not have an
unlimited number of registers, so we need register allocation
to handle this conflict. The purpose of register allocation is
to map a large number of variables into a small number of
registers. This can often be done by letting several variables
share a single register, but sometimes there are simply not
enough registers in the processor. In this case, some of the
variables must be temporarily stored in memory. This is
called spilling.

Register allocation can be done in the intermediate
language prior to machine code generation, or it can be done
in the machine language. In the latter case, the machine code

Manoj Kumar Jain et al, International Journal of Advanced Research in Computer Science, 2 (5), Sept –Oct, 2011,6-11

© 2010, IJARCS All Rights Reserved 7

initially uses symbolic names for registers, which the
register allocation turns into register numbers. Doing
register allocation in the intermediate language has the
advantage that the same register allocator can easily be used
for several target machines (i.e. for retarget ability: it just
needs to be parameterized with the set of available
registers).

However, there may be advantages to postponing
register allocation after machine code has been generated. In
machine code generation phase, several instructions may be
combined to a single instruction, and in the process a
variable may disappear. Then, there is no need to allocate a
register to this variable, but if we do register allocation in
the intermediate language we will do so. Furthermore, when
an intermediate language instruction needs to be translated
into a sequence of machine-code instructions, the machine
code may need an extra register (or two) for storing
temporary values.

We have used a variation of linear scan algorithm [13]
which is basically a global register allocation algorithm, and
is not based on graph coloring.

A. Existing Register Allocation Approaches:
Global register allocation has been studied extensively in

the literature. The predominant approach, first proposed by
Chaitin in [5], is to abstract the register allocation problem
as a graph coloring problem. Nodes in the graph represent
live ranges (variables, temporaries, virtual/symbolic
registers) that are candidates for register allocation. Edges
connect live ranges that interfere, i.e., live ranges that are
simultaneously live at atleast one program point. Register
allocation then reduces to the graph coloring problem in
which colors (registers) are assigned to the nodes such that
two nodes connected by an edge do not receive the same
color. If the graph is not colorable, some nodes are deleted
from the graph until the reduced graph becomes colorable.
The deleted nodes are said to be spilled because they are not
assigned to registers. The basic goal of register allocation by
graph coloring is to find a legal coloring after deleting the
minimum number of nodes.

Chaitin's algorithm also features coalescing, a technique
that can be used to eliminate redundant moves. When the
source and destination of a move instruction do not share an
edge in the interference graph, the corresponding nodes can
be coalesced into one, and the move eliminated.
Unfortunately, aggressive coalescing can lead to uncolorable
graphs, in which additional live ranges need to be spilled to
memory. [6] and [7] have focused on graph coloring and
removed unnecessary moves in a conservative manner so as
to avoid introducing spills.

Some simpler heuristic solutions also exist for the global
register allocation problem. For example, lcc [8] allocates
registers to the variables with the highest estimated usage
counts, places all others on the stack, and allocates
temporary registers within an expression by doing a tree
traversal. Linear scan can be viewed as a global extension of
a special class of local register allocation algorithms that
have been considered in the literature [8] [9] [10] [11] which
in turn takes their inspiration from an optimal off-line
replacement algorithm that was studied for virtual memory
[12]. Since the original description of the linear scan
algorithm in [13], Traub in [14] have proposed a more
complex linear scan algorithm, which they call second-
chance bin packing. At a high level, the binpacking schemes

are similar to linear scan, but they invest more time in
compilation in an attempt to generate better code. The
second-chance binpacking algorithm both makes allocation
decisions and rewrites code in one pass. The algorithm
allows a variable's lifetime to be split multiple times, so that
the variable resides in a register in some parts of the
program and in memory in other parts. It takes a lazy
approach to spilling, and never emits a store if a variable is
not live at that particular point or if the register and memory
values of the variable are consistent.

Binpacking can emit better code than linear scan, but it
does more work at compile time. Unlike linear scan,
binpacking keeps track of the “lifetime holes" of variables
and registers (intervals when a variable maintains no useful
value, or when a register can be used to store a value), and
maintains information about the consistency of the memory
and register values of a reloaded variable. The algorithm
analyzes all this information whenever it makes allocation
or spilling decisions.

B. The Revised Linear Scan Algorithm:
We have used a variation of linear scan algorithm

proposed by Poletto in [13]. The original algorithm is used
for global allocation, but we have employed the same
methodology for local allocation as well, taking care of the
variables which are being used across the block. We shall be
performing the register allocation considering the
intermediate representations i.e. three address code already
generated. We also assume some kind of ordering on this
three-address code.

For every basic block, we calculate the starting point of
use and the last point of use of the variables, constants and
temporary variables. As we scan each line to find the use of
the above, we cross the block boundary to find the last use.
For every variable and constant we note down the use in the
basic block as well as the last use in the whole program.
Calculating the last use in the program, gives us the last
basic block where the variable will be used. The advantage
of finding the last use in block and last use in program helps
the register allocator decide on two things:
a. If the variable is being used in the current block and

has no use outside the block , the register allocator will
free the register after the point of last use in the basic
block

b. If the variable has the last use in program outside the
current basic block , the register allocator will not free
the register immediately on exit from the block

We are not keeping separate registers for global and
local allocation. Initially, all the registers are used for local
allocation. On exit from the basic block, only the registers
holding values which have no next use will be freed and rest
registers will be maintained as it is. Demarking the registers
for local and global allocation leads to under utilization of
registers and unnecessary spilling. Priority of register
allocation is given to variables to be used within the current
basic block i.e. given a set of registers; the allocator would
try to keep all the variables to be used within a basic block
in the registers. In the process, it may spill variables if they
are not required in the current block.

For local allocation, when we need to allocate a register
to some variable/constant/temporary and there is no free
register, then the register allocator calls a procedure
free_register, which will search –

Manoj Kumar Jain et al, International Journal of Advanced Research in Computer Science, 2 (5), Sept –Oct, 2011,6-11

© 2010, IJARCS All Rights Reserved 8

a. For register holding variable/constant/temporary
which are dead i.e. which are no longer required
locally or globally

b. If no such register is found, then it searches for register
holding variable/constant not required locally but
globally and they will be freed i.e. the contents are
removed and not spilled.

c. If the register allocator fails to find such a register
satisfying (1) and (2) i.e. the register allocator is not
able to find a register that can be freed, then spilling is
performed.

As can be observed, spilling is the last option. Spilling
will select a register based on the usage count of the
variable/constant/temporary it is holding. The one with the
lowest usage count will be spilled.

At the end of each basic block or at the entry of the next
basic block , we will not load all the variables with last use
in program in following blocks, in the registers because this
approach may not leave empty registers for local
variables/constants/temporaries. But, definitely , we would
free the registers holding values which are dead.

Global allocation does not require another algorithm.It is
being taken care of as we are allocating registers for local
values. Since we have calculated the last use of the value in
program , we know which variables/constants will be used
outside the basic block and we try to keep them in register
as long as possible , till the register is required for local
allocation. In that case, we spill these values to
accommodate local values and these global values will be
loaded as and when required like local variables.

At the time of spilling , if we have more than one global
value that has so next use in the current basic block , but is
live on exit , we use the following criteria for selecting the
register to spill :

i. Lowest usage count
ii. Distance of next use from the current line
Generally , we have two terms register allocation and

register assignment.Register allocation is to decide which
values will reside in registers and Register assignment is in
which value should each value reside.

In our approach , there is no such thing like register
allocation as every variable/constant/temporary is being
assigned a register and if a free register is not available
either a register is freed or spilled.Also , we have mentioned
initially that we are not demarking registers for local and
global allocation , hence every register can be used to hold
every variable/constant/temporary ,whether inside the basic
block or across the block boundary for global use. It is
observed that this approach minimizes unnecessary memory
loads and stores , which reduces the code size and cycle
count drastically. Also , not reserving registers for global
and local usage helps proper utilization of registers.

The formal algorithm for the above methodology is
given below :
Procedure last_use_info ()
For every basic block do
 For every variable/constant/temporary do
 Begin
 Calculate the last use in basic block
 Calculate the last use in program
 End
End Procedure
Procedure get_free_register ()

For all the registers in the register_file do
Begin
If the register is holding a value which is dead, mark it as
“empty”
If the register is holding a value that will not be used in the
current block
But will be required globally, mark it as “empty”
End
Return the empty register
End Procedure
Procedure register_allocator()
 Call last_use_info
 Initialize all registers to “empty”
 For every basic block do
 begin
 For every variable/constant/temporary do
 Begin
 Reg=Get_free_register ()
 if there is a free register then
 Allocate reg to the
variable/constant/temporary
 else
 Find registers holding values which will not be
used in the block
 Select the one with least usage count
 Spill the value in the selected register
 End if
 End
 At the end of the basic block:
 Free the registers, which are holding values
which are dead
 End
End Procedure

IV. INSTRUCTION SCHEDULING

Instruction scheduling, an important optimization in
modern compilers, attempts to minimize the execution time
for a set of instructions by orchestrating the order of their
execution. Scheduling is particularly important for wide-
issue machines, where instruction level parallelism (ILP) is
a key source of performance, as it is responsible for
presenting sets of instructions for concurrent execution.

In order to generate high-quality code for modern
processors, a compiler must aggressively schedule
instructions, maximizing resource utilization for execution
efficiency. For a compiler to produce such code, it must
avoid structural hazards by being aware of the processor’s
available resources and of how these resources are utilized
by each instruction.

The problem facing an instruction scheduler is to reorder
machine code instructions to minimize the total number of
cycles required to execute a particular instruction sequence.
Unfortunately, sequential code executing on a pipelined
processor inherently contains dependencies between some
instructions. Any transformations performed during
instruction scheduling must preserve these dependencies in
order to maintain the logic of the code being scheduled. In
addition, instruction schedulers often have a secondary goal
of minimizing register lifetimes.

Because of the overlap of the execution of instructions in
a pipeline structure, the results of an instruction issued in
cycle i will not be available until cycle i+n, where n is the
length of the appropriate pipeline constraint (i.e.: the latency

Manoj Kumar Jain et al, International Journal of Advanced Research in Computer Science, 2 (5), Sept –Oct, 2011,6-11

© 2010, IJARCS All Rights Reserved 9

of the instruction). If an instruction issued between cycles i
and i+n attempts to reference the result of the instruction
issued at cycle i, a data dependency has been broken. An
interlocked pipeline will detect this situation and stall the
execution of the offending instruction until cycle i+n,
wasting valuable processor cycles. Even worse, on a
pipeline without interlocks the code will produce incorrect
results, since the value being referenced will be the result of
some other operation.

Automatically finding an optimal schedule for a code
sequence is NP-complete in its most general form (with
arbitrary pipeline constraints), since all legal schedules must
be examined to determine the optimal one.

a) Types of Dependencies:
In practice, three types of data dependency need to be

considered.
i. A true or read-after-write (RAW) dependency

occurs when one instruction reads the result written
by another. The read instruction must follow the
write instruction by a suitable number of cycles for
the result to be read without stalling.

ii. An anti or write-after-read (WAR) dependency
occurs when one instruction writes over the
operand of another. The read instruction must
occur before the write instruction by a suitable
number of cycles for the value to be safely read
without stalling the write instruction.

iii. An output or write-after-write (WAW) dependency
occurs if two instructions write to the same target,
with the result of the logically first instruction
never being used.

 The first two types of dependencies – read-after-write
and write-after-read dependencies – are "real" in the sense
that they represent the genuine logic of the program. Any
write-after-write dependencies are usually artifacts of either
the compilation process or structured programming
practices, and can often be removed by dataflow
optimizations such as dead-code elimination or partial
redundancy elimination.

In addition to data dependencies, it is important to
remember that programs also contain control dependencies
which specify the logical structure of the program and the
order in which certain operations must be performed. For
example, the then part of an if statement should not be
executed until the test has been performed, and then only if
the test was true. Loops, conditionals, function calls and so
on all represent control dependencies.

A. Existing Approaches for Instruction Scheduling:
There have been many heuristic attacks on the

instruction scheduling problem. Most of these have followed
the general approach set down by John Hennessy and
Thomas Gross in 1983 [15] is based on standard list
scheduling. Another notable approach is the modification of
Sethi-Ullman expression evaluation to compensate for some
forms of pipeline delays [16], however that approach cannot
easily be extended to handle the more complex scheduling
problems presented by modern superscalar processors.

List scheduling approaches work by maintaining a ready
list which contains all the instructions that can legally be
executed at a particular point in time. The scheduler
repeatedly chooses an instruction from the ready list,
removes it from the list and issues it (inserts it into the final

schedule). This in turn makes other instructions ready, and
these are added to the list. The key to the whole process is
the set of heuristics used to select the best instruction to
issue.

In general, scheduling heuristics are used in
combinations, called priority functions, to try to select the
best instruction to be issued for a particular situation.
Although there are literally hundreds of popular heuristics in
use today, they can be grouped into a few broad categories
as in [17].

B. The Revised List Scheduling Algorithm:
In our approach we have used a variation of list

scheduling algorithm, in the sense we have combined
register allocation with list scheduling. The three-address
code is converted to the machine code; the instruction
selection phase selects appropriate opcode from the
instruction set and the registers are allocated to the
operands. Once the machine code is generated, we perform
instruction scheduling.

In order to perform scheduling, we need to calculate data
dependencies for which we create dependency graph or data
precedence graph (dpg). The nodes of the data precedence
graph are the machine code instructions. The dependencies
are calculated between instruction operands i.e. the registers
and the memory addresses. The data dependencies are
depicted by drawing edges between the nodes. The
dependency is calculated between register and memory
operands and not the actual operands. Since, instruction
scheduling is only about reordering the instructions, so as to
produce an optimal sequence; we don’t need to perform
register allocation again.

Using the above approach solves the phase ordering
problem as well. The phase ordering problem is to decide
whether to perform instruction scheduling before or after
register allocation. In our approach, we are performing
instruction scheduling after register allocation. Since the
scheduling is performed considering register and memory
operands, no false dependencies are created, hence there is
no need to perform repeated register allocation and
scheduling.

First, the dpg (data precedence graph) is built, each
instruction is a node and the data dependency between
instructions is shown by drawing edges between them. Next,
priorities are assigned to each node in the graph. There are
several different heuristics that can be used to assign
priorities. A common and effective strategy is to use the
latency-weighted depth of the node. The depth of a node n is
the length (number of nodes) of the longest path in the dpg
from n to some leaf (including n and the leaf). The latency-
weighted depth is computed the same way, but the nodes
along the path are weighted using the latency of the
operation the node represents.

The formula below shows how the priority of a node is
calculated:

priority (n) = latency (n) if n is a leaf.
 max (latency (n) + max (m, n) єE (priority (m))
 otherwise

If two or more nodes have the same priority as calculated
with the above formula, we calculate the no.of dependents
of the nodes and the one with highest no. of dependents is
selected, because delaying the node (or instruction) with
large number of dependents will result in a longer schedule.

http://en.wikipedia.org/wiki/Register_allocation�

Manoj Kumar Jain et al, International Journal of Advanced Research in Computer Science, 2 (5), Sept –Oct, 2011,6-11

© 2010, IJARCS All Rights Reserved 10

The algorithm maintains two lists: ready and active.
Ready consists of all the instructions that are ready to be
scheduled i.e. all its predecessors have been scheduled.
Active consists of instructions that are being implemented.
Initially, ready consists of nodes with no predecessors.
Starting at cycle 1, the list scheduler places operations into
the schedule cycle by cycle. Any operation that is “ready” at
cycle X (i.e. all its operands have been computed and
satisfies resource constraints), is a candidate to be scheduled
at cycle X. The priorities computed in the previous step are
used to determine which ready operation to schedule, by
selecting the highest priority operation first. Any tie in the
priority of two operations is broken in favor of the
instruction with more no. of dependents. The instruction is
selected, removed from ready and moved to active.

At every clock cycle, we check whether any instruction
already in active list has completed execution, then we free
the resources assigned to that instruction and remove it from
active list. If this instruction has instructions depending on
it, they are now placed in the ready list as they can now be
scheduled. This process continues till ready and active have
no elements or in other words there are no instructions to be
scheduled.
The formal algorithm is given below:
Input: Data Precedence Graph (DPG) with priorities
assigned to each node
Output: A schedule containing all nodes in the graph that
satisfies the precedence constraints in the DPG and the
resource constraints of the machine
Algorithm:
Cycle = 1
Ready = Leaves of DPG
Active = ф
While (Ready U Active <> ф)
{
 For op= (all nodes in Ready in descending priority order)
 If (a functional unit exists for ‘op’ to start at ‘cycle’)
 {
 -remove ‘op’ from Ready and add ‘op’ to Active
 - add ‘op’ to schedule at time ‘cycle’
 - make operands available in registers and allocate a
register for target
 }

 End for
 Cycle = cycle +1
 Update the Ready Queue
}

For op= (all nodes in Active)
 If (‘op’ finishes at time ‘cycle’)
 {
 -remove ‘op’ from Active
 - Check nodes waiting for ‘op’ in DPG and add to
‘ready’ – if all operand are available
 }
End for

V. CONCLUSIONS

In this paper we have given new approaches for register
allocation and instruction scheduling. The objective for
these two approaches is to generate efficient code in terms
of reduced cycle count .In the approach for register
allocation ,there is nothing like allocation i.e. selection of
values which will reside in registers, as our algorithm
allocates register to every value. Our algorithm also does not
require def-use analysis. Instead, we linearly scan the code
to know the last use of a value in the program. We try to

retain a value in register till its last use point is crossed. The
above approach reduces spilling and unnecessary moves.
The approach employed for list scheduling avoids the phase
coupling problem by combining register allocation with
scheduling.

VI. REFERENCES

[1]. Jain,M.K., Kumar,A., Balakrishnan,M. and
Gangwar,A.(2005) Customizing Embedded Processors for
Specific Applications, In proceedings of Recent Trends in
Practice and Theory of Information Technology, Proc. of
NRB Seminar, 10-11 January 2005, NPOL, Cochin, pp. 261-
284

[2]. Jain,M.K., Balakrishnan,M.and Kumar,A.(2001) ASIP
Design Methodologies: Survey and Issues, In proceedings of
the Fourteenth International Conference on VLSI Design,
2001, 3-7 Jan. 2001, Pages: 76-81

[3]. Jain,M.K., Balakrishnan,M. and Kumar A.(2004), Efficient
Technique for Exploring Register File Size in ASIP Design',
IEEE TCAD of VLSI, vol. 23, No. 12, pp. 1693-1699, Dec.
2004.

[4]. Jain,M.K. and Gaur,D.(2011)ASIP Design Space Exploration
:Survey and Issues ,International Journal of Computer
Science and Information Security,ISSN – 19475500,Volume
9, Issue 4 ,pg. 141-145

[5]. Chaitin, G. J., Auslander, M. A., Chandra, A. K., Cocke, J.,
Hopkins, M. E., and Markstein, P. W. (1981). Register
allocation via coloring. Computer Languages 6, 47-57.

[6]. Briggs, P., Cooper, K., and Torczon, L. (1994).
Improvements to graph coloring register allocation.ACM
Transactions on Programming Languages and Systems 16, 3
(May), 428-455.

[7]. George, L. and Appel, A. (1996). Iterated register coalescing.
ACM Transactions on Programming Languages and Systems
18, 3 (May), 300-324.

[8]. Fraser, C. W. and Hanson, D. R. (1995). A Retargetable C
Compiler: Design and Implementation.
Benjamin/Cummings, Redwood City, CA.

[9]. Freiburghouse, R. A. (1974). Register allocation via usage
counts. Communications of the ACM 17, 11 (November),
638-642.

[10]. Hsu, W.-C., Fischer, C. N., and Goodman, J. R. (1989). On
the minimization of loads and stores in local register
allocation. IEEE Transactions on Software Engineering 15,
10 (October), 1252-1260.

[11]. Motwani, R., Palem, K. V., Sarkar, V., and Reyen, S. 1995.
Combining Register Allocation and Instruction Scheduling
(Technical Summary). Tech. rep., Courant Institute, New
York University. July. TR 698.

[12]. Belady, L. A. 1966. A study of replacement algorithms for a
virtual storage computer. IBM Systems Journal 5, 2, 78-101.

[13]. Poletto, M., Engler, D. R., and Kaashoek, M. F. 1997. tcc: A
system for fast, flexible, and high-level dynamic code
generation. In Proceedings of the ACM SIGPLAN '97
Conference on Programming Language Design and
Implementation. Las Vegas, NV, 109-121.

Manoj Kumar Jain et al, International Journal of Advanced Research in Computer Science, 2 (5), Sept –Oct, 2011,6-11

© 2010, IJARCS All Rights Reserved 11

[14]. Traub, O., Holloway, G., and Smith, M. D. 1998. Quality and
speed in linear-scan register allocation. In Proceedings of the
ACM SIGPLAN '98 Conference on Programming Language
Design and Implementation.

[15]. Hennessy, J.,Jouppi, N.,Przybylski,S.,Rowen,C.and
Gross,T.(1983) Design of a high performance VLSI
processor , Technical Report No. 236 ,Computer systems

Laboratory , Departments of Electrical Engineering and
Computer Science , Stanford University,C

[16]. Proebsting, T.A. and Fischer, C.A. (1991) Linear-Time
optimal code Scheduling for delayed-Load architecture,
PLDI’

[17]. Krishnamurthy, M. (1990) A brief survey of papers on
scheduling for pipelined processors, Sigplan, 25(7):97-106

	INSTRUCTION SCHEDULING
	Types of Dependencies:
	Existing Approaches for Instruction Scheduling:

