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Abstract: Academic course timetabling involve assigning resources such as lecturers, rooms and courses to a fixed time period, normally a week, 

while satisfying a number of problem-specific constraints. This study describes a Great Deluge Algorithm in two phases that creates timetables 

by heuristically minimizing penalties over infeasibilities. The algorithm is developed with special focus on the University of Dar-as-salaam and 

compares the results with a previous work on Tabu Search, and a manually generated solution. We conclude that Great Deluge gives a much 

more stable solution because it produces good solutions with less number of parameters for tuning compared to Tabu Search.  
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I. INTRODUCTION 

There are many types of timetabling problems ranging 
from high schools, to universities and industries. Most of 
these problems are NP-Hard [1] which makes it difficult to 
obtain timetables that meet all user needs. Schaef [2] and 
Burke et al [3] gives a survey of automated timetabling 
where they summarize types of problems and varying efforts 
in automating solutions. University timetables are basically 
of two types; courses and examinations. These two are 
significantly different and requires different algorithms for 
their solutions. In this study we investigate course 
timetabling which essentially is the problem of finding an 
assignment of courses, rooms, students and lecturers to a 
fixed time period, normally a five-day week, while satisfying 
a known number of constraints. These constraints are divided 
into hard and soft, where hard constraints must be satisfied, 
while soft constraints are to be satisfied as much as possible. 
One interesting feature of University Timetabling is that, the 
properties vary from one university to another. Although 
similar features can be generalized, the solution for one 
university may not necessarily work in another. In this paper, 
course timetabling at the University of Dar es salaam 
(UDSM) is used as a case study.  

Since this problem is NP-Hard, most of the research work 
concentrates on heuristic approaches. Genetic algorithms 
have been reported by many authors including Burke et al 
[3],[4], Colorni et al [5], Rossi and Paechter [6], Jain A., Jain 
S, Chande P [7] and Hiroaki, Uochi, Takahashi, Miyahara 
[8]. Simulated Annealing has been applied with variations 
depending on the specific features of the problem such as 
ElMohamed and Fox, [9] and Kostuch P [10]. Tabu Search is 
also found in the literature including White and Xie [11]. Ant 
colony algorithm is an attempt to mimic the behavior of ants 
when searching for the shortest path to a food source and 
going back to their original stations by laying substances 
called pheromones. A few attempts have been made on Ant 
Colony algorithms, including the work by Rossi and Paechter 
[6]. However, most of these heuristic algorithms require a 
huge discipline and experimentation in the selection of 
parameters which are often very specific to a problem. 
Furthermore, these parameter values have great influence in 
the performance of the algorithm. Slight change in 

parameters might lead to a significantly large change in the 
solution values. Mushi A [12] presents a Tabu Search 
approach to the UDSM course timetabling and concludes that 
careful selection of parameters is important for success of the 
algorithm. Such a conclusion is common to many popular 
heuristic techniques including Simulated Annealing and 
Genetic Algorithms. This prompted researchers to think of 
heuristic algorithms which are less dependent on parameters 
and therefore more stable. Great Deluge algorithm is in this 
category and was proposed by Dueck [13]. Other such 
algorithmic techniques in this category include Late 
Acceptance [14] and its variants such as Average Late 
Acceptance [15] and Adapted randomized Late Acceptance 
[16]. An exploration of the Great Deluge algorithm for 
possible use in course timetabling was firstly presented by 
Burke et al [17]. However, their algorithm was specifically 
designed for a set of timetable rules designed for 
International Timetabling competition, which are not 
standard to all timetabling applications. A variant of the 
algorithm which uses an non-linear decay rate is proposed by 
Landa-Silva and Orbit [18][19] and applied to a set of 
problems designed for a timetabling competition. Due to its 
robustness, Great Deluge has been combined with other 
techniques and applied to various timetabling problems with 
good success [20]. In this work we are interested in the Basic 
Great Deluge algorithm which is implemented in two phases 
for exploration of UDSM problem instances.  

In the next section, we introduce the actual course 
timetabling problem at UDSM, followed by a discussion on 
the Great Deluge algorithm. Then we present the specific 
implementation details, followed by summary of results and 
conclusion.  

II. PROBLEM DEFINITION  

There are approximately 16,000 students in five 
campuses and the number is increasing annually. Due to the 
expansion program, it was found necessary to have a central 
timetable office at each campus so as to optimize the use of 
the available resources. This paper focuses on the course 
timetabling at the main campus which is the largest campus 
involving approximately 10,000 students. There are two 
semesters per academic year with approximately 750 courses 
in each semester, 106 rooms which include classrooms and 
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laboratories, 650 lecturers, and 10,000 students to be 
scheduled on a five days week. Each day is made up of 13 
one-hour time slots starting from 7.00 a.m. to 8 p.m. giving a 
total of 65 timeslots for the whole timetable period. No 
consideration is given to the lunch breaks except on Fridays 
which are minimally used to allow for Muslim prayers.  

The current practice is to use commercial software which 
provides a set of tools that the timetable officer can use to 
simplify the process. The timetable is essentially created 
manually, using a set of tools that can help to detect 
collisions and suggest suitable slots. This is a long process 
and a semester timetable takes an average of three weeks to 
prepare given that all necessary data have been entered into 
the system.  

The main challenge is to automate the timetabling 
process and come up with a quick and optimized timetable. 
Due to unforeseen problems such as untimely data, it is not 
possible to ignore the manual process all together; the output 
of the automated system will however provide a highly 
advanced solution which can easily be modified by the 
manual systems afterwards. Major challenges include the 
annual increase of number of students, and high freedom of 
course choice among students. The problem is also 
compounded by an increasing number of faculty-wide and 
university-wide courses which requires large rooms and 
special timeslots.  

The following terminologies are used in this paper;  
a) Course – A set of subject content to be taught to a 

particular group of students.  
b) Event – An assignment of lecturer, room and a course to 

a one hour time interval. A course can have several 
events according to the number of hours set in the 
curriculum.  

c) Lecture – A set of events of the same course, which are 
required to be scheduled together in the same room and 
the same time. A lecture can have one or more events.  

d) Block – A lecture with more than one consecutive 
events.  

A. Hard constraints: 

a. No student can attend more than one lecture at a time  
b. No lecturer can teach more than one lecture at a time  
c. No room can occupy more than one lecture at a time  
d. No room can be assigned a lecture with more students 

than its capacity  
e. Some courses are scheduled in blocks of more than one 

hour, these restrictions must be respected.  

B. Soft constraints: 

a. As much as possible, minimize the use of early morning 
(7.00 a.m.) lunch hours (13-14) and late evening hours 
(18-20).  

b. Specifically minimize the use of Friday 13-14 hour and 
18-20 hour slots to allow for Muslim prayers and 
Adventists Seventh day respectively.  

c. Minimize continuous lectures/blocks of the same course 
in a day. It is preferred to spread them over the week as 
much as possible.  

d. Minimize the use of rooms with no standby generators 
in the evening. This is to minimize the loss of lecture 
hours due to power cuts which are common in the area.  

e. Satisfy as much as possible the special preferences by 
lecturers, students and University administration. 

III. SOLUTION APPROACH  

A. Great Deluge Algorithm: 

The original idea is based on a maximization problem, 
where one is trying to search for solution on a space. The 
process then involves moving around randomly on the space, 
but there is a “water level” below which the solution cannot 
be searched. If this level is given by L, then a solution S is 
accepted at any point only if S > L. As time goes on, L rises 
slowly and finally the solution is forced up to the peak and 
stops. The algorithm can easily be mapped to a minimization 
problem. Petrovic and Burke [21] have shown how this 
algorithm can be mapped into timetabling problems with a 
minimization objective function. Generally, the algorithm 
can be outlined by the following pseudo-code (Figure 1), as 
presented by Burke et al [17];  

Great Deluge Algorithm {  
Specify initial solution So;  
Initial level L = f(So), where f is the objective function;  

Input decay rate L; 
while further improvement is possible {  
 Define Neighbourhood N(So);  

 Randomly select a candidate solution S N(So))  
 Calculate f(S);  
 if f(S) ≤ f(So){  
  Accept S (So = S);  
 else if f(S) ≤ L{  
  Accept S (So = S);  

 Lower the level (L = L - L) 
 }  
 return So as the best solution;  
}  

Figure 1: Great Deluge Algorithm 

Great Deluge algorithm always accept better solution 
than current, but can accept worse solutions if the evaluation 
function value is less than or equal to the level L. The decay 
rate is the only input parameter required and it determines the 
speed of level reduction. In a time-predefined 
implementation, one can decide beforehand the number of 
iterations needed for convergence and calculate the value of 
decay rate. If we define Lo to be the initial level value, and 

)( fSf  to be the final expected objective value, then L can 

be calculated as follows;  

iter

f

N

SfL
L

)(0
, where Niter is the desired number of 

iterations. The initial level is normally assigned the value of 
initial cost, but the final value can only be proposed 
depending on the type of objective function. As it will be 
seen in the next section, our objective function is structured 
in such a way that the best possible value is zero. Thus the 

value of L is simply calculated by 
iterN

L
L 0  and Niter 

becomes the new input parameter. Thus, the algorithm only 
requires one input value i.e. the estimated number of 
iterations, Niter. 

B. Adapting Great Deluge to UDSM Course Timetabling:  

In implementing Great Deluge, a number of issues have 
to be designed, specifically for UDSM. These are data 
representations, objective function, generation of initial 
solution, neighborhood and type of moves from one solution 
to another and stopping criteria. The following sections 
describe how these were implemented.  
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a) Data Representation : 

i. Solution: Given a total of n events, a timetable solution 

is represented as integer-valued matrix 3nS such that 

Ssei  is a solution for event e and attribute i, where 

eevent   toallocated Room2

eevent   toallocatedTimeslot 1

eevent  with associated Course0

i  

ii. Courses: Represented by a matrix 3mC such that 

Ccij stands for course i with attribute j, where 

 sizeimum block

unitscourse

sizecourse

j

max3

 2

 1

 

Each course has been designed with a fixed number of 
units which determines the number of hours to be delivered 
per week for that course. Each unit stands for one lecture 
hour per week, so that a 2 units course requires 2 lecture 
hours per week. Some courses have restrictions on the 
number of consecutive hours (block) per each delivery. 
Maximum block size helps to determine the number of 
blocks required for a course. For instance, a 3 unit course 
with a maximum block of 2 hours will need one block of 2-
hours and an extra one hour event.  

iii. Rooms: Represented by an array R such that Rri  is 

the capacity of room i.  
iv. Collision matrix: Note that, two courses i and j clashes if 

they have at least one student or lecturer in common. 
Thus, given a set of m courses, we define a conflict 

matrix mmM  such that  

Otherwise

ji
mij

0

 course with clashes  course if 1
  

Checking for a possible student/lecturer clashes between 
courses i and j simply involves finding the value of 

Mmij .  

v. Objective function:  
Given a solution s, and a set of k constraints;  

k

i

ii sfsfMinimize
1

)()(  ,  

Each function if  represents one of the constraints and 

each i  is the weight given to the constraint depending on 

its importance. The cost function includes both hard and soft 
constraints, but higher penalties are assigned to hard 
constraints to discourage them from being selected.  

b) Constraints : 

Full description of the formulation of each constraint is 
found in Mushi A [12]. It only suffices here to give a 
summary of the formulations for the sake of continuity.  

Recall from the definitions of data structures above;  

0es = course associated with event e  

1es = timeslot allocated to event e  

2es = room allocated to event e  

And let E = set of all timetable events,  
Then the constraints are;  

i. No student or lecturer can have two lectures at the same 
time.  

Minimize )(11 sf , where

ji

SSEji

ij

ji

Msf

11),(

1 )( , which is 

the total number of collisions associated with the current 

solution. A feasible solution must have 0)(1 sf .  

ii. Only one event can be assigned to a room at a time. 

Given
 Otherwise  0

 if 1 22 ji
ij

ss
a , minimize )(22 sf , where 

ji

ssEji

ij

ji

asf

11),(

2 )( which is the total number of room 

clashes in the current solution. Again a feasible solution 

must have 0)(2 sf .  

iii. Room capacities must be respected. Given 0esi , and 

2esr , and
Otherwise

rCapiCapif
bir

                     0

)()(    1
, where 

)( jCap Capacity of object j, minimize )(33 sf , where 

e Eri

irbsf
),(

3 )( , i.e. the total number of room size 

violations in the current solution. Obviously, 0)(3 sf  

is a necessary condition for feasibility.  
iv. Maximize the distance between two events or block of 

events of the same course.  

Minimize )(44 sf , 

where

ji

ssEji jiji
ss

sf

00),(
2

11

4
)(

1
)( . The best possible 

value for )(4 sf  is 0.  

v. Minimize the use of special times.  
Let H = set of all special timeslots and 

minimize; )(55 sf , where 
He

essf 15 )( . This is the sum of 

all timeslots for courses which have been assigned to the less 

desired times. The best possible value of )(5 sf  is 0 i.e. the 

case where no course violates the special times.  
vi. Minimize the use of rooms with no standby generators 

in the evenings.  
Given G = set of all rooms fitted with standby generators 

and V = set of all evening (18-19) timeslots of the week, and 

define
Otherwise

GsVs ee
e

                 0

  if  1 21
, then minimize )(66 sf , 

where;
e

esf )(6 . This calculates the total number of 

events which have violated the standby generator constraint 
in the current solution. When all courses satisfy this 

constraint, )(6 sf must have a value of 0.  

Consequently, the best value of the overall objective 

function is obtained when .0)()(
1

k

i

ii sfsf   

c) Generating Initial timetable : 

Since all constraints have been included in the objective 
function, it is not necessary that initial solution should be 
feasible. However, a feasible initial solution is expected to 
reduce the search effort in the Great Deluge phase. It is 
counter productive though to spend too much time on the 
generation of initial solution. We therefore designed an easy 
and quick way of generating the initial timetable. The 
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algorithm simply involves assigning each event to the earliest 
possible feasible timeslot and earliest feasible room. To help 
reduce the risk of developing an infeasible solution, both 
courses and rooms are sorted in descending order of their 
sizes. Note that a timetable is feasible if satisfies all hard 
constraints.  

d) Neighbourhood and Move types : 

The performance of any local search strategy requires a 
good decision on the choice of neighborhood. Our 
neighborhood is defined by the type of moves that we have 
implemented. There are two types of attributes that we can 
vary in order to get a different solution i.e. timeslots and 
rooms. Assuming fixed rooms from the initial solution, we 
can move timeslots. On the other hand, we can fix timeslots 
and change rooms. This prompted us to consider a two phase 
process, where phase I considers fixed rooms and perform 
timeslot changes, and Phase II fixes timeslots and vary rooms 
in search of a better solution. Basically, room move is useful 
only when phase I did not bring a feasible solution, as this 
may be caused by infeasible room allocations. However, our 
selection of moves for phase II affects both timeslots and 
rooms, which increases the chance of finding a feasible and 
better solution. The two types of moves are as defined below;  

i. Timeslot move: 

This affects only the timeslots as follows;  
a. Select a random event e in the set of all possible 

events  
b. Select randomly a new timeslot t in the set of all 

possible timeslots.  
c. Assign the new timeslot t to the event at position e. 

If e is a member of a block of events, assign t to all 
timeslots of the block.  

Such a move is identical to several moves described in 
literature [22][23]. The size of the neighborhood associated 

with this kind of move is |N(s)| = |e|  (|t|-1), where |e| = total 
number of events, and |t| = total number of timeslots.  

ii. Event swap move:  

a. Swap of two events from different courses as follows;  
b. Select randomly two event e1, e2 in the set of all possible 

events of different courses  
c. Find whether it is possible to swap; it is possible to swap 

events only if they have the same block size.  
d. If possible to swap, then swap course numbers of the 

two event blocks otherwise select another set of events 
and repeat 1 until swap is successful.  

The size of the neighborhood associated with this kind of 

move is |N(s)| = |e| (|e|-1). As pointed earlier, this type of 
move affects both timeslots and rooms since a course is 
associated with both a timeslot and room number.  

e) Stopping criteria:  

Apart from the pre-defined number of iterations from the 

calculations of the decay value L, it has been found that 
there is a possibility of further improvement even after level 
has dropped to zero. We have therefore added condition 
which considers the number of consecutive iterations without 
a change in solution value. The algorithm stops after running 
1000 iterations without solution change.  
The two-phase algorithm is therefore as presented in Figure 
2;  
 
 
 
 

Two-Phase Great Deluge Algorithm {  
Generate initial solution So;  
L = f(So);  
Input Nmov;  

Calculate decay rate L = L/Niter; 
Phase I 
While Not Converged {  

 Randomly select a time-move solution S N(So))  
 Calculate f(S);  
 If f(S) ≤ f(So){  
  Accept S (So = S);  
 else if f(S) ≤ L{  
  Accept S (So = S);  

 Lower the level ( L = L - L);  
 Converged = (repeated(So) >= 1000);  
 }  
Phase II  
So from Phase I is the new initial solution;  
L = f(So);  
Input Niter;  

Calculate decay rate L = L/Niter; 
While Not Converged {  

 Randomly select a swap-move solution S N(So))  
 Calculate f(S);  
 If f(S) ≤ f(So){  
  Accept S (So = S);  
 else if f(S) ≤ L{  
  Accept S (So = S);  

 Lower the level ( L = L - L);  
 Converged = (repeated(So) >= 1000); 
 }  
return So as the best solution;  
}  

Figure 2: Two-phase Great Deluge Algorithm 

The decay rates in the two phases are different, 
depending on the performance of phase I; basically it is 
expected to have fewer moves in the second phase, since 
phase I will considerably reduce the search space. This 
modification has the implication of increasing the number of 
parameters to two, i.e. Niter values for phase I and II. 
However, the total number of parameters is still low 
compared to other heuristics such as Tabu Search or 
Simulated Annealing.  

IV. COMPUTATIONAL RESULTS  

The algorithm was tested on a course timetabling 
problem previously solved by manual methods. The code is 
written in C++ and test run on a 2.9 GHz Pentium processor. 
Table 1 shows data for the specific problem used in the test 
runs;  

Table 1: Data for the tested problem at UDSM 

Data Value 

Students 8161 

Lecturers 607 

Rooms 106 

Courses 729 

Total events 1570 

Total timeslots 65 

 
The total number of students does not include first years 

since their number is not known at the time of timetable 
preparation. A single dummy student is used instead, to 
represent first years in each programme since they have 
similar core courses per programme. First years normally 
pick their convenient optional courses after the release of the 
timetable. The total number of events is the total number of 
timetable hours required for all courses in the semester. 
Table 2 shows the weights used in the cost function for each 
type of constraint.  

 



Allen Rangia Mushi , International Journal of Advanced Research in Computer Science, 2 (5), Sept –Oct, 2011,90-95 

© 2010, IJARCS All Rights Reserved                              94 

Table 2: Weights used in the objective function 

Weight Value Description 

1 - 3 100 Hard constraints 

4 10 Distance between events 

5 4 Friday Muslim prayers 

4 Seventh day Adventists  

2 Lunch times  

1 Morning and evening times  

6 3 Standby generators  

 

The author is the coordinator of timetable at UDSM and 
therefore these weights were assigned according experience 
on the importance given to various factors at UDSM. The 
same problem and weights were used in the Tabu Search 
case [12]. As in Tabu Search case, time move performed 
much better than event swap. Table 3 shows the performance 
of the algorithm for the time moves tested and compared to 
Tabu Search. The rows of the table show the kind of 
constraints solved and their performance in the final solution. 
Both values are the average of performances for different 
randomly generated values using different seeds in the 
random number generator.  

Table 3: Performance of the Algorithm 

Initial cost C0: 2894.72  Great Deluge Tabu Search  

 Event swap Time move  

Phase I cost 141.36 1.74 

Final Cost 1.98 

Student/Lecturer Collisions 0 0 

Room clashes 0 0 

Room size 0 0 

Event Distance 1.98 1.74 

Special time penalties 0 0 

Standby generators 0 0 

Time (Seconds) 7,826.73 4,684.91 

% Improvement 99% 99% 

 
The best solution was found after 7,826.73 seconds 

which is about 2 hours and 17 minutes; that is a tolerable 
range in timetabling applications. The final solution is 
significantly close to the one obtained by Tabu Search. The 
Great Deluge solution however, is much more stable. The 
improvement achieved in Phase II is very significant 
showing the usefulness of the two-phase approach.  

Figure 3 shows the performance improvement by 
iterations and compare with previous results for Tabu Search. 
Although Tabu Search finally converges to a lower solution 
value (Table 3), the graph shows that Great Deluge can 
provide a better solution in the higher levels. Most of the 
time is spent on the lower levels of iterations with minimal 
improvement. Thus the values of Niter can be adjusted to stop 
the algorithm within a tolerable range as needed by the 
timetable officer without great loss in the quality of solution.  
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Figure 3: Performance improvement by iterations 

A comparison with a manually generated solution is 
provided in Table 4. It provides a summary of the 
performances in terms of constraint violations. It is worth 
noting that both cases were feasible by satisfying all hard 
constraints. However, the course-event gaps and special time 
penalties could not work very well in the manual system 
which involves mostly trial and error method.  

Table 4: Manual vs Automatic Performances 

Constraints 
Violations 

in Manual 

Violations 

in automatic 

Student/Lecturer Collision 0 0 

Room clashes 0 0 

Room size violations 0 0 

Course event gaps 253.75 1.98 

Special time penalties 659 0 

Standby generators 0 0 

Total violation cost 912.75 1.98 

% Improvement from Co 71% 99% 

V. CONCLUSION AND FURTHER RESEARCH 

DIRECTIONS  

We have successfully demonstrated that, Great Deluge 
can give a robust solution without significant loss in the 
quality of solution. Generally, the automatic solution 
generation strategies perform better than purely manual 
solution. Although human intervention may still be necessary 
in the final automatic solution generated, the algorithm it still 
provides a significant improvement in the final overall 
solution.  

Timetabling research area is widely explored but still 
leaves a load of research opportunities since the problems are 
always specific to particular institutions. Furthermore, most 
of these problems involve a huge list of soft constraints 
which may not be possible to implement all at a time. New 
constraints may arise from time to time and provide new 
challenges to researchers especially in academic institutions 
which are always trying to improve their programmes and 
administrative structures. In developing countries, the 
problem is compounded further by scarcity of resources 
which desperately need optimization so as to provide the 
much needed education to as many students as possible. An 
exploration of general features within developing countries 
and thereby coming up with a general template which can be 
customized to fit different institutions in the form of a 
decision support system could be very useful in improving 
education systems. Many algorithms have been tested 
recently but only on a few case studies; further testing of 
these algorithms in new problems especially in developing 
countries could be interesting and worth investing.  
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