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Abstract: Multi-Label Learning (MLL) has arisen in data engineering to identify instances based on a specific feature associated with a collection 

of labels. Adaptive learning necessitates classifying features with New Labels (NLs) if a data stream contains newer perspectives. As a result, an 

MLL with Emerging Multiple NLs (MuEMNL) and managing High-Dimensional data streams (MuEMNLHD) approaches were developed that 

divides the NL sets into multiple NLs for efficient classification. However, it did not handle concept drift issues when huge amounts of data arrived 

at high speeds using limited resources. Hence, this article proposes an adaptive ensemble learning approach to cope with a huge amount of data 

streams and solve concept drift issues by constructing a MuEMNL-Ensemble Neural Network (ENN) rather than a random forest classifier. It 

defines the number of NNs in the ensemble, whether or not they use constructive pruning, how many hidden nodes each NN uses, and how many 

training samples are used to train each NN independently. Also, to solve the concept drifts, pairwise and non-pairwise diversity measures are 

analyzed while constructing ensemble NN for efficient training using the entire learning examples. Moreover, the tradeoff between the NN’s 

precision and diversity is maintained simultaneously. At last, the test outcomes reveal that the proposed approach attains a better performance 

contrasted with the existing MLL approaches. 
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I. INTRODAUCTION 

Traditional supervised learning has become the most widely 
used artificial intelligence concept, with every aspect known as 
a distinctive feature vector connected with specific labels. 
Despite this learning is widespread, a distinctive trait might 
involve many labels in various contexts. For example, various 
labels often describe a scene shot [1]; a paper may have many 
topics [2]; and an audio recording may fit into multiple 
categories [3]. To cope with this kind of information, MLL was 
invented, a learning concept that has recently gained popularity 
[4]. 

All objects in traditional supervised learning have been 
defined with a particular trait in MLL when they are related to 
the collection of labels. For unspecified attributes, the technique 
keeps the appropriate label collections [5]. Previously, MLL was 
increasingly involved in particular fields of machine learning 
and was extensively utilized in various issues, like computerized 
efficiency with multimedia information [6]. Earlier MLL studies 
focused solely on multi-label text classification using a 
predefined set of labels [7]. But in many real-world situations, a 
dynamic case that might include more recent labels with perhaps 
the finest labels in the anticipated data stream structure was 
evaluated. 

In a complicated world, a learning approach may reassign 
and transform an established framework into various 
arrangements. This approach needs to be capable of recreating 
an established framework in the MLL model for novel 
characteristics as well as updated categorization methods for 
every NL [8]. Excluding real-world learning information, there 
remains no Ground Truth (GT) for labels in the dynamic MLL 
configuration at any point in the data stream. As a result, the key 
challenges included discovering and simulating NLs [9]. 

Overall, it was quite hard to identify the characteristics of an NL. 
Because fresh labels were not truly present in earlier information 
and primarily co-existed with a few useful labels, it was 
extremely difficult to separate features from those with 
recognized labels from those with NLs. The rate of failure 
increased as the number of NLs in the data stream increased due 
to an incorrect categorization. As a result, developing 
appropriate frameworks for improving categorization 
performance in a data stream was a difficult challenge. To deal 
with this problem, numerous MLL algorithms with innovative 
ways of detecting relationships between labeled and unlabeled 
characteristics were presented [10]. 

Based on these considerations, Zhu et al. [11] proposed the 
MuENL to recognize and categorize characteristics with 
Emerging NLs (ENLs). This MuENL method is divided into 
several important stages: 1) categorizing the attributes associated 
with newly detected labels, 2) identifying the presence of an NL, 
and 3) developing a novel categorization system for all NLs that 
collaborate with the predictor for the recognized labels. 
Furthermore, MuENLHD was modified to deal with sparse high-
dimensional data streams by decreasing size via a kernel 
Principal Component Analysis (PCA). In contrast, this approach 
could only deal with a specific NL in a given stage. In contrast, 
when the test set contains several NLs in a single stage, this 
approach may treat the number of NLs as an independent NL. 
This leads to a decrease in performance. 

As a result, the MuEMNL and MuEMNLHD approaches 
[12] were developed to address the issues in a dynamic situation 
with a huge quantity of NLs. The NL set was separated into 
numerous newer CLs individually for adjusting the dynamic 
situation in this approach. This approach consists of four distinct 
stages: i) A linear classification system was built to optimize the 
pairwise label classification error on the set of labels, ii) a new 
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outlier identification is built using both primary and test data 
stream, iii) the MuEMNLforest and MuEMNLHD clusters were 
identified using the OPTICS technique, and iv) a classification 
refining technique is employed to integrate NLs to construct an 
efficient classification model. But it needs to be maintained up-
to-date for huge amounts of data arriving at high speeds using 
limited resources since it tends to concept drift problems. 

Therefore, in this article, an adaptive ensemble learning 
approach is proposed that deals with a huge amount of data 
streams and solves concept drift issues by constructing 
MuEMNL-Neural Network (NN) rather than a random forest 
classifier. It specifies the ensemble size, the amount of 
independent NNs applying a constructive-pruning technique, 
their hidden nodes, and their learning examples. Also, to solve 
the concept drifts, pairwise and non-pairwise diversity measures 
are analyzed while constructing ensemble NN for efficient 
training using the entire learning examples. Moreover, the 
accuracy and diversity of NNs are maintained simultaneously. 
Thus, the MLL is enhanced when dealing with huge amounts of 
data streams. 

The remaining sections are prepared as follows: Section II 
studies the related works on MLL in various applications. 
Section III explains the MuEMNL-ENN and Section IV portrays 
its performance. Section V reviews the findings and gives 
upcoming improvements. 

II. LITERATURE SURVEY 

Different MLL algorithms have been developed by earlier 
researchers for different kinds of applications. Some of them are 
reviewed in this section. 

For MLL with ENLs, Kongsorot et al. [13] created an 
Incremental Kernel Extreme Learning Machine (IKELM). A 
novel detector and a multi-label classifier were featured. To 
identify cases with NLs, the detector was adopted with user-
defined threshold values. To assign a label to each occurrence, a 
new incremental multi-label classifier and its improved variant 
were used. However, it was unable to handle idea drift in MLL 
when using ENLs. To learn the linked characteristics from 
mechanical vibration data, Shen et al. [14] presented a deep 
MLL. This model for fault diagnosis was trained using unlabeled 
examples. However, because it did not simulate the label 
correlations, it was unable to handle the new fault categorization. 

Xie & Huang [15] developed a Partial MLL with Noisy label 
Identification (PML-NI) method to concurrently reconstruct the 
GT data and recognize the noisy tags. First, two objectives were 
defined such as trace norm and -norm regularizer. Then, the 
multi-label classifier and noisy tag detector were together 
optimized via integrating the tag similarity and attribute-
triggered noise models based on the noise-corrupted label 
matrix. Also, it was extended into multi-instance MLL to 
recognize noisy labels according to ambiguous instances. But its 
complexity was high and the concept drift problem was not 
considered. 

Tan et al. [16] designed a new Probabilistic Label 
Enhancement Algorithm (PLEA) based on the maximum 
entropy-based tag allocation. At first, the supervised data in the 
tag manifold was used in the attribute manifold space formation. 
A strong linear regression was used to predict the tag allocations 
related to the mined decreased-size attributes. Moreover, the 
unknown true label distributions were predicted precisely. But 
the concept drift problem was not solved. 

Zhang & Li [17] presented the MLL scheme named LF-
LELC. The clustering was applied to the positive and negative 
data. The amount of clusters was assigned by the data kept in the 
label vectors. The clustering ensemble schemes were used to get 
robust clustering outputs using label correlations. After that, 

label-specific features were created for all labels, and the 
classification system was created via label correlations. 
However, the learning performance was influenced by the class 
imbalance problem. 

Tan et al. [18] created a unique MLL model that learns 
instance space granularity and class labels. This model 
simultaneously trained classifiers and recovered label matrices. 
The instance and label manifolds were used to recreate and train 
the feature label mapping. The self-adaptive penalty variable 
traded off production losses for several labels. But the concept 
drift problem was not solved. 

Rastogi & Mortaza [19] developed Imbalance Multi-label 
data learning with Label Specific Features (IMLSF) to resolve 
MLL's class imbalance problem by weighting positive and 
negative instances of a label. Additionally, the similarities 
among the set of possible labels were considered. But it did not 
solve the concept drift problem. Hao et al. [20] created MMFL, 
an MLL method with missing features and labels. Matrix 
decomposition restored missing attributes and tags. In matrix 
factorization, sparse tail tags were solved by adding a classifier. 
However, they did not consider the concept drift issue in MLL. 

Zhao et al. [21] developed a multi-label weak-label training 
system to restore tag semantic area via combined tag similarity. 
Tag data reliability, attribute-tag dependency, and label 
correlations were employed to restore the semantic area and 
improve semantic views. Also, 𝑙2,1-norm was used to solve the 

missing label space noise problem. 
Liu et al. [22] created ELSMML, a tag similarity and multi-

view training MLL. A tag similarity matrix defined high-order 
label associations. Multi-view training and dimensionality 
reduction found the high-level latent semantic tag and latent 
attribute data. An accelerated proximal gradient scheme was 
adopted to obtain the predictive classifier by optimizing the 
model parameters. But it did not deal with the concept drift 
issues in MLL. 

From the literature, it is apparent that most researchers 
analyzed the challenges in MLL algorithms and solved them by 
developing new MLL algorithms for different applications. 
Though they utilize the label correlations for MLL, none of them 
deal with the concept drift issue in MLL, which impacts learning 
performance. 

III. PROPOSED METHODOLOGY 

This section describes the MuEMNL-ENN in detail. A 
general pipeline of this study is portrayed in Fig. 1. 

First, the robust ensemble classifier is designed for MLL 
using both new and prior labels. As well, the Optics-based 
clustering is used to group many NLs exist concurrently in single 
iteration. Generally, the MLL problems exists in two stages: (1) 
one is to construct an identifier 𝒟𝑡 to recognize NLs, and (2) the 
other is to get multiple NLs independently [12]. Such problems 
can be resolved by the MuENL/MuENLHD based on adaptive 
ensemble learning and Optics clustering. Once these procedures 
are performed, the classifier refinement is used stage-by-stage, 
and all stages are implemented according to earlier stage to 

design a robust ensemble classifier ℋ𝑡 = [ℎ𝑡,1, … , ℎ𝑡,𝑙] → ℋ𝑡
′ =

[ℎ𝑡,1, … , ℎ𝑡,𝑙 , 𝒟𝑡]. 

A. New Label Identifier 

Consider a dataset with an attribute or label, which is 
modified version of one that is already exist. To identify NL and 
attributes, in [12], the MuENLForest classifier has been used that 
comprises 𝑔  MuENLTree. But, the forest classifier did not 
handle the concept drift issue while data streams arriving 
concurrently at high speed. The term concept defines the 
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complete distribution of a data in a specified period. Being 
defined by the joint distribution 𝑃(𝑥, 𝑦), where 𝑥 is the sample 
input and 𝑦  is its label. So, the concept from which the data 
stream is created shifts after a particular time which provides the 
phenomena called concept drift. In other words, for all periods 
𝑡, 𝑃𝑡(𝑥, 𝑦) ≠ 𝑃𝑡+∆(𝑥, 𝑦). 

Learning data that modify in distribution over period makes 
classifying them in the training set no longer an easy process, 
because of the fact that the data is no longer consistent with 
current concepts. The major objective of this study is to adopt 
MuENL-ENNs that comprises 𝑛 NNs rather than the 𝑔 forest 
classifier with a proper tradeoff between accuracy and diversity 
of ensemble classifiers. 

 

 
Figure 1. General Pipeline of the Proposed Study 

1) Adaptive ensemble learning 
The adaptive ensemble learning can automatically determine 

the total of base learner NNs and their structures in an ensemble 
in the learning stage. Fig. 2 depicts a design of an ensemble NN. 
Every NN in the ensemble is initially trained by the learning 
examples. The result of the ensembles is computed from the 
anticipated results of each NN. 

The steps in this adaptive ensemble learning are given below. 

 

Figure 2. Design of Ensemble NN Classifier (𝓗) 

• S1: Generate an ensemble with tiniest structure 
containing 2 NNs, which have an input level, 2 hidden 
levels and an output level. The total neurons in the input 
and output levels are computed by the user. Then, a 
constructive strategy is applied depending on Ash’s 
adaptive node construction scheme for the initial NN 
learning (later on the odd NNs in the ensemble). First, 
this NN establishes with a tiny structure comprising 

single node in all hidden layers. For the 2nd NN learning 
(later on even NNs in the ensemble), Reed’s pruning 
scheme is applied. The hidden layer has too many 
neurons during NN pruning. Randomly initialize all 
NN connection weights. 

• S2: Generate independent learning samples for all 
ensemble’s NNs. Normally, sub-collection of learning 
samples for separate NNs are generated by arbitrarily 
choosing the primary collection of learning samples. In 
this study, learning collections are generated so when 
single NN trains using learning samples from the initial 
to the final, another NN trains using the final to the 
initial of similar learning samples. 

• S3: Train the ensemble's NNs partly on data for a user-
defined epoch counts by Negative Correlation Learning 
(NCL) [23]. 

• S4: Calculate the learning fault ℰ𝑖  for 𝑖𝑡ℎ  NN in the 
ensemble based on below rule: 

ℰ𝑖 = 100
𝑂𝑚𝑎𝑥−𝑂𝑚𝑖𝑛

𝑁×𝑆
∑ ∑ [(𝑑(𝑛, 𝑠) − 𝐹𝑖(𝑛, 𝑠)2) +𝑆

𝑠=1
𝑁
𝑛=1

𝜆𝑃𝑖(𝑛, 𝑠)]                                                                  (1) 

In Eq. (1), 𝑂𝑚𝑎𝑥 denotes the highest range and 𝑂𝑚𝑖𝑛 denotes 
the least range of desired results, correspondingly, 𝑁  defines 
sum amount of samples, 𝑆 indicates the output neuron counts, 
𝑑(𝑛, 𝑠)  denotes the target result, and 𝐹𝑖(𝑛, 𝑠)  represents the 

original result of neuron 𝑠 in 𝑛𝑡ℎ learning sample. The principle 
in Eq. (1) is introduced by Reed and NCL for an NN fault. ℰ𝑖 
describes separate dimension of the learning samples and the 
total output neurons. 

• S5: Calculate the ensemble fault ℰ , where ℰ  denotes 
the mean of ℰ𝑖  of the base learner NNs. When ℰ  is 
lesser and tolerable, the ensemble structure is 
considered to have the maximum generalizability and 
provide an absolute ensemble. When ℰ is not tolerable, 
either the ensemble structure or the separate base 
learner NNs experience modify. 
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• S6: Examine the neuron insertion or removal principle 
of separate NNs. In this principle, hidden neurons are 
inserted or removed when the fault of separate NNs 
doesn’t modify after a predefined epoch selected by the 
system. When the principle is not encountered, the 
separate NNs are inefficient and the ensemble 
experiences adding novel learner NN. 

• S7: Insert or remove hidden neurons to or from the NNs 
to encounter the insertion or removal principle, and 
remain learning by NCL. 

• S8: Insert a novel NN to the ensemble when earlier NN 
insertion enhances the ensemble efficiency. Prepare 
and generate various learning collections for the novel 
NN, similar to S2. Return to S3 for advanced learning 
of the ensemble. 

Therefore, the structure of ensemble is determined by 
executing Step 1 – Step 8. The principle of changing the learning 
samples enables the NNs to train various areas of the data 
distribution. 

a) Nodes Insertion or Removal to/from Separate Neural 

Networks 

During the learning stage of separate NNs, a few portions is 
exist that might essential or robust either for constructive or 
pruning schemes. When each NN in the ensemble learns either 
merely by constructive or pruning scheme, their training can be 
extremely identical. Although NCL guides the NNs to train 
using various data space, the training cannot be accurate when 
the NNs in the ensemble contain similar structure. Various 
structures of the NNs in the ensemble can give a distinct weight 
on the precision and diversity, which validates the use of 
hybridized constructive-pruning scheme in adaptive ensemble 
learning. 

b) Neural Network Insertion to the Ensemble 

In adaptive ensemble learning, constructive scheme is 
utilized to insert NNs in the ensemble. Novel NNs are inserted 
to the ensemble when earlier insertion enhances the ensemble 
efficiency. This insertion procedure is repeated hitherto the 
lowest ensemble fault is achieved. 

c) Various Learning Collections for Separate NNs 

Changing the samples into various learning collections 
facilitates effective training and could support the ensemble 
training from the entire learning samples. Learning collections 
are changed by keeping particular essential principle, i.e., 
learning collections must contain suitable amount of samples 
therefore separate NNs get the required data for training. In 
adaptive ensemble learning, when the initial NN in the ensemble 
trains by odd-situated learning samples, the 2nd NN trains by 
even-situated learning samples, and the 3rd NN trains by 
remaining learning samples in same manner. In a few scenarios, 
subsets of learning samples are generated by splitting or 
arbitrarily choosing. The algorithm for an adaptive ensemble 
learning is presented below. 

Algorithm 1 Adaptive Ensemble Learning for Designing 
New Label Identifier 

1. Initialize 
2. Generate an ensemble having 2 NNs with tiniest 

structure of 1 input-2 hidden-1 output levels; 
3. Determine the total neurons in input and output 

layers; 
4. Use Ash’s constructive scheme for adaptive node 

generation for the initial NN learning; 
5. Use Reed’s pruning scheme for the 2nd NN 

learning; 
6. Generate separate training samples for all NNs; 

7. Train NNs partly for predetermined epochs by 
NCL; 

8. Calculate ℰ𝑖 for 𝑖𝑡ℎ NN as Eq. (1); 
9. Calculate ℰ; 
10. 𝒊𝒇(ℰ < 𝑡𝑜𝑙𝑒𝑟𝑎𝑏𝑙𝑒) 
11. Return final ensemble 
12. 𝒆𝒏𝒅 𝒊𝒇 

13. 𝒊𝒇 (
𝑖𝑛𝑠𝑒𝑟𝑡𝑖𝑜𝑛 𝑜𝑟 𝑟𝑒𝑚𝑜𝑣𝑎𝑙 𝑝𝑟𝑖𝑛𝑐𝑖𝑝𝑙𝑒 𝑖𝑠 𝑛𝑜𝑡 

𝑟𝑒𝑎𝑐ℎ𝑒𝑑
) 

14. Insert NN to ensemble; 
15. Move to Step 6; 
16. 𝒆𝒍𝒔𝒆 
17. Insert or remove hidden nodes to NN; 
18. Move to Step 7; 
19. 𝒆𝒏𝒅 𝒊𝒇 

2) Diversity in ensembling 
Some fundamental measures of diversity that are utilized as 

a promising indication about how different ensemble classifiers 
are, for circumstances where data is static and its distribution 
does not modify in period. Thus, the diversity is modeled based 
on the pairwise non-pairwise diversity measures. 

To determine all measures, consider a dataset of 𝑁 samples, 
represented as 𝑥𝑖 , all have a label 𝑦𝑖 . The 𝐿  base classifiers 
denoted by the set 𝐻 = {ℎ1, ℎ2, … , ℎ𝐿}  are trained with the 
training set 𝑇𝑟 = {(𝑥1, 𝑦1), (𝑥2, 𝑦2), … , (𝑥𝑁, 𝑦𝑁)} . All 
classifiers 𝑗  have an output for 𝑥𝑖  is ℎ𝑗(𝑥𝑖) that relates to the 

weight 𝑤𝑗 in the ensemble set of weights with a classification 

accuracy equal to 𝑝𝑗. The accurate or inaccurate decision is a 

𝑁 ∗ 𝐿 matrix, known as oracle result 𝑂, whose components are 
represented in {−1,1}. In other words, 𝑜𝑖𝑗 = 1  when training 

sample 𝑥𝑖 is classified accurately by the base classifier ℎ𝑗, -1 or 

else. Oracle results are merely promising for a labeled dataset 
and they provide a common model to analyze a classifier 
ensemble. 

Table 1. 2×2 Ensemble Element Correlation with Probabilities 

 𝐶𝑖 accurate 𝐶𝑖 inaccurate 

𝐶𝑗 accurate a b 

𝐶𝑗 inaccurate c d 

 
The mean classification precision of the base classifiers on 

the learning sample 𝑃 is described by 

𝑃 = ∑ 𝑤𝑗𝑝𝑗
𝐿
𝑗=1                                                                  (2) 

𝑃 = 1 −
∑ 𝑙𝑖

𝑁
𝑖=1

𝑁𝐿
                                                    (3) 

In Eqns. (2) & (3), 𝑙𝑖  is the product of 𝐿  and sum of the 
weights of the base classifiers that categorize 𝑥𝑖  inaccurately, 
denoted by 𝑙𝑖 = 𝐿 ∑ 𝑤𝑗𝑂𝑖𝑗=−1 . To simplify the diversity measure 

computation, two base classifiers 𝐶1  and 𝐶2  are considered, 
which gives the outcomes in 2 × 2 matrix as illustrated in Table 
1. 

a) Pairwise Diversity Measures 

Each pairwise measure is employed on a pair of base learners 

that can generate 
𝐿(𝐿−1)

2
 pairwise diversity values. To obtain a 

unified value, it is essential to average across each part that 
contain the ensemble. 

• Correlation coefficient: Correlation between two 
binary classifier outputs is computed for a pair of oracle 
outputs as the probabilities for the respective pair of 
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proper or improper outputs. Therefore, 𝜌 is computed 
by 

𝜌1,2 =
𝑎𝑑−𝑏𝑐

√(𝑎+𝑏)(𝑑+𝑐)(𝑏+𝑑)(𝑎+𝑐)
                                              (4) 

• Q-statistics: Yules Q-statistics for two classifiers 𝐶1 
and 𝐶2 is calculated as: 

𝑄1,2 =
𝑎𝑑−𝑏𝑐

𝑎𝑑+𝑏𝑐
                                                        (5) 

Eq. (5) signifies that 𝑄 and 𝜌 have a similar sign and |𝜌| ≤
|𝑄| . In circumstances where the classifiers are statistically 
independent, the corresponding prior probabilities are equivalent 
to real probability, which tends to a value of 𝑄1,2 = 0. In other 

scenarios, 𝑄 differs from -1 to 1, i.e., negative when classifiers 
commit errors on multiple objects and positive when they tend 
to detect a similar label properly. 

Generally, 𝐿  classifiers are ensemble to average the 
weighted vote and consider a group of pairs of classifiers to 
support the Q-statistics computation. Therefore, the mean Q-
statistics over each pair of classifier is as: 

𝑄𝑚𝑒𝑎𝑛 =
2

𝐿(𝐿−1)
∑ ∑ 𝑄𝑖,𝑗

𝐿
𝑗=𝑖+1

𝐿−1
𝑖=1                             (6) 

• Disagreement measure: It is the probability that two 
distinct classifiers execute diversely on a similar 
training data. In other words, it is the proportion 
between the amount of observations on which certain 
classifier is accurate and another is inaccurate to the 
total observations. So, the diversity improves with the 
disagreement measure value. It is calculated as: 

𝑑𝑖𝑠1,2 = 𝑏 + 𝑐                                         (7) 

For a group of 𝐿  classifiers, this diversity measure is 
computed as the mean value over each pair of base classifiers. 

𝑑𝑖𝑠𝑚𝑒𝑎𝑛 =
2

𝐿(𝐿−1)
∑ ∑ 𝑑𝑖𝑠𝑖,𝑗

𝐿
𝑗=𝑖+1

𝐿−1
𝑖=1                         (8) 

• Double-Fault (DF) measure: The other option to 
measure the diversity within an ensemble is the DF 
value that is depending on the fact that it is more 
essential to identify when the concurrent errors are 
being committed than when both classifiers are 
accurate. In other words, it is the probability that the 
two classifiers 𝐶1  and 𝐶2  both serve incorrect during 
the classification task, i.e., the ratio of the cases that 
have been misclassified by both classifiers. 

𝐷𝐹1,2 = 𝑑                        (9) 

For a group of 𝐿 classifiers, the DF measure is computed by 

𝐷𝐹𝑚𝑒𝑎𝑛 =
2

𝐿(𝐿−1)
∑ ∑ 𝐷𝐹𝑖,𝑗

𝐿
𝑗=𝑖+1

𝐿−1
𝑖=1                                 (10) 

b) Non-pairwise Diversity Measure 

In addition to the pairwise diversity measures, the most 
general measures are also considered, where each classifier is 
considered as a complete responsibility; therefore, the output 
concerns directly only the ensemble and is associated with the 

oracle classifier outputs that are 1 for accurately labeled samples 
and -1 or else. 

• Entropy measure: It is relied on the fact that the 
maximum diversity among a group of 𝐿 classifiers for 
a certain 𝑥𝑗 is manifested by [𝐿 2⁄ ] of the votes with a 

similar value; either -1 or 1, and another 𝐿 − [𝐿 2⁄ ] 
alternate value. For example, when they all were -1s or 
1s, there is no disagreement and the diversity is at its 
least value 0. 

𝐸 =
2

𝐿−1
∑ min(∑ ℎ𝑗(𝑥𝑖)

𝐿
𝑗=1 , 𝐿 − ∑ ℎ𝑗(𝑥𝑖)

𝐿
𝑗=1 )𝑁

𝑖=1           (11) 

For a 𝐶 fraction of accurate outputs, the entropy is computed 
by 

𝐸 = −𝑎 log(𝑎)(1 − 𝑎) log(1 − 𝑎)                                 (12) 

• Kohavi-Wolpert variance: The idea of bias-variance 
tradeoff is created novel decomposition principle of the 
classification error. Kohavi and Wolpert [24] provided 
an actual representation of the variability of the 
classified label 𝑦  for 𝑥 , across training sets, for a 
particular classifier model 𝐶𝑗: 

𝑉𝑎𝑟𝑖𝑎𝑛𝑐𝑒𝑥 =
1

2
(1 − ∑ 𝑃(𝑦 =

𝑤𝑖
𝑥⁄ )

2
𝑐
𝑖=1 )         (13) 

Also, Kuncheva and Whitaker applied an improved version 
as: 

𝐾𝑊 =
1

𝑁𝐿2
∑ 𝑙𝑖(𝐿 − 𝑙𝑖)

𝑁
𝑖=1                                                 (14) 

It is essential to observe that the diversity improves with 
values increasing of the KW variance. 

• Inter-rater agreement: The inter-rater reliability (𝜅) is 
utilized to measure the level of agreement within a 
certain group of classifiers. So, the diversity improves 
if the classifiers disagree with the other, i.e., the value 
of 𝜅 decreases. It is computed by 

𝜅 = 1 −
∑ 𝑙𝑖(𝐿−𝑙𝑖)𝑁

𝑖=1

𝑁𝐿(𝐿−1)𝑃(1−𝑃)
                                       (15) 

• Generalized Diversity (GD) measure: Partidge and 
Krzanowski [25] adopted the GD. They claimed that 
the maximum diversity is accomplished if the failure of 
one classifier is accompanied by accurate classification 
by the other classifier and minimum diversity exists if 
two classifiers fail together. For a random training 
sample 𝑥𝑖, 

𝐺𝐷 = 1 −
∑

𝑗(𝑗−1)

𝐿(𝐿−1)
𝑇𝑗

𝐿
1

∑
𝑗

𝐿
𝑇𝑗

𝐿
1

                                                    (16) 

In Eq. (16), 𝑇𝑗  is the probability that 𝑙𝑖 = 𝑗 , i.e., the 

probability that accurately 𝑗  out of the 𝐿  classifiers fail on a 
randomly selected input.   

Thus, the primary advantages of the adaptive ensemble 
learning are (i) it achieves an automated ensemble, (ii) sustaining 
the accuracy and diversity of NNs simultaneously, and (iii) it 
needs least amount of variables set by the system. 

Algorithm 2 presents an overall pseudocode of the 
MuEMNL-ENN, which consists of a multi-label ensemble 
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classifier ℋ0 , an outlier identifier 𝒟𝑡 , OPTICS clustering to 
divide NLs within the buffer memory into 𝑛 NLs, and modifying 
the ensemble classifier ℋ𝑡 → ℋ𝑡+𝑛. 

Algorithm 2 MuEMNL-ENN for Low-Dimensional Dataset 
Input: Initial learning set 𝑅0, initial label set 𝑌0, and earlier 

known labels 𝑐0 
Output: Function set ℋ𝑡 for every instances that has a NL 

at time 𝑡 (𝑟𝑡) 
1. Begin 
2. Perform Algorithm 1 to construct an ensemble classifier 

ℋ; 
3. Obtain a primary ℋ0 by learning 𝑅0, 𝑌0; 
4. Build an initial NL identifier 𝒟0 depending on 𝑅0; 
5. Initialize sampling eight vector 𝑠0 = 1|𝑟0|; 

6. ℋ1 = [ℋ0, 𝒟0]; 𝒟1 = 𝒟0; 
7. Repeat 
8. Get a new instance 𝑟𝑡 , 𝑅𝑡 = [𝑅𝑡−1; 𝑟𝑡

⊤]; 
9. Expand the sampling weight vector 𝑠𝑡 = [𝑠𝑡−1; 1] 

concurrently; 
10. 𝒊𝒇(𝒟𝑡(𝑟𝑡) ≥ 1)  
11.  Include 𝑟𝑡 to buffer; 

12.  𝒊𝒇(|𝐵𝑢𝑓𝑓𝑒𝑟| ≥

𝑚𝑎𝑥𝑖𝑚𝑢𝑚 𝑏𝑢𝑓𝑓𝑒𝑟 𝑠𝑡𝑜𝑟𝑎𝑔𝑒 (𝐵𝑆𝑀𝑎𝑥))  

13.   Use Optics clustering to split buffer storage 
into 𝑛 clusters for 𝑛 new   labels; 

14.   𝒘𝒉𝒊𝒍𝒆(𝑖 > 𝑛)  
15.    Create 𝒟𝑡+𝑖  and ℋ𝑡+𝑖  from 𝑖 = 0 

and every 𝒟𝑡+𝑖 depends on   
 𝒟𝑡+𝑖−1 iteratively; 

16.   𝒆𝒏𝒅 𝒘𝒉𝒊𝒍𝒆  
17.   Empty buffer; 
18.   𝑙 ← 𝑙 + 𝑛; 𝑐𝑡 = 𝑐𝑡−1 ∪ {𝑙}; 
19.   Update 𝑠𝑡 ← 0.8𝑠𝑡; 
20.  𝒆𝒏𝒅 𝒊𝒇  
21. 𝒆𝒏𝒅 𝒊𝒇  
22. 𝑐𝑡 = 𝑐𝑡−𝑛;  𝒟𝑡 = 𝒟𝑡−𝑛;  ℋ𝑡 = ℋ𝑡−𝑛; 
23. Until 
24. Get ℋ𝑡; 
25. End 

Similar to Algorithm 2, the MuEMNL-ENN is applied for 
high-dimensional datasets by creating a random feature map [12] 
before constructing the ensemble classifier. 

IV. RESULT AND DISCUSSION 

The MuEMNL-ENN approach is analyzed by executing it in 
MATLAB 2019b using 5 multi-label standard datasets [26] 
including birds, CAL500, emotions, Enron and yeast, as well as 
20Newsgroup dataset. The information of such datasets are 
given in [12]. The metrics considered for performance analysis 
are mean precision, F1-score and micro-F1. For a test collection 
(𝑟𝑛, 𝑌𝑛) , ℎ(𝑟𝑛)  is the set of predicted labels for 𝑛𝑡ℎ  sample, 
𝑓(𝑟𝑛, 𝑦) denotes the certainty that 𝑟𝑛 fits to the label 𝑦.  

• Mean precision: It is the average proportion of 
positive labels organized higher than the particular 
positive label. 

𝑀𝑒𝑎𝑛 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
1

𝑛
∑

1

|𝑌𝑖|
𝑛
𝑖=1 ∑

|𝑙𝑝|

𝑠𝑜𝑟𝑡𝑓(𝑟𝑛,𝑦)
𝑦∈𝑌         (17) 

Where, 

𝑙𝑝 = {𝑦′|𝑠𝑜𝑟𝑡𝑓(𝑟𝑛,𝑦′) ≤ 𝑠𝑜𝑟𝑡𝑓(𝑟𝑛,𝑦), 𝑦′ ∈ 𝑌𝑖}                  (18) 

Here, 𝑌𝑖 indicates the collection of positive labels, 𝑛 denotes 
the total test data, 𝑙𝑝  denotes the collection of anticipated 

positive labels that are organized less than label 𝑦 for 𝑟𝑛. 

• F1-score: It is the harmonic mean of precision and 
recall for all samples. 

𝐹1 − 𝑠𝑐𝑜𝑟𝑒 =
1

𝑛
∑

2×𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛𝑖×𝑅𝑒𝑐𝑎𝑙𝑙𝑖

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛𝑖+𝑅𝑒𝑐𝑎𝑙𝑙𝑖

𝑛
𝑖=1          (19) 

• Micro-F1: It is calculated by 

𝑀𝑖𝑐𝑟𝑜 𝐹1 = ∑
2×𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛𝑖×𝑅𝑒𝑐𝑎𝑙𝑙𝑖

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛𝑖+𝑅𝑒𝑐𝑎𝑙𝑙𝑖

𝑛
𝑖=1                       (20) 

• Accuracy: It determines the efficiency of MuEMNL-
ENN to properly estimate label of new data. 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 (𝑇𝑃)+𝑇𝑟𝑢𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒 (𝑇𝑁)

𝑇𝑃+𝑇𝑁+𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 (𝐹𝑃)+𝐹𝑎𝑙𝑠𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒 (𝐹𝑁)
 (21) 

In Eq. (21), TP is the count of positive instances estimated as 
themselves, TN is the count of negative instances estimated as 
themselves, FP is the count of positive instances estimated as 
negative, and FN is the count of negative instances estimated as 
positive. 

• Hamming loss: It is the fraction of data that had one of 
their labels incorrectly estimated or left out altogether. 

• One-error: It is the fraction of data whose top-ordered 
estimated label is not in the GT label collection. 

• Coverage: It quantifies the average number of steps 
needed to move down an instance's ranked label 
collection to cover every related labels. 

• Ranking loss: It is the average proportion of misranked 
label sets, i.e. an inappropriate label of a data is 
arranged above its appropriate label. 

A. Comparing MuEMNL-ENN effectiveness on low-

dimensional datasets 

The performance of MuEMNL-ENN is evaluated with the 
IKELM [13], LF-LELC [17], MuENL [11] and MuEMNLForest 
[12] on 5 distinct low-dimensional datasets. 

Fig. 3 compares the mean precision between proposed and 
existing MLL algorithms. It is shown that the MuEMNL-ENN 
algorithm reaches a higher mean precision than other MLL 
algorithms, e.g., when the MuEMNL-ENN algorithm is tested 
on the Enron dataset, the mean precision is increased by 40.12%, 
22.28%, 14.06%, and 7.35% compared to the IKELM, LF-
LELC, MuENL, and MuEMNLForest algorithms. 

 

 
Figure 3. Mean Precision of Different MLL Algorithms on Low-dimensional 

Datasets 
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Figure 4. F1-score of Different MLL Algorithms on Low-dimensional Datasets  

 

 
Fig. 4 plots the F1-score values of the proposed and existing 

MLL algorithms. It is noticed that the MuEMNL-ENN 
algorithm accomplishes a higher F1-score than other MLL 
algorithms, e.g., when the MuEMNL-ENN algorithm is tested 
on Birds dataset, the F1-score is increased by 74.38%, 29.57%, 
15.87%, and 6.37% compared to the IKELM, LF-LELC, 
MuENL, and MuEMNLForest algorithms. 

Fig. 5 illustrates the 𝚫Micro F1 values of the proposed and 
existing MLL algorithms. It is noted that the MuEMNL-ENN 
algorithm increases the 𝚫Micro F1 than other MLL algorithms, 
e.g., when the MuEMNL-ENN algorithm is tested on the 
Emotions dataset, the 𝚫Micro F1 value is increased from 0.21 to 
0.5 compared to the other MLL algorithms. 

 
Figure 5. 𝚫Micro F1 of Different MLL Algorithms on Low-dimensional 

Datasets 

 

(a) 

 
(b) 

 
Figure 6. Comparison of Different MLL Algorithms on Low-dimensional 

Datasets (a) Hamming Loss, (b) One-Error, and (c) Ranking Loss 

 

 

(a) 

 
(b) 

Figure 7. (a) Coverage and (b) Accuracy Comparison between Proposed and 
Existing MLL Algorithms on Low-dimensional Datasets 

Fig. 6(a)-6(c) demonstrates the hamming loss, One-error, 
and ranking loss, respectively for various MLL algorithms. In 
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the case of CAL500 dataset, the hamming loss of MuEMNL-
ENN is reduced by 26.47%, 21.88%, 17.36%, and 12.28% in 
contrast with the IKELM, LF-LELC, MuENL, and 
MuEMNLForest algorithms, respectively. The one-error of 
MuEMNL-ENN algorithm is decreased by 30.41%, 21.37%, 
17.6%, and 12.71% compared to the IKELM, LF-LELC, 
MuENL, and MuEMNLForest, respectively. The ranking loss of 
MuEMNL-ENN is reduced by 23.08%, 17.1%, 11.11%, and 
6.98% contrasted with the IKELM, LF-LELC, MuENL, and 
MuEMNLForest algorithms, respectively. 

Fig. 7(a) & 7(b) portray the coverage and accuracy, 
respectively for proposed and existing MLL algorithms. In the 
case of yeast dataset, the coverage of MuEMNL-ENN is 
decreased by 10.64%, 8.3%, 5.19%, and 3.45% compared to the 
IKELM, LF-LELC, MuENL and MuEMNLForest algorithms, 
respectively. The accuracy of MuEMNL-ENN is increased by 
6.81%, 4.99%, 3.36%, and 1.52% compared to the IKELM, LF-
LELC, MuENL and MuEMNLForest, respectively. Thus, it is 
realized that the MuEMNL-ENN can perform better than the 
other MLL algorithms on low-dimensional datasets regarding 
various metrics. 

B. Comparing MuEMNL-ENN effectiveness on high-

dimentional dataset 

MuEMNLHD-ENN is tested on the 20Newsgroup dataset, 
and its efficacy is compared to that of PML-NI [15], PLEA [18], 
and MuEMNLHDForest [12]. 

 
Figure 8. Comparison of Hamming Loss, One-Error, Ranking Loss, and 

Coverage between Proposed and Existing MLL Algorithms on 20Newsgroup 
Dataset 

 
Figure 9. Comparison of Precision, F1-score, and Accuracy between Proposed 

and Existing MLL Algorithms on 20Newsgroup Dataset 

Fig. 8 depicts the mean precision, F1-score, 𝚫Micro F1, and 
accuracy for proposed and existing MLL algorithms utilizing the 
20Newsgroup dataset. It is observed that the mean precision of 
MuEMNLHD-ENN is increased by 26.96%, 18.11% and 
10.06% compared to the PML-NI, PLEA and 
MuEMNLHDForest algorithms, respectively. The F1-score of 

MuEMNLHD-ENN is increased by 51.09%, 24.55% and 
10.14% compared to the PML-NI, PLEA and 
MuEMNLHDForest algorithms, respectively. The 𝚫Micro F1 of 
MuEMNLHD-ENN is increased by 96.07%, 58.64% and 
30.71% compared to the PML-NI, PLEA and 
MuEMNLHDForest algorithms, respectively. The accuracy of 
MuEMNLHD-ENN algorithm is increased by 53.24%, 21.48% 
and 10.15% compared to the PML-NI, PLEA and 
MuEMNLHDForest, respectively. 

Fig. 9 illustrates the hamming loss, one-error, ranking loss, 
and coverage for proposed and existing MLL algorithms. It is 
noticed that the hamming loss of MuEMNLHD-ENN is 
decreased by 27.92%, 16.57%, and 9.36% compared to the 
PML-NI, PLEA, and MuEMNLHDForest, respectively. The one 
error of MuEMNLHD-ENN is reduced by 9.82%, 6.67%, and 
4.27% compared to the PML-NI, PLEA, and 
MuEMNLHDForest, respectively. The ranking loss of 
MuEMNLHD-ENN decreased by 25.62%, 18.05%, and 5.2% 
compared to the PML-NI, PLEA, and MuEMNLHDForest, 
respectively. The coverage of MuEMNLHD-ENN decreased by 
21.23%, 14.81%, and 10.85% compared to the PML-NI, PLEA, 
and MuEMNLHDForest, respectively. Thus, it is realized that 
the MuEMNLHD-ENN performs better than existing MLL 
algorithms on a high-dimensional dataset. 

V. CONCLUSION  

In this study, an adaptive ensemble learning approach was 
developed that builds the MuEMNL-ENN for solving concept 
drift problems in MLL. The number of separate NNs was 
determined by the constructive technique, and the total hidden 
nodes of separate NNs was determined by the constructive-
pruning strategy. As well, pairwise and non-pairwise diversity 
measures were examined to maintain the tradeoff between 
accuracy and diversity of ensemble NNs, which supports 
efficient learning of whole data with NLs. The test results show 
that on average, the MuEMNL-ENN on low-dimensional 
datasets reaches 72.18% mean precision, 76.76% accuracy, 
69.08% F1-score, 0.112 ranking loss, 0.4706 coverage, 0.1868 
one-error, and 0.0912 hamming loss contrasted with the existing 
MLL algorithms. Also, the MuEMNLHD-ENN on the high-
dimensional dataset reaches 71.1% mean precision, 69.5% F1-
score, 80.3% accuracy, 0.0967 ranking loss, 0.23 coverage, 
0.0901 hamming loss, and 0.56 one-error contrasted with the 
existing MLL algorithms. 
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