
Volume 2, No. 4, July-August 2011

International Journal of Advanced Research in Computer Science

RESEARCH PAPER

Available Online at www.ijarcs.info

© 2010, IJARCS All Rights Reserved 654

ISSN No. 0976-5697

Validating SIM-A Simulator with ARM Based Keil Software

Dr Manoj Kumar Jain*

Associate Professor,
Department of Computer Science,

MLSU University, Udaipur

manoj@cse.iitd.ernet.in

Gajendra Kumar Ranka
Research Schlor,

Department of Computer Science

MLSU University, Udaipur

Gajendra_ranka@hotrmail.com

Abstract: While general purpose processors reach both high performance and high application flexibility, this comes at a high cost in terms of

silicon area and power consumption. In systems where high application flexibility is not required, it is possible to trade off flexibility for lower

cost by tailoring the processor to the application to create an Application Specific Instruction set Processor (ASIP) with high performance yet

low silicon cost. If we look at the rapid rate at which mobile technology is developing and the constant need for miniaturization, ASIPs seem to

be poised in a stronger position compared to ASICs. The major contribution of this paper lies in verifying or substantiating SIM-A with Keil

Software. Simulator SIM-A measures cycle count for application executed on processor. This paper focuses on working with Keil Software and

its configuration required to run any software on ARM based keil software.

Keywords: ASIP, Application Specific Instruction Processors, Retargetable Simulator, Embedded Systems, Processors, ASIP Simulators, Design

Space Exploration, ARM , Keil software.

I. INTRODUCTION

Modern electronics are controlled by processors that must
meet strict constraints in terms of performance, cost, size and
power consumption. In a competitive market place,
performance and cost are critical in differentiating one
product from another.

An ASIP is a processor that is designed to efficiently
execute the software for a specific application. Although
incorporating a complete system on a single IC may improve
performance, cost, and power consumption requirements,
such a high level of integration constraints the size of the
system components.

A. Steps in ASIP Synthesis

Various methodologies have been reported to meet these
requirements. All these have been studied and five steps are
suggested for synthesis of ASIPs [1]

Application Analysis: Application is normally written in
High level language. Sometimes SUIF can be used as
intermediate format. Analysis of the application is essential
as it provides the essential requirement from the application
that can guide for hardware synthesis as well as instruction
set generation.

Architectural Design Space Exploration: Output of the
Application analysis step along with the range of architecture
for Possibility of suitable architecture is explored and the
best architecture is selected that satisfy the different
characteristics like minimum hardware cost, performance
and power.

Instruction Set Generation: Till this step we have
identified application requirements and the suitable
architecture.

Code Synthesis: Till this step, architecture template,
instruction set, and application are identified. This step
generates the code. Generated code can be retargetable code
generator or compiler generator.

Hardware Synthesis: In this step the hardware is
generated using the ASIP architectural template and
instruction set architecture using standard tools [1.2].

B. Architecture Design Space Exploration

System on Chip designs has various goals and objectives.

Design space consists of a set of parameters. Architecture

under consideration requires a range of good parameter to

explore. These parameters may take up the different values.
Some of the parameter suggested can be functional unit

of different type, Storage units, interconnect resources,
number of memory units etc. Further the parameters can also
be extended to size of instruction cache and size of data
cache. This has been a very crucial step for ASIP design.
Design Space exploration helps the SOC designers to make
the trade-offs between these goals and arrive at the "optimal"
design. Designers explore changes to the architecture or the
instruction-set of the processor-memory system. Designers
select a suitable architecture that satisfy the performance and
power constraint and having minimum hardware cost.
Architecture is defined using some suitable architecture
description language (ADL).

C. Techniques for Performance Estimation

Two major techniques have been used for performance
estimation. They are scheduler based and simulator based. In
Scheduler based approach, application is scheduled to
generate the output like cycle count. Architectural
component is already identified at this stage. Target
processor architecture can be given in the form of description
file.

In Simulator based approach, application under
consideration runs on a simulator. Depending upon the
architecture selected in above steps, application is simulated
to compute the performance.

Processor Models are extensively used in system design
process. The system design process starts with an application
and its implementation. Then the model is tested for its
performance and other aspects. In such a scenario an
integrated environment is required for the designer where
several tools exist like simulator, assembler, compiler etc.
Rewriting the tools after each design change is a tedious job.
Hence automatic generation of these tools is more desirable
according to the design changes.

Manoj Kumar Jain et al, International Journal of Advanced Research in Computer Science, 2 (4), July-August, 2011, 654-659

© 2010, IJARCS All Rights Reserved 655

D. Existing Retagetable Simulators

Retargetable functional simulator (Fsimg) [2] focus on
tools that deal with the machine language of processors, like
assemblers, disassembler, instruction set simulator
etc.Retargetable Function Simulator (Fsimg) was designed
using Sim-nML language which is primarily an extension of
the nML [3] language for processor modeling. Fsimg takes
the specification of the processor in the intermediate
representation [4] and an executable for the processor in ELF
[5] format and generates a functional simulator (Fsim) which
in turn gives the functional behaviour of the processor model
for the given program.

II. RELATED WORK

Over the past several decades a considerable amount of
research has been performed in the area of computer
architecture simulation. These simulators can be broadly
divided into several categories: full-system simulators,
Instruction Set Architecture (ISA), and retargetable
Simulators. Each category serves an entirely different
purpose, but all have been used for the advancement of
computer architecture research.

The purpose of full-system simulators is to model an
entire computer system including the processor, memory
system and any I/O. These simulators are capable of running
real software completely unmodified just like a virtual
machine. There are many simulation suites that take this
approach, including PTLSim [6], M5 [7], Bochs [8], ASIM
[9], GxEmul [10] and Simics [11]. Simics has several
extensions that constitute their own full-system simulators
such as VASA [12] and GEMS [13].

ISA simulators are less descriptive than full system
simulators. Their objective is to model processor alone.ISA
simulators performs the various functionalities.

It simulate and debug machine instructions of a processor
type that differs from the simulation host, it also emphasis on
investigating how the various instructions (or a series of
instruction) affect the simulated processor. Hence modeling
of the full computer system is unnecessary and would impose
additional delay and complexity. Example of this type of
simulator includes SimpleScalar [14], WWT-II [15], and
RSIM [16]. Over the past decade, a few interesting ADLs
have been introduced together with their supporting software
tools. These ADL include MIMOLA, UDL/I, nML, ISDL,
CSDL, Maril, HMDES, TDL, LISA, RADL, EXPRESSION
and PRMDL.

III. EXISTING RETARGETABLE SIMULATORS

Anahita Processor Description Language (APDL), APDL
[17] is one of the most recent contributions in the area of
retargetable simulator. The language was introduced in 2007
by N. Honarmand et al. from the Shahid Beheshti University,
IRAN. The Primary difference between APDL and other
ADLs is the addition of Timed Register Transfer Level (T-
RTL), which enables the simulation designer to define the
latencies and hardware requirement of the processor
operations. This separation of configuration data enables
APDL to better integrate with external software for analysis
as the T-RTL data is organized separately from the
remainder of the processor description. Moreover, APDL can
describe both instruction and structure descriptions of a
target processor.

The Pascal-like syntax of APDL is clearly more intuitive
than many other ADLs such as LISA and EXPRESSION.

While the language is easier to read and understand, the
researchers have not yet implemented a compiler to produce
simulations. Furthermore, despite APDL's relative ease, users
are still faced with the task of learning the details of the
syntax.

ISDL [18] was introduced in 1997 by G.Hadjiyiannis,
S.Hanono, and S. Devadas from Massachusetts Institute of
Technology. The purpose of ISDL was to provide a language
for describing instruction sets along with a limited amount of
details of a processor structure for the automatic construction
of compilers, assembler, and simulators. ISDL enables users
to define their target processors in several ways. First, users
can define operations, their format, and the associated
assembly language instruction. Second users can define the
storage resources available to the processor, including the
register file and memory. Third users can define constraints
in the processor such as instructions requesting the same data
path, or restrictions regarding assembly syntax.

ReXSim [19] was introduced in 2003 by a computer
architecture research team at Irvine. ReXSim is an extension
of EXPRESSION language which sought to improve
simulation speed by integrating a novel method of decoding
instructions of the simulated program before execution of the
simulation. As a result, the instruction decoding process was
removed from the execution loop of the simulator, and thus
improved the simulation speed significantly. Using this
method, the team was able to produce retargetable
simulations that showed performance in excess of major
simulators like SimpleScalar, which is widely considered to
be a simulation performance benchmark.

Reduced Colored Petri Net (RCPN) [20] was introduced
in 2005 by M.Reshadi and N. Dutta from University of
California, Irvine. RCPN takes a vastly different approach to
retargetable simulation, in which pipelines are modeled using
a simplified version of Colored Petri Nets (CPN). Petri Nets
are graph based mathematical method of describing a
process. The nodes of the graph represent particular discrete
events, states, or functions, and the graph edges represent the
transitions of data between nodes. The transitions can be
enabled or disabled based on conditions specified at the
nodes.

The purpose of RCPN is to provide retargetable
simulations for modeling of pipelined processors. RCPN
reduces the functionality of a regular CPN by limiting the
capabilities of the nodes in the graph for the purpose of
increasing simulation speed and usability. Additionally,
RCPN takes the advantage of some of the natural properties
of CPNs to prevent structural and control hazards.

Retargetable functional simulator (Fsimg) [21] focus on
tools that deal with the machine language of processors, like
assemblers, disassembler, instruction set simulator etc. The
objective was to have a single processor model for all the
tools. Hence Retargetable Function Simulator (Fsimg) was
designed using Sim-nML language which is primarily an
extension of the nML language for processor modeling.
Fsimg takes the specification of the processor in the
intermediate representation and an executable for the
processor in ELF.

Format and generates a functional simulator (Fsim)
which in turn gives the functional behaviour of the processor
model for the given program. Around 237 instructions have
been specified with the resource usage model and pipeline.
Macro Preprocessor (nMP) for processing Sim-nML macros
is implemented.

It has some limitation. Fsimg is imposing a strong
restriction on specification writing. Current bit-operator

Manoj Kumar Jain et al, International Journal of Advanced Research in Computer Science, 2 (4), July-August, 2011, 654-659

© 2010, IJARCS All Rights Reserved 656

library supports only integer data types. The trace produced
by Fsim is not compressed. It makes it difficult to handle and
process trace files. It is very slow
The LISATek [22] processor design flow is based on LISA

2.0 processor models. Given a LISA model, the LISATek

tool is able to generate instruction-set simulators for the

processor under design. Typically, the debugger in form of a

dynamic library directly uses the generated simulator.

However, a compiled static simulator library is also

generated, and specifications exist to integrate it into the

system environment. The system environment would be the

MPARM. All the core models generated by the LISATek

suite, regardless of the nature of the ASIP at hand, have the

same interface. The interaction is based upon four key

pillars:

 The simulated core can be cycled by calling specific

functions. If the processor is modelled in an

instruction-accurate fashion, then the generated model

can be stepped on an instruction basis. On the other

hand, a model derived from a cycle-accurate LISA

description can be stepped on both instruction and

cycle basis.

 Core-initiated communication (e.g. reads, writes) is

performed through a specific Application

Programming Interface (API). It is the task of the

external program to provide an implementation of said

API.

 System-initiated communication (e.g. interrupts), if

any, can be forwarded to the core when cycling it, and

therefore on a fine-grain cycle-by-cycle basis, by

proper flipping of extra pins. Of course the LISA core

model must be made aware of the meaning of these

extra pins to take proper action.

 An external LISATek Debugger tool can be interfaced

to the core via the IPC (Inter-Process Communication)

mechanism. The external program must simply invoke

the Debugger with proper references; subsequently,

the LISATek model and the Debugger interact

autonomously.
The implementation of these function calls depends

completely on the communication method used in the
system. The implemented API will translate the requests into
SystemC signals which can be understood by the MPARM
[23] platform. The Assessment of the performance of
alternative hardware communication is not addressed.
Retargetability is poor.
All of these simulators use techniques to speed up the

execution of application programs. This is achieved by

minimizing the amount of details about the processor,

needed for program execution on the simulator. Even though

some of these previous approaches target ADL-based

automatic toolkit generation and DSE, not much work has

been done in bringing together these elements in an early

DSE environment. Furthermore, previous approaches are

restricted to certain classes of processor families and assume

a fixed memory/cache organization. For a wide variety of

such processor and memory IP library, the designer needs to

be able to specify and analyze the interaction between the

processor instruction set and architecture, and the

application and explore the different points in design space.
This problem is addressed in SIMPRESS simulators. The

EXPRESSION ADL captures both the instruction set and
architecture information for a design draw from an IP library.
The library contains a variety of parameterizable processor

cores and customizable memory / cache organizations.
Simpress produces a structural simulator capable of
providing detailed structural feedback in terms of utilization,
bottle-necks in the processor architecture. The processor-
system description is input using a graphical schematic
capture tool, called V-SAT, that outputs an Expression
Description which is fed into the toolkit generators to
produce DSE tools. The SIMPRESS generated simulator
provides feedback information which is back-annotated to
the same V-SAT graphical description.

Though SIMPRESS Simulators addresses many issues, it
has certain limitation. The application having function calls
are not supported. Compilation steps exist in three passes:
PcProGUI, Expression console, acesMIPS console. Basically
it is very complex to understand the process of compilation
and simulator. The Application needs .proc and .def file. The
.c program generates these files. There is no clear cut
method as how .c is converted to .proc and .def, especially in
case of windows environment. This is strong limitation as we
can not simulate our own program written in .c. this has to be
first converting to .procs and .defs and for that we need to
depend on their servers to provide for the same, which is not
functional right now.

In order to overcome all these complexities, we suggest a
simple and elegant solution. Just there is a need to provide
the standard application program in the form of scheduled
and optimized code along with the processor description to
our Simulator and you will get the cycle count as an output
of the simulation.

IV. OVERALL APPROACH

Application or a set of application in the form of High
Level Language is taken as input and it given as input to
retargetable compiler. Architecture description is also given
input to retargetable compiler. Retargetable compiler
generates the schedule and optimized code. This code is
given as input to Simulator. None of the existing simulator
provides and easy GUI to enter the processor components
and simulate the code for target host.

Figure 1. Simulator based code generation

We are assuming the scheduled and optimize code to be
generated from retargetable compiler and this code along
with the Processor description or Architecture description is
given as input to the Simulator. The Simulator generates the
data in the form of cycle count.

V. KEIL SOFTWARE

Keil Software development tools for the ARM
microcontroller family support every level of developer from
the professional applications engineer to the student just
learning embedded software development. µVision3 ensures

Manoj Kumar Jain et al, International Journal of Advanced Research in Computer Science, 2 (4), July-August, 2011, 654-659

© 2010, IJARCS All Rights Reserved 657

easy and consistent Project Management. A single project
file stores source file names and saves configuration
information for Compiler, Assembler, Linker Debugger,
Flash Loader, and other utilities. The Project menu provides
access to project files and dialogs for project management.
When microvision 3 Project started target device needs to be
selected from the device database. It displays only those
option that are relevant to the selected device.

Figure 2. Keil editor to write any program

The instructions about how to write Keil ARM can be

listed as follows.

 Open Keil uVision Program which is Text Editor of

Keil, that ARM uses for writing C Language Source

Code Program as shown in figure2

 Set default value to translate uVision3 Code to use

with Keil uVision3 Program and Keil ARM. Click

Project Components, Environment, Books… then

select default value to use Complier titled Select ARM

Development Tools.

 Open the project and in turn open the .c program and

start debugging session. Left hand pane shows the

details of the Register details and the states as shown

in the figure 3.

Figure 3 Editor showing the register status and timing information

All instructions are 32 bits long. Most instructions
execute in a single cycle. Every instruction can be
conditionally executed. Data processing instructions act only
on registers. Three operand format Combined ALU and
shifter for high speed bit manipulation Specific memory
access instructions with powerful auto-indexing addressing
modes.

ARM has 37 registers in total, all of which are 32-bits
long.

 1 dedicated program counter

 1 dedicated current program status register

 5 dedicated saved program status registers

 30 general purpose registers
However these are arranged into several banks, with the

accessible bank being governed by the processor mode. Each
mode can access.

 a particular set of r0-r12 registers

 a particular r13 (the stack pointer) and r14 (link

register)

 r15 (the program counter)

 cpsr (the current program status register) and

privileged modes can also access

 a particular spsr (saved program status register)

VI. PERFORMANCE ESTIMATES AND

VALIDATION OF SIMULATOR

Benchmark programs are selected and run on SIM-A
Simulator as shown in figure 4. The Framework is based
ARM like processor architecture. There is a 32-bit wide
general purpose register file and a 32-bit wide floating point
register file, each containing 32 registers.

Manoj Kumar Jain et al, International Journal of Advanced Research in Computer Science, 2 (4), July-August, 2011, 654-659

© 2010, IJARCS All Rights Reserved 658

Figure 4: SIM-A showing cycle count of ARM based LL1 Benchmark
Program

Table 1: Benchmark Programs along with Descriptions

SNo Name Description

1 Benchmark#1

Excerpt from a

 hydrodynamic code

2 Benchmark#2

Standard Inner

product function

 of Linear Algebra

3 Benchmark#3

Excerpt from a

Tridiagonal

Elimination routine

4 Benchmark#4 First Sum

5 Benchmark#5 First Difference

Table 1 lists all the benchmarks programs that have been

used to validate the simulators. Table 2 shows the actual data
collected while running ARM Based keil software and SIM-
A Simulator. Graphical representation is shown in figure 4.
After running this benchmark program on the SIM-A as well
as SimpleScalar Simulator, following results were obtained.

Figure 5: Comparative analysis of SIM-A and ARM based Keil

VII. CONCLUSION AND FUTURE DIRECTION

In this paper we have verified SIM-A Simulator for ARM
Based Keil simulator. The paper discusses the working of
ARM based keil software. The different customization
needed to run the application program has been discussed in
detail.

SIM-A Simulator developed at our MLSU embedded Lab
generates the performance estimates for the application under
consideration. The cycle accurate, structural simulator
generated using SIM-A allows the user to collect statistics

called cycle count. It definitely helps the designer to analyze
the design and modify the critical portions.

The SIM-A environment has been designed to allow
modeling of diverse range of processors. This has been
demonstrated to an extent through the modeling of RISC
processor with traditional memory hierarchies.

In future, it should be used to model novel memory
hierarchy and other classes of processors such as DSP’s.

VIII. REFERENCES

[1] M.K. Jain, M. Balakrishnan, Anshul Kumar. “ASIP Design
Methodologies: Survey and Issues “In proceedings of the
IEEE/ACM International Conference on VLSI Design. (VLSI
2001)”, pages 76-81, January 2001.

[2] Y Subhash Chandra. Retargetable functional simulator –
M.Tech Thesis, Department of Computer Science, IIT
Kanpur, June 1999.

[3] M. FREERICK, The nML Machine Description Formalism,
July 1993.

[4] N.C. JAIN, Disassemble using High level Processor Models.
Master’s thesis, Department of Computer Science and Engg,
IIT Kanpur, Jan 1999.

[5] UNIX System V Rel 4, Programmers Guide : ANSI C and
Programming Support Tools. PHI, New Delhi 1992.
Executable and Linkable format (ELF), Tools Interface
Standards (TIS), Portable Formats Specification, Version 1.1.

[6] M. Yourst, “Ptlsim.” http://www.ptlsim.org/. Jan. 2010.

[7] “M5.” http://www.m5sim.org. Jan2010.

[8] “bochs: The open source IA-32 emulation project.”
http://bochs.sourceforge.net/. Jan. 2010.

[9] J. Emer, P.Ahuja, and E.Borch, “Asim: A performance model
framework” pp.68-76, 2002.

[10] “Gxemul” http://gxemul.sourceforge.net/ Jan 2010.

[11] P.M et al. , “Simics : A Full system simulation platform, “
Computer, Vol.35, pp. 50-58, 2002.

[12] D. Wallin, H.Zeffer, M.Karlsson, and E.Hagersten, “Vasa: A
Simulator infrastructure with adjustable fidelity,” Parallel and
Distributed Computing, 2005.

[13] M.M. et al., “Multifacets general execution-driven
multiprocessor simulator (gems) toolset,” SIGARCH
Computer Architecture News, pp. 92-99, 2005.

[14] “SimpleScalar LLC.” http://www.simplescalar.com/, August
2010

[15] S.M. et al., “Wisconsin wind tunnel ii: A fast and portable
parallel architecture simulator,” Workshop on performance
Analysis and Its Impact on Design, June 1997.

[16] V. Pai, P. Ranganathan, and S.Adve, “Rsim : An execution-
driven simulator for ilp-based shared memory multiprocessor
and uniprocessors,” Third Workshop on Computer
Architecture Education, Feb 1997.

[17] N. Honarmand, H.Sohofi, M. Abbaspour, and Z.Navabi, “
Processor description in APDL for design space exploration
of embedded processors,” Proc. EWDTS, 2007.

[18] G.H. et al . ,”ISDL : An Instruction set description language
for retargetability,” In proc Design Automation Conference ,
pp.299-302,,1997.

[19] M. Reshadi, P. Mishra, N. Bansal, N. Dutt. ”Rexsim : A
Retargetable framework for instruction-set architecture
simulation” CECS Technical Report #03-05 ,Feb,2003

[20] M. Reshadi and N.Dutt, “Generic pipedlined processor
modelling and high performance cycle-accurate simulator
generation,” Vol.2, pp. 786-791, 2005.

[21] Y. Subhash Chandra. Retargetable functional simulator –
M.Tech Thesis June 1999.

Manoj Kumar Jain et al, International Journal of Advanced Research in Computer Science, 2 (4), July-August, 2011, 654-659

© 2010, IJARCS All Rights Reserved 659

[22] F. Angiolini,;Jianjiang Ceng; Rainer Leuper ;Cesare
Ferri;Luca Benini; “An Integrated Open Framework for
Heterogeneous MPSoc Design Space Exploration”,page3 ,
Date06,2006 EDAA.

[23] M. Loghi; F. Angioni; D. Bertozzi; L. Benini. “Analyzing on-
chip communication in a MPSoC environment” In proceeding
of the 2004, Design, Automation and test in Europe
Conference (DATE’04), IEEE, 2004.

