
Volume 2, No. 5, Sept-Oct 2011

International Journal of Advanced Research in Computer Science

CASE STUDT AND REPORT

Available Online at www.ijarcs.info

© 2010, IJARCS All Rights Reserved 90

ISSN No. 0976-5697

Two-Phase Great Deluge Algorithm for Course Timetabling Problem

Allen Rangia Mushi
Department of Mathematics

University of Dar es salaam

Dar es salaam, Tanzania

amushi66@yahoo.co.uk

Abstract: Academic course timetabling involve assigning resources such as lecturers, rooms and courses to a fixed time period, normally a week,

while satisfying a number of problem-specific constraints. This study describes a Great Deluge Algorithm in two phases that creates timetables

by heuristically minimizing penalties over infeasibilities. The algorithm is developed with special focus on the University of Dar-as-salaam and

compares the results with a previous work on Tabu Search, and a manually generated solution. We conclude that Great Deluge gives a much

more stable solution because it produces good solutions with less number of parameters for tuning compared to Tabu Search.

Keywords: Course Timetabling, Great Deluge, Tabu Search

I. INTRODUCTION

There are many types of timetabling problems ranging
from high schools, to universities and industries. Most of
these problems are NP-Hard [1] which makes it difficult to
obtain timetables that meet all user needs. Schaef [2] and
Burke et al [3] gives a survey of automated timetabling
where they summarize types of problems and varying efforts
in automating solutions. University timetables are basically
of two types; courses and examinations. These two are
significantly different and requires different algorithms for
their solutions. In this study we investigate course
timetabling which essentially is the problem of finding an
assignment of courses, rooms, students and lecturers to a
fixed time period, normally a five-day week, while satisfying
a known number of constraints. These constraints are divided
into hard and soft, where hard constraints must be satisfied,
while soft constraints are to be satisfied as much as possible.
One interesting feature of University Timetabling is that, the
properties vary from one university to another. Although
similar features can be generalized, the solution for one
university may not necessarily work in another. In this paper,
course timetabling at the University of Dar es salaam
(UDSM) is used as a case study.

Since this problem is NP-Hard, most of the research work
concentrates on heuristic approaches. Genetic algorithms
have been reported by many authors including Burke et al
[3],[4], Colorni et al [5], Rossi and Paechter [6], Jain A., Jain
S, Chande P [7] and Hiroaki, Uochi, Takahashi, Miyahara
[8]. Simulated Annealing has been applied with variations
depending on the specific features of the problem such as
ElMohamed and Fox, [9] and Kostuch P [10]. Tabu Search is
also found in the literature including White and Xie [11]. Ant
colony algorithm is an attempt to mimic the behavior of ants
when searching for the shortest path to a food source and
going back to their original stations by laying substances
called pheromones. A few attempts have been made on Ant
Colony algorithms, including the work by Rossi and Paechter
[6]. However, most of these heuristic algorithms require a
huge discipline and experimentation in the selection of
parameters which are often very specific to a problem.
Furthermore, these parameter values have great influence in
the performance of the algorithm. Slight change in

parameters might lead to a significantly large change in the
solution values. Mushi A [12] presents a Tabu Search
approach to the UDSM course timetabling and concludes that
careful selection of parameters is important for success of the
algorithm. Such a conclusion is common to many popular
heuristic techniques including Simulated Annealing and
Genetic Algorithms. This prompted researchers to think of
heuristic algorithms which are less dependent on parameters
and therefore more stable. Great Deluge algorithm is in this
category and was proposed by Dueck [13]. Other such
algorithmic techniques in this category include Late
Acceptance [14] and its variants such as Average Late
Acceptance [15] and Adapted randomized Late Acceptance
[16]. An exploration of the Great Deluge algorithm for
possible use in course timetabling was firstly presented by
Burke et al [17]. However, their algorithm was specifically
designed for a set of timetable rules designed for
International Timetabling competition, which are not
standard to all timetabling applications. A variant of the
algorithm which uses an non-linear decay rate is proposed by
Landa-Silva and Orbit [18][19] and applied to a set of
problems designed for a timetabling competition. Due to its
robustness, Great Deluge has been combined with other
techniques and applied to various timetabling problems with
good success [20]. In this work we are interested in the Basic
Great Deluge algorithm which is implemented in two phases
for exploration of UDSM problem instances.

In the next section, we introduce the actual course
timetabling problem at UDSM, followed by a discussion on
the Great Deluge algorithm. Then we present the specific
implementation details, followed by summary of results and
conclusion.

II. PROBLEM DEFINITION

There are approximately 16,000 students in five
campuses and the number is increasing annually. Due to the
expansion program, it was found necessary to have a central
timetable office at each campus so as to optimize the use of
the available resources. This paper focuses on the course
timetabling at the main campus which is the largest campus
involving approximately 10,000 students. There are two
semesters per academic year with approximately 750 courses
in each semester, 106 rooms which include classrooms and

Allen Rangia Mushi , International Journal of Advanced Research in Computer Science, 2 (5), Sept –Oct, 2011,90-95

© 2010, IJARCS All Rights Reserved 91

laboratories, 650 lecturers, and 10,000 students to be
scheduled on a five days week. Each day is made up of 13
one-hour time slots starting from 7.00 a.m. to 8 p.m. giving a
total of 65 timeslots for the whole timetable period. No
consideration is given to the lunch breaks except on Fridays
which are minimally used to allow for Muslim prayers.

The current practice is to use commercial software which
provides a set of tools that the timetable officer can use to
simplify the process. The timetable is essentially created
manually, using a set of tools that can help to detect
collisions and suggest suitable slots. This is a long process
and a semester timetable takes an average of three weeks to
prepare given that all necessary data have been entered into
the system.

The main challenge is to automate the timetabling
process and come up with a quick and optimized timetable.
Due to unforeseen problems such as untimely data, it is not
possible to ignore the manual process all together; the output
of the automated system will however provide a highly
advanced solution which can easily be modified by the
manual systems afterwards. Major challenges include the
annual increase of number of students, and high freedom of
course choice among students. The problem is also
compounded by an increasing number of faculty-wide and
university-wide courses which requires large rooms and
special timeslots.

The following terminologies are used in this paper;
a) Course – A set of subject content to be taught to a

particular group of students.
b) Event – An assignment of lecturer, room and a course to

a one hour time interval. A course can have several
events according to the number of hours set in the
curriculum.

c) Lecture – A set of events of the same course, which are
required to be scheduled together in the same room and
the same time. A lecture can have one or more events.

d) Block – A lecture with more than one consecutive
events.

A. Hard constraints:

a. No student can attend more than one lecture at a time
b. No lecturer can teach more than one lecture at a time
c. No room can occupy more than one lecture at a time
d. No room can be assigned a lecture with more students

than its capacity
e. Some courses are scheduled in blocks of more than one

hour, these restrictions must be respected.

B. Soft constraints:

a. As much as possible, minimize the use of early morning
(7.00 a.m.) lunch hours (13-14) and late evening hours
(18-20).

b. Specifically minimize the use of Friday 13-14 hour and
18-20 hour slots to allow for Muslim prayers and
Adventists Seventh day respectively.

c. Minimize continuous lectures/blocks of the same course
in a day. It is preferred to spread them over the week as
much as possible.

d. Minimize the use of rooms with no standby generators
in the evening. This is to minimize the loss of lecture
hours due to power cuts which are common in the area.

e. Satisfy as much as possible the special preferences by
lecturers, students and University administration.

III. SOLUTION APPROACH

A. Great Deluge Algorithm:

The original idea is based on a maximization problem,
where one is trying to search for solution on a space. The
process then involves moving around randomly on the space,
but there is a “water level” below which the solution cannot
be searched. If this level is given by L, then a solution S is
accepted at any point only if S > L. As time goes on, L rises
slowly and finally the solution is forced up to the peak and
stops. The algorithm can easily be mapped to a minimization
problem. Petrovic and Burke [21] have shown how this
algorithm can be mapped into timetabling problems with a
minimization objective function. Generally, the algorithm
can be outlined by the following pseudo-code (Figure 1), as
presented by Burke et al [17];

Great Deluge Algorithm {
Specify initial solution So;
Initial level L = f(So), where f is the objective function;

Input decay rate L;
while further improvement is possible {
 Define Neighbourhood N(So);

 Randomly select a candidate solution S N(So))
 Calculate f(S);
 if f(S) ≤ f(So){
 Accept S (So = S);
 else if f(S) ≤ L{
 Accept S (So = S);

 Lower the level (L = L - L)
 }
 return So as the best solution;
}

Figure 1: Great Deluge Algorithm

Great Deluge algorithm always accept better solution
than current, but can accept worse solutions if the evaluation
function value is less than or equal to the level L. The decay
rate is the only input parameter required and it determines the
speed of level reduction. In a time-predefined
implementation, one can decide beforehand the number of
iterations needed for convergence and calculate the value of
decay rate. If we define Lo to be the initial level value, and

)(fSf to be the final expected objective value, then L can

be calculated as follows;

iter

f

N

SfL
L

)(0
, where Niter is the desired number of

iterations. The initial level is normally assigned the value of
initial cost, but the final value can only be proposed
depending on the type of objective function. As it will be
seen in the next section, our objective function is structured
in such a way that the best possible value is zero. Thus the

value of L is simply calculated by
iterN

L
L 0 and Niter

becomes the new input parameter. Thus, the algorithm only
requires one input value i.e. the estimated number of
iterations, Niter.

B. Adapting Great Deluge to UDSM Course Timetabling:

In implementing Great Deluge, a number of issues have
to be designed, specifically for UDSM. These are data
representations, objective function, generation of initial
solution, neighborhood and type of moves from one solution
to another and stopping criteria. The following sections
describe how these were implemented.

Allen Rangia Mushi , International Journal of Advanced Research in Computer Science, 2 (5), Sept –Oct, 2011,90-95

© 2010, IJARCS All Rights Reserved 92

a) Data Representation :

i. Solution: Given a total of n events, a timetable solution

is represented as integer-valued matrix 3nS such that

Ssei is a solution for event e and attribute i, where

eevent toallocated Room2

eevent toallocatedTimeslot 1

eevent with associated Course0

i

ii. Courses: Represented by a matrix 3mC such that

Ccij stands for course i with attribute j, where

 sizeimum block

unitscourse

sizecourse

j

max3

 2

 1

Each course has been designed with a fixed number of
units which determines the number of hours to be delivered
per week for that course. Each unit stands for one lecture
hour per week, so that a 2 units course requires 2 lecture
hours per week. Some courses have restrictions on the
number of consecutive hours (block) per each delivery.
Maximum block size helps to determine the number of
blocks required for a course. For instance, a 3 unit course
with a maximum block of 2 hours will need one block of 2-
hours and an extra one hour event.

iii. Rooms: Represented by an array R such that Rri is

the capacity of room i.
iv. Collision matrix: Note that, two courses i and j clashes if

they have at least one student or lecturer in common.
Thus, given a set of m courses, we define a conflict

matrix mmM such that

Otherwise

ji
mij

0

 course with clashes course if 1

Checking for a possible student/lecturer clashes between
courses i and j simply involves finding the value of

Mmij .

v. Objective function:
Given a solution s, and a set of k constraints;

k

i

ii sfsfMinimize
1

)()(,

Each function if represents one of the constraints and

each i is the weight given to the constraint depending on

its importance. The cost function includes both hard and soft
constraints, but higher penalties are assigned to hard
constraints to discourage them from being selected.

b) Constraints :

Full description of the formulation of each constraint is
found in Mushi A [12]. It only suffices here to give a
summary of the formulations for the sake of continuity.

Recall from the definitions of data structures above;

0es = course associated with event e

1es = timeslot allocated to event e

2es = room allocated to event e

And let E = set of all timetable events,
Then the constraints are;

i. No student or lecturer can have two lectures at the same
time.

Minimize)(11 sf , where

ji

SSEji

ij

ji

Msf

11),(

1)(, which is

the total number of collisions associated with the current

solution. A feasible solution must have 0)(1 sf .

ii. Only one event can be assigned to a room at a time.

Given
 Otherwise 0

 if 1 22 ji
ij

ss
a , minimize)(22 sf , where

ji

ssEji

ij

ji

asf

11),(

2)(which is the total number of room

clashes in the current solution. Again a feasible solution

must have 0)(2 sf .

iii. Room capacities must be respected. Given 0esi , and

2esr , and
Otherwise

rCapiCapif
bir

 0

)()(1
, where

)(jCap Capacity of object j, minimize)(33 sf , where

e Eri

irbsf
),(

3)(, i.e. the total number of room size

violations in the current solution. Obviously, 0)(3 sf

is a necessary condition for feasibility.
iv. Maximize the distance between two events or block of

events of the same course.

Minimize)(44 sf ,

where

ji

ssEji jiji
ss

sf

00),(
2

11

4
)(

1
)(. The best possible

value for)(4 sf is 0.

v. Minimize the use of special times.
Let H = set of all special timeslots and

minimize;)(55 sf , where
He

essf 15)(. This is the sum of

all timeslots for courses which have been assigned to the less

desired times. The best possible value of)(5 sf is 0 i.e. the

case where no course violates the special times.
vi. Minimize the use of rooms with no standby generators

in the evenings.
Given G = set of all rooms fitted with standby generators

and V = set of all evening (18-19) timeslots of the week, and

define
Otherwise

GsVs ee
e

 0

 if 1 21
, then minimize)(66 sf ,

where;
e

esf)(6 . This calculates the total number of

events which have violated the standby generator constraint
in the current solution. When all courses satisfy this

constraint,)(6 sf must have a value of 0.

Consequently, the best value of the overall objective

function is obtained when .0)()(
1

k

i

ii sfsf

c) Generating Initial timetable :

Since all constraints have been included in the objective
function, it is not necessary that initial solution should be
feasible. However, a feasible initial solution is expected to
reduce the search effort in the Great Deluge phase. It is
counter productive though to spend too much time on the
generation of initial solution. We therefore designed an easy
and quick way of generating the initial timetable. The

Allen Rangia Mushi , International Journal of Advanced Research in Computer Science, 2 (5), Sept –Oct, 2011,90-95

© 2010, IJARCS All Rights Reserved 93

algorithm simply involves assigning each event to the earliest
possible feasible timeslot and earliest feasible room. To help
reduce the risk of developing an infeasible solution, both
courses and rooms are sorted in descending order of their
sizes. Note that a timetable is feasible if satisfies all hard
constraints.

d) Neighbourhood and Move types :

The performance of any local search strategy requires a
good decision on the choice of neighborhood. Our
neighborhood is defined by the type of moves that we have
implemented. There are two types of attributes that we can
vary in order to get a different solution i.e. timeslots and
rooms. Assuming fixed rooms from the initial solution, we
can move timeslots. On the other hand, we can fix timeslots
and change rooms. This prompted us to consider a two phase
process, where phase I considers fixed rooms and perform
timeslot changes, and Phase II fixes timeslots and vary rooms
in search of a better solution. Basically, room move is useful
only when phase I did not bring a feasible solution, as this
may be caused by infeasible room allocations. However, our
selection of moves for phase II affects both timeslots and
rooms, which increases the chance of finding a feasible and
better solution. The two types of moves are as defined below;

i. Timeslot move:

This affects only the timeslots as follows;
a. Select a random event e in the set of all possible

events
b. Select randomly a new timeslot t in the set of all

possible timeslots.
c. Assign the new timeslot t to the event at position e.

If e is a member of a block of events, assign t to all
timeslots of the block.

Such a move is identical to several moves described in
literature [22][23]. The size of the neighborhood associated

with this kind of move is |N(s)| = |e| (|t|-1), where |e| = total
number of events, and |t| = total number of timeslots.

ii. Event swap move:

a. Swap of two events from different courses as follows;
b. Select randomly two event e1, e2 in the set of all possible

events of different courses
c. Find whether it is possible to swap; it is possible to swap

events only if they have the same block size.
d. If possible to swap, then swap course numbers of the

two event blocks otherwise select another set of events
and repeat 1 until swap is successful.

The size of the neighborhood associated with this kind of

move is |N(s)| = |e| (|e|-1). As pointed earlier, this type of
move affects both timeslots and rooms since a course is
associated with both a timeslot and room number.

e) Stopping criteria:

Apart from the pre-defined number of iterations from the

calculations of the decay value L, it has been found that
there is a possibility of further improvement even after level
has dropped to zero. We have therefore added condition
which considers the number of consecutive iterations without
a change in solution value. The algorithm stops after running
1000 iterations without solution change.
The two-phase algorithm is therefore as presented in Figure
2;

Two-Phase Great Deluge Algorithm {
Generate initial solution So;
L = f(So);
Input Nmov;

Calculate decay rate L = L/Niter;
Phase I
While Not Converged {

 Randomly select a time-move solution S N(So))
 Calculate f(S);
 If f(S) ≤ f(So){
 Accept S (So = S);
 else if f(S) ≤ L{
 Accept S (So = S);

 Lower the level (L = L - L);
 Converged = (repeated(So) >= 1000);
 }
Phase II
So from Phase I is the new initial solution;
L = f(So);
Input Niter;

Calculate decay rate L = L/Niter;
While Not Converged {

 Randomly select a swap-move solution S N(So))
 Calculate f(S);
 If f(S) ≤ f(So){
 Accept S (So = S);
 else if f(S) ≤ L{
 Accept S (So = S);

 Lower the level (L = L - L);
 Converged = (repeated(So) >= 1000);
 }
return So as the best solution;
}

Figure 2: Two-phase Great Deluge Algorithm

The decay rates in the two phases are different,
depending on the performance of phase I; basically it is
expected to have fewer moves in the second phase, since
phase I will considerably reduce the search space. This
modification has the implication of increasing the number of
parameters to two, i.e. Niter values for phase I and II.
However, the total number of parameters is still low
compared to other heuristics such as Tabu Search or
Simulated Annealing.

IV. COMPUTATIONAL RESULTS

The algorithm was tested on a course timetabling
problem previously solved by manual methods. The code is
written in C++ and test run on a 2.9 GHz Pentium processor.
Table 1 shows data for the specific problem used in the test
runs;

Table 1: Data for the tested problem at UDSM

Data Value

Students 8161

Lecturers 607

Rooms 106

Courses 729

Total events 1570

Total timeslots 65

The total number of students does not include first years

since their number is not known at the time of timetable
preparation. A single dummy student is used instead, to
represent first years in each programme since they have
similar core courses per programme. First years normally
pick their convenient optional courses after the release of the
timetable. The total number of events is the total number of
timetable hours required for all courses in the semester.
Table 2 shows the weights used in the cost function for each
type of constraint.

Allen Rangia Mushi , International Journal of Advanced Research in Computer Science, 2 (5), Sept –Oct, 2011,90-95

© 2010, IJARCS All Rights Reserved 94

Table 2: Weights used in the objective function

Weight Value Description

1 - 3 100 Hard constraints

4 10 Distance between events

5 4 Friday Muslim prayers

4 Seventh day Adventists

2 Lunch times

1 Morning and evening times

6 3 Standby generators

The author is the coordinator of timetable at UDSM and
therefore these weights were assigned according experience
on the importance given to various factors at UDSM. The
same problem and weights were used in the Tabu Search
case [12]. As in Tabu Search case, time move performed
much better than event swap. Table 3 shows the performance
of the algorithm for the time moves tested and compared to
Tabu Search. The rows of the table show the kind of
constraints solved and their performance in the final solution.
Both values are the average of performances for different
randomly generated values using different seeds in the
random number generator.

Table 3: Performance of the Algorithm

Initial cost C0: 2894.72 Great Deluge Tabu Search

 Event swap Time move

Phase I cost 141.36 1.74

Final Cost 1.98

Student/Lecturer Collisions 0 0

Room clashes 0 0

Room size 0 0

Event Distance 1.98 1.74

Special time penalties 0 0

Standby generators 0 0

Time (Seconds) 7,826.73 4,684.91

% Improvement 99% 99%

The best solution was found after 7,826.73 seconds

which is about 2 hours and 17 minutes; that is a tolerable
range in timetabling applications. The final solution is
significantly close to the one obtained by Tabu Search. The
Great Deluge solution however, is much more stable. The
improvement achieved in Phase II is very significant
showing the usefulness of the two-phase approach.

Figure 3 shows the performance improvement by
iterations and compare with previous results for Tabu Search.
Although Tabu Search finally converges to a lower solution
value (Table 3), the graph shows that Great Deluge can
provide a better solution in the higher levels. Most of the
time is spent on the lower levels of iterations with minimal
improvement. Thus the values of Niter can be adjusted to stop
the algorithm within a tolerable range as needed by the
timetable officer without great loss in the quality of solution.

0

500

1000

1500

2000

2500

3000

3500

1 11 21 31 41 51 61 71 81 91 101

Iterations

Co
st

Great Deluge

Tabu Search

Figure 3: Performance improvement by iterations

A comparison with a manually generated solution is
provided in Table 4. It provides a summary of the
performances in terms of constraint violations. It is worth
noting that both cases were feasible by satisfying all hard
constraints. However, the course-event gaps and special time
penalties could not work very well in the manual system
which involves mostly trial and error method.

Table 4: Manual vs Automatic Performances

Constraints
Violations

in Manual

Violations

in automatic

Student/Lecturer Collision 0 0

Room clashes 0 0

Room size violations 0 0

Course event gaps 253.75 1.98

Special time penalties 659 0

Standby generators 0 0

Total violation cost 912.75 1.98

% Improvement from Co 71% 99%

V. CONCLUSION AND FURTHER RESEARCH

DIRECTIONS

We have successfully demonstrated that, Great Deluge
can give a robust solution without significant loss in the
quality of solution. Generally, the automatic solution
generation strategies perform better than purely manual
solution. Although human intervention may still be necessary
in the final automatic solution generated, the algorithm it still
provides a significant improvement in the final overall
solution.

Timetabling research area is widely explored but still
leaves a load of research opportunities since the problems are
always specific to particular institutions. Furthermore, most
of these problems involve a huge list of soft constraints
which may not be possible to implement all at a time. New
constraints may arise from time to time and provide new
challenges to researchers especially in academic institutions
which are always trying to improve their programmes and
administrative structures. In developing countries, the
problem is compounded further by scarcity of resources
which desperately need optimization so as to provide the
much needed education to as many students as possible. An
exploration of general features within developing countries
and thereby coming up with a general template which can be
customized to fit different institutions in the form of a
decision support system could be very useful in improving
education systems. Many algorithms have been tested
recently but only on a few case studies; further testing of
these algorithms in new problems especially in developing
countries could be interesting and worth investing.

VI. REFERENCES

[1] Cooper T., Kingston J. “The Complexity of Timetable
Construction Problems”, 1996, Springer Lecture Notes in
Computer Science 1153, pages 283-295

[2] Schaef A, “A Survey of Automated Timetabling”, CWI
Report CS-R9567, 1995, Netherlands

[3] Burke E., Elliman D., Weare R., “The Automation of
Timetabling Process in Higher Education”, Journal of
Educational Technology Systems, Vol. 23, No. 4, pp. 257-
266, Baywood Publishing Co.

Allen Rangia Mushi , International Journal of Advanced Research in Computer Science, 2 (5), Sept –Oct, 2011,90-95

© 2010, IJARCS All Rights Reserved 95

[4] Burke E., Elliman D., Weare R.: “A Hybrid Genetic
Algorithm for Highly Constrained Timetabling Problems”, In
Morgan Kaufmann (Ed): Proceedings of the sixth
International Conference of Genetic Algorithms, Pittsburgh
USA, 15-19th July 1995, pp. 605-610.

[5] Colorni A., Dorigo M., Maniezzo V.: “Genetic Algorithms
and Highly Constrained Problems: The Timetable case”,
Proceedings of the First International Conference on Parallel
Problem Solving from Nature, Dortmund, Germany, 1991,
Lecture Notes in Computer Science 496, Springer-Verlag, pp.
55-59.

[6] Rossi-Doria O., Paechter B.: “An Hyper heuristic approach to
course timetabling problem using an evolutionary algorithm”,
The 1st Multi-disciplinary International Conference on
Scheduling: Theory and Applications (MISTA 2003), August
2003.

[7] Jain A., Jain S., Chande P., “Forumlation of Genetic
Algorithm to Generate Good Quality Course Timetbale”,
International Journal of Innovation, Management and
Technology, Vol. 1, No. 3, pp. 248-251, 2010.

[8] Hiroaki U., Uochi D., Takahashi K., Miyahara T.:
“Comparisons of Genetic Algorithms for Timetabling
Problems”, Systems and Computers in Japan, 2004, Vol. 35,
No. 7.

[9] ElMohamed M., Fox G., “A Comparison of Annealing
Techniques for Academic Course Scheduling”, Practice and
Theory of Automated Timetabling II, 1998, Selected Papers
from the 2nd International Conference, PATAT'97, Edmund
Burke and Mike Carter (Eds.), Lecture Notes in Computer
Science, Springer

[10] Kostuch P.: “The University Course Timetabling Problem
with a 3-phase approach”, Proceedings of the 5th International
Conference on the Practice and Theory of Automated
Timetabling, Pittsburgh, USA, 2004.

[11] White G., B. Xie, :”Examination Timetabling and Tabu
Search with longer term memory”. In E. Burke and W. Erben,
(Eds.), 2001, The Practice and Theory of Automated
Timetabling III, Lecture Notes in Computer Science 2079, pp.
85-103, Springer-Verlag.

[12] Mushi A. R.: “Tabu Search Heuristic for University Course
Timetabling Problem”, African Journal of Science and
Technology, Science and Engineering Series, 2006, Vol. 7,
No. 1, pp. 34-40.

[13] Dueck G.: “New Optimization Heuristics: The Great-Deluge
Algorithm and the Record-to-record Travel”, Journal of
Computational Physics, 1993, Vol. 104, pp. 86-92.

[14] Burek E., Bykov Y., “A Late Acceptance Strategy in Hill-
Climbing for Exam Timetabling Problems”. In Proceedings of
PATAT’08, Proceedings of the 7th International Conference
on the Practice and Theory of Automated Timetabling,
Universit de Montral, Montreal Canada, 2008.

[15] Abuhamdah A., Ayob M., “Average Late Acceptance
Randmosized Descent Algorithm for Solving Course
Timetabling Problems”, Proceedings of the 4th International
Symposium on Information Technology, Selangor, Malaysia,
IEEE, 2(15-17), pp. 748753, 2010.

[16] Abuhamdah A., Ayob M., “Adaptive Randomized Descent
Algorithm for Solving Course Timetabling Problesm”,
International Journal of the Physical Sciences, Vol. 5(16), pp.
2516-2522, 2010.

[17] Burke E., Bykov, Y., Newall J., Petrovic S.: “A Time-
Predefined Approach to Course Timetabling”, Yugostlav
Journal of Operational Research (YUDOR), Vol 13 No. 2.,
pp. 139-151, 2003.

[18] Land-Silva D., Orbit J., ”Great Deluge with Non-Linear
Decay Rate for Solving Course Timetabling Problems”. In
Proceedings of the 2008 IEEE Conference on Intelligent
Systems (IS 2008), pp. 8.11 – 8.18, IEEE Press, Los
Alamitos.

[19] Orbit J., Landa-Silva D, “Computational Study of Non-Linear
Great Deluge for University Course Timetabling”. In V.
Sguev (Ed): Intelligent Systems: From Theory to Practice,
SCI 299, pp. 309-328, Springer-Verlag, 2010.

[20] Nabeel R., “Hybrid Genetic Algorithms with Great Deluge for
Course Timetabling”, IJCNS International Journal of
Computer Science and Network Security, Vol. 10, No. 4, pp.
283-288, 2010

[21] Petrovic S., Burke E.: “University Timetabling”, In Leung J.
(Ed): Handbook of Scheduling Algorithms, Models and
Performance Analysis, 2004, Chapter 45, CRC Press.

[22] Reeves C.: “Landscapes. Operators and Heuristics Search”,
Annals of Operations Research, 1999, Vol. 86, pp. 473-490.

[23] Thomspon J., Dowsland K.: “Variants of Simulated
Annealing for the Examinations Timetabling Problem”,
Annals of Operations Research, 1996, Vol. 63, pp. 105-128.

