
DOI: http://dx.doi.org/10.26483/ijarcs.v15i2.7060

Volume 15, No. 2, March-April 2024

International Journal of Advanced Research in Computer Science

RESEARCH PAPER

Available Online at www.ijarcs.info

© 2024-2027, IJARCS All Rights Reserved 36

ISSN No. 0976-5697

LEVERAGING DEEP LEARNING FOR ACCURATE RICE LEAF DISEASE

RECOGNITION

1Dr Radha Karampudi,2Priyanshu C,3Venkat Swaroop Veerla,4P. Abhinav Chowdary,5A. Sai Nikhil Balaji,6 Srikanth Raavi
1Assistant Professor, CSE, GITAM University, Hyderabad.

2CSE, GITAM University, Hyderabad
3,4,5,6CSEDS, GITAM University, Hyderabad,India

Abstract: Imagine a Rice Field, seemingly healthy, yet harboring invisible foes. This paper delves into the world of crop disease

detection for the Tan spot, Leaf blight, Sheath decay, Bacterial leaf rot, and False smut Dataset consists of 3546 images. The image

segmentation is done by BIRCH clustering followed by GMM clustering; various texture features have been extracted through this.

The classification is done using existing models such as VGG16, VGG19, RESNET50, and INCEPTION V3. After comparing

various models and validation, the observation was made that VGG19 performs well compared to other models. The overall

accuracy obtained for the VGG19 is 95.88.%. The achieved accuracy surpasses that of conventional backpropagation neural network

models, indicating significant advancements in crop disease diagnosis. This study introduces a novel approach that opens avenues

for future research in the field of deep learning for crop disease diagnosis.

Keywords: GMM Clustering, VGG16, VGG19, crop disease diagnosis.

I. INTRODUCTION

Cereals play a crucial role in sustaining the global human

population, with approximately 50% of consumed calories

derived from wheat, rice, and maize [1]. Despite rice ranking

second in terms of planted area, it holds paramount

importance as a staple food source in Asian countries,

particularly in the southeast, where it serves as a vital

economic crop for millions of farmers and workers across

extensive hectares [2]. Rice cultivation dates back 10,000

years, originating in the river valleys of South and Southeast

Asia and China, making it a fundamental food source

historically. While Asia remains the primary region for rice

cultivation, it is also grown in other continents such as Latin

America, Europe, parts of Africa, and even the USA [1]. The

agricultural community faces significant challenges due to

rice diseases like Leaf blasts, Sheath blight, BLB, Brown

spots, and False smut, causing substantial crop damage

before harvest and leading to significant losses for farmers.

Generally, identifying diseases in rice plants relies on either

visually assessing symptoms or conducting laboratory

experiments to culture pathogens. Visual assessment is

subjective and susceptible to errors, while culturing

pathogens in the lab is time-consuming and may not yield

timely results [3]. Even with conventional methods, farmers

face challenges in identifying diseases, especially in rural

areas where access to agriculture experts and lab facilities is

limited. Consequently, the research community is actively

seeking an automated identification and classification

method that can promptly categorize diseases and offer

farmers necessary guidance or recommend pesticides for

infected crops. We captured images of rice diseases in rural

areas, specifically obtaining 894 pictures of Brown Spot, 779

images of Bacterial Leaf Blight, 864 images of Sheath Blight,

858 images of False Smut, and 509 images of Leaf Blast. In

total, we compiled approximately 3,546 images for training,

240 images for testing, and 120 images for validation

purposes.

A. Image Preprocessing

We conducted experiments involving different algorithms

and explored various methods, ultimately discovering that

clustering segmentations outperformed other available

segmentation methods. We have provided detailed insights

into several segmentation methods utilized during the

experiments and presented their respective outcomes.

Fig.1(a). Thresholding

Dr Radha Karampudi et al, International Journal of Advanced Research in Computer Science, 15 (2), March-April 2024,36-47

© 2024-2027, IJARCS All Rights Reserved 37

Fig.1(b). Thresholding

B. Thresholding

Thresholding, a form of image segmentation, involves

modifying pixel values in an image to simplify its analysis.

This process entails converting a color or grayscale image

into a binary format, specifically black and white. The

primary purpose of thresholding is commonly to identify and

isolate areas of interest within an image, disregarding the

regions that are not relevant to the analysis ("Thresholding –

Image Processing with Python").

C. Canny Edge Detector

1. The Canny edge detector is a multi-step algorithm

designed to identify edges in an input image. The process

includes a series of steps that need to be followed to

effectively detect the edges of the image.

2. Calculating the derivative of a Gaussian filter is

done to compute the gradient of image pixels, enabling the

determination of magnitude along both the x and y

dimensions.

Table 1. Canny Edge Detector

 1/16

3. Examining a set of neighboring points along a direction

perpendicular to a specified edge, eliminate non-maximum

contributors among the pixels associated with the edge.

4. Finally, apply the Hysteresis Thresholding method

to retain pixels with a gradient magnitude above a certain

threshold value while discarding those below the specified

low threshold.

Fig.2(a). Canny edge Detector

Fig.2(b). Canny edge Detector

D. K-Means

 K-Means is a clustering algorithm categorized under

unsupervised algorithms, implying the absence of labeled

data. Its purpose is to discern distinct classes or clusters

within the provided data by assessing the similarity of data

points. Clustering algorithms inherently leverage the

principle that data points within a cluster exhibit greater

proximity in the feature space compared to those falling

outside the cluster .K-Means clustering stands out as one of

the widely employed algorithms for this purpose, with 'k'

denoting the number of clusters.

 Fig.3(a). K-Means

1 2 1

2 4 2

1 2 1

Dr Radha Karampudi et al, International Journal of Advanced Research in Computer Science, 15 (2), March-April 2024,36-47

© 2024-2027, IJARCS All Rights Reserved 38

Fig.3(b).K-Means

E. Elbow Method

Fig.4(a). Elbow Graph

The total WCSS serves as a metric for the compactness of the

clustering, and the objective is to minimize this value, making

the clusters as tightly grouped as possible.

Fig.4(b). Elbow Graph

F. Mean Shift Segmentation

Mean Shift segmentation is a technique for local

homogenization, particularly effective in mitigating shading

or tonality variations within localized objects. Typically,

Mean Shift requires three inputs:

1. A distance function, often the Euclidean

distance, but other well-defined distance functions such as

Manhattan distance may also be utilized.

2. A specified radius, encompassing all pixels

within this range for calculation purposes based on the chosen

distance metric.

3. A value difference criterion, allowing the

inclusion of only those pixels within the radius whose values

fall within this specified difference for mean calculation

Fig.5(a). Mean Shift Segmentation

Fig.5(b). Mean Shift Segmentation

G. DBSCAN

Fig.6. DBSCAN

The DBSCAN algorithm relies on the intuitive concepts of

"clusters" and "noise." The fundamental principle is that the

point in a cluster must have a minimum number of

neighboring points within a specified radius.

Fig.7(a). Mid Points

DBSCAN algorithm requires two parameters:

In DBSCAN, 'eps' defines a data point's neighborhood range,

where distances equal to or less than 'eps' indicate

neighboring points. If 'eps' is too small, a substantial portion

of the data may be classified as outliers, while an excessively

large 'eps' can lead to the merging of clusters, consolidating

most data points into the same clusters. Determining the 'eps'

Dr Radha Karampudi et al, International Journal of Advanced Research in Computer Science, 15 (2), March-April 2024,36-47

© 2024-2027, IJARCS All Rights Reserved 39

value can involve analyzing the k-distance graph.

MinPts signifies the minimum number of neighbors within

the 'eps' radius, with larger datasets requiring a higher

MinPts. A general guideline for setting MinPts involves

deriving it from the number of dimensions 'D' in the dataset,

where MinPts should be at least 'D+1.' It is essential to select

a minimum MinPts value of at least 3 (Dey).

Algorithmic steps for DBSCAN clustering

1. Randomly choose a point from the dataset and mark it as

visited.

2. Check if there are at least 'minpoint' points within a

distance of 'ε' from the selected point.If so, consider all

these points as part of the same cluster.

3. Continue expanding the clusters by recursively checking

the neighbourhood of each adjacent point. following a

recursive approach (Chauhan).

Fig.7(b).DBSCAN clustering recursive

approach(Chauhan)

H. BIRCH

The Balanced Iterative Reducing and Clustering using

Hierarchies (BIRCH) is a clustering algorithm for large

datasets. It starts by generating a compact summary of the

dataset, aiming to retain key information. This summary is

clustered instead of the original dataset, making it more

manageable. BIRCH is often used in conjunction with other

clustering algorithms, offering a summarized dataset for

further analysis.

The CF tree, integral to BIRCH, is a tree structure with

balanced height. It collects and manages clustering features

while retaining essential information about the given data for

subsequent hierarchical clustering. This design obviates the

necessity to process the entire input dataset. The tree

represents the clustered data points as CF, consisting of three

numerical values (N, LS, SS).

In the context of the CF tree:

- N represents the number of items in subclusters.

- LS denotes the vector sum of the data points.

- SS stands for the sum of the squared data points.

In the provided image, the values for a specific example are

illustrated. For a set of five samples with coordinates (3,4),

(2, 6), (4, 5), (4, 7), and (3, 8), the corresponding CF values

are N = 5, LS = (16,30), and SS = (54, 190). The image

visually depicts the structure of the CF tree based on these

values (Gupta).

Fig.8 A CF Tree

The diagram shows a hierarchical structure starting with the

root node, which contains non-leaf nodes. Each non-leaf node

has B entries, and the leaf nodes contain L cluster features

(CF). A leaf node is considered a sub-cluster if each CF

within it has L entries, satisfying the threshold condition

where T is the maximum diameter of the radius. These leaf

nodes act as summaries rather than individual data points.

The BIRCH algorithm progresses through four main phases.

Fig.9(a). BIRCH

Dr Radha Karampudi et al, International Journal of Advanced Research in Computer Science, 15 (2), March-April 2024,36-47

© 2024-2027, IJARCS All Rights Reserved 40

Fig.9(b). BIRCH

I. GMM

The Gaussian mixture model (GMM) involves mixing

multiple Gaussian distributions. Instead of identifying

clusters based on nearest centroids, we fit k Gaussians to the

data. We estimate parameters like mean, variance, and weight

for each cluster. By learning these parameters for each data

point, we can calculate the probabilities of it belonging to

each cluster.

Each distribution in the Gaussian mixture model is multiplied

by a weight (π), where the sum of all weights equals 1 (π1 +

π2 + π3 = 1). This weighting accounts for the unequal sample

sizes in each category. For example, if we have 1000 samples

from the red cluster and 100,000 samples from the green

cluster, the weights would adjust to reflect this disparity.

Fig.10.GMM

- Initialize the mean (μk), covariance matrix (Σk), and mixing

coefficients (πk) with random or predefined values.

- Calculate the responsibilities (Ck) for each component k.

- Update the parameters (μk, Σk, πk) based on the current

responsibilities.

- Compute the log-likelihood function.

- Check for convergence based on a predefined criterion.

- If the log-likelihood value or parameters converge, stop;

otherwise, repeat from Step2.

This algorithm can only ensure convergence to a locally

optimal solution and does not guarantee convergence to the

global optimum. Therefore, if the algorithm is initialized

from different starting points, it may converge to different

local optima.

II.MODELS

The data we received from the segmentation techniques we

are passing through various models and comparing the result

here we have used various models which are discussed in

detail below.

A. VGG19

The VGG-19 is a convolutional neural network trained by the

Visual Geometry Group (VGG) at the University of Oxford.

The number"19" signifies the network's total number of

layers, including 16 convolutional layers and three fully

connected layers.

Fig.11 .VGG19

Fig.12 VGG19 Algorithm

Dr Radha Karampudi et al, International Journal of Advanced Research in Computer Science, 15 (2), March-April 2024,36-47

© 2024-2027, IJARCS All Rights Reserved 41

III. ARCHITECTURE

● The network took fixed-size (224 * 224) RGB images

as input, forming a matrix of shapes (224, 224, 3).

● The only preprocessing step involved subtracting the

mean RGB value from each pixel, calculated across

the entire training set.

● It utilized 3 * 3 kernels with a stride of 1 pixel to cover

the entire image.

● Spatial padding was applied to maintain the spatial

resolution of the image.

● Max-pooling was performed over 2 * 2-pixel windows

with a stride of 2.

● A Rectified Linear Unit (ReLU) was utilized to

introduce non-linearity, enhancing classification

accuracy and computational efficiency over older

models employing tanh or sigmoid functions.

● The network consisted of three fully connected layers,

with the first two having 4096 units each. The final

layer had 1000 channels for 1000-way ILSVRC

classification, followed by a softmax function.

First, we take the image and resize it in height and width into

244X244 pixels format and divided the dataset into training

and testing in which we have 3274 images and 240 images

from that we execute the program for 200 epoch and add an

early.

A. RESNET50

A Convolutional Neural Network with 50 layers is known as

ResNet-50. ResNet, short for Residual Networks, is a

foundational neural network in computer vision applications.

Its key innovation was enabling the training of extremely

deep networks, surpassing 150 layers.

The “vanishing gradient problem” is a major challenge for

neural networks. This occurs when the slope becomes too

small during the recovery period, causing the weight to shift

slightly. ResNet solves this problem by introducing “cross-

connecting” or “fast-connecting,” which allows gradients to

flow through the network more easily and allows networks to

be trained very deeply without experiencing vanishing

gradients The network architecture is described as ResNet-50

architecture, unlike the ResNet model.

 Below is a summary of the main components:

Fig.13 ResNet50

The first process consists of a 7x7 convolutional layer with

64 filters and a 2nd step, followed by a max pooling layer

with a 2nd step.

- layers follow the model: 1x1 convolution with 64 filters,

3x3 convolution with 64 filters and 1x1 convolution with 256

filters, repeated 3 times.

- Other models shown: 1x1 convolution with 128 filters, 3x3

convolution with 128 filters and 1x1 convolution with 512

filters, repeated 4 times.

- Then comes 1x1 convolution with 256 filters, 3x3

convolution with 256 filters and 1x1 convolution with 1024

filters, the same is repeated 6 times.

- Then there are models of 1x1 convolution with 512 filters,

3x3 convolution with 512 filters and 1x1 convolution with

2048 filters repeated 3 times.

- Finally, there is the intermediate pooling layer and then the

softmax activation function, which is a process connected to

1000 nodes.

The total number of layers of this ResNet-50 architecture is

50, including convolutional layer, layer by layer and all

layers.

We don't actually count the activation functions and the max/

average pooling layers.so totaling this it gives us a 1 + 9 + 12

+ 18 + 9 + 1 = 50 layers Deep Convolutional network.

First, we take the image and resize it in height and width into

244X244 pixels format and divided the dataset into training

and testing in which we have 3274 images and 240 images

from that we execute the program for 200 epochs and add an

early stopping model put validation loss for monitoring and

put up the patience of 3.

B. VGG16

The entrance into the community comprises an image with

dimensions of 224 by 224 pixels and three color channels.

Initially, there are convolutional layers with 64 filters, each

with a size of three by three pixels, and padding is applied to

maintain the spatial dimensions. Subsequently, a max-

pooling layer with a stride of (2, 2) is applied. Following this,

Dr Radha Karampudi et al, International Journal of Advanced Research in Computer Science, 15 (2), March-April 2024,36-47

© 2024-2027, IJARCS All Rights Reserved 42

there are convolutional layers with 128 filters, also of size

three by three, and another max-pooling layer with the same

stride. This pattern continues with two sets of convolutional

layers, each with 256 filters of size three by three, and

another two sets with 512 filters. Additionally, 1 by 1

convolutions are utilized to adjust the number of input

channels, and padding is consistently applied after each

convolutional layer. This approach contrasts with the larger

filter sizes seen in AlexNet and ZF-Net, using three by three

filters instead of eleven by eleven or seven by seven.

Fig.15. VGG16

C. INCEPTION V3

Inception Networks, including GoogLeNet or Inception v1,

are known for their computational efficiency compared to

VGGNet. This efficiency is measured by the number of

parameters and overall resource costs required. When

modifying an Inception Network, it's crucial to maintain these

computational advantages.

However, this can be challenging due to uncertainties about

the network's performance after modifications. To address

this, several optimization strategies have been proposed for

Inception v3. These include factorized convolutions,

regularization techniques, dimension reduction, and

parallelized calculations. These strategies aim to relax

constraints and enhance the adaptability of the model, making

it more versatile for different use cases.

Fig.14 . VGG16

Fig.16 INCEPTION V3

Dr Radha Karampudi et al, International Journal of Advanced Research in Computer Science, 15 (2), March-April 2024,36-47

© 2024-2027, IJARCS All Rights Reserved 43

First, we take the image and resize it in height and width into

244X244 pixels format and divided the dataset into training

and testing in which we have 3274 images and 240 images

from that we execute the program for 200 epochs and add an

early stopping model put validation loss for monitoring and

put up the patience of 3.

D. Voting Classifier

The voting classifier predicts the output class based on the

majority votes of various classifiers. It includes results from

distributions such as RESTNET50, VGG19, VGG16, and

INCEPTIONV3. Rather than evaluating each candidate

individually, voters combine their predictions to determine

the final product. This approach is designed to create a more

robust model by leveraging all distributions.

Fig.17. Voting Classifier Algorithm

Fig.18. Voting Classifer

IV. VALIDATION AND RESULTS

We need to validate the results of the models we have taken

before applying the voting classifier. To that end, we have

stored approximately 24 images from each of the five disease

categories, from which the algorithm has not yet been trained

and passed. For each of the models we have mentioned we

have obtained the following results; however, we must first

take all the diseases and prepare them for validation. Here are

the results for each model after all the photographs were

imported for validation and images were running for each

model.

Here are the results for each model after all the photographs

were imported for validation and images were running for

each model.

A. VGG16

We employed three segmentation strategies that produced

satisfactory patterns and sent the data to the VGG16. These

techniques include Birch segmentation, Mean shift

segmentation, and

B. BIRCH and GMM

Table 2. BIRCH and GMM
ACCURACY 91.66

ERROR 8.333

With VGG16 we are getting around 91.66 Validation

accuracy.

Table 3. VGG16

Precisi

on

Recall F1-score Support

BLB 0.86 0.86 0.86 7

Brown

Spot

1.00 1.00 1.00 4

False

Smut

1.00 1.00 1.00 4

Sheath

Blight

1.00 0.67 0.80 3

Leaf blast 0.86 1.00 0.92 6

Accuracy 0.92 24

Table. 4. BIRCH

ACCURACY 91.66

ERROR 8.333

Fig.19(a).VGG16

By using Birch segmentation, we are getting 91.66 accuracy

Table 5. BIRCH Shift Segmentation

Precision Recall F1-score Support

BLB 0.86 0.86 0.86 7

Brown Spot 1.00 1.00 1.00 4

False Smut 1.00 1.00 1.00 4

Sheath

Blight

1.00 0.67 0.80 3

Dr Radha Karampudi et al, International Journal of Advanced Research in Computer Science, 15 (2), March-April 2024,36-47

© 2024-2027, IJARCS All Rights Reserved 44

Leaf blast 0.86 1.00 0.92 6

Accuracy

0.92 24

Macro

Average

0.94 0.90 0.92 24

Weighted

Average
0.92 0.92 0.91 24

Fig.19(b). BIRCH Segmentation

C. Mean Shift Segmentation

By using Mean Shift segmentation, we are getting 74.19

accuracy

Table 6. Accuracy of Meanshift Segmentation

ACCURACY 74.193

ERROR 25.806

Table 7. Meanshift Segmentation

 Precision Recall F1-score support

BLB 1.00 0.27 0.43 11

Brown

Spot

1.00 1.00 1.00 4

False

Smut

1.00 1.00 1.00 4

Sheath

Blight

0.50 1.00 0.67 6

Leaf blast 0.75 1.00 0.86 6

Accuracy 0.74 31

Macro

Average

0.85 0.85 0.79 31

Weighted

Average

0.85 0.74 0.711 31

Fig.20.Confusion Matrix for Mean Shift Sementation

D. RESNET 50

Table 8. RESNET 50

ACCURACY 66.66

ERROR 33.33

With RESNET 50 we are getting 66.66 accuracy

Fig.21. RESNET 50

Table 9. RESNET 50

 Precision Recall F1-score support

BLB 1.00 0.67 0.80 6

Brown Spot 0/60 0.75 0.67 4

False Smut 0.00 0.00 0.00 4

Sheath

Blight

1.00 0.86 0.92 7

Leaf blast 0.33 1.00 0.50 3

Accuracy 0.67 24

Macro

Average

0.59 0.65 0.58 24

Weighted

Average

0.68 0.67 0.64 24

E. BIRCH

we are getting 79.166 accuracy using BIRCH

Table 10. BIRCH

 Precision Recall F1-score support

BLB 0.86 0.86 0.86 7

Brown Spot 1.00 0.75 0.86 4

False Smut 1.00 0.50 0.67 4

Sheath

Blight

1.00 1.00 0.67 3

Leaf blast 0.83 0.83 0.83 6

Accuracy 0.79 24

Macro

Average

0.84 0.79 0.78 24

Weighted

Average

0.85 0.79 0.80 24

Dr Radha Karampudi et al, International Journal of Advanced Research in Computer Science, 15 (2), March-April 2024,36-47

© 2024-2027, IJARCS All Rights Reserved 45

F. Mean Shift Segmentation

Table 11.Mean Shift Segmentation

ACCURACY 80.64

ERROR 19.35

we are getting 80.645 accuracy using Mean shift

segmentation.

Table 12 . Mean shift segmentation

 Precision Recall F1-score support

BLB 1.00 0.50 0.67 12

Brown

Spot

0.67 0.75 0.71 8

False

Smut

0.80 1.00 0.89 4

Sheath

Blight

0.50 0.80 0.62 5

Leaf blast 0.67 1.00 0.80 2

Accuracy 0.71 31

Macro

Average

0.73 0.81 0.74 31

Weighted

Average

0.79 0.71 0.71 31

G.VGG19

BIRCH and GMM

Table 13. VGG19

ACCURACY 95.833

ERROR 4.166

With VGG19 we are getting 95.833 Validation accuracy

Fig. 22. VGG19 Model

Table 14. Confusion Matrix for VGG19

 Precision Recal

l

F1-

score

support

BLB 1.00 0.83 0.91 6

Brown

Spot

0.80 1.00 0.89 4

False

Smut

1.00 1.00 1.00 4

Sheath

Blight

1.00 1.00 1.00 7

Leaf blast 1.00 1.00 1.00 3

Accuracy 0.96 24

Macro

Average

0.96 0.97 0.96 24

Weighted

Average

0.97 0.96 0.96 24

Table 15. BIRCH Segmentation

ACCURACY 91.66

ERROR 8.333

By using Birch segmentation we are getting 91.66 accuracy

H. Mean Shift Segmentation

Table 16. Mean Shift Segmentation

ACCURACY 77.419

ERROR 22.5806

Dr Radha Karampudi et al, International Journal of Advanced Research in Computer Science, 15 (2), March-April 2024,36-47

© 2024-2027, IJARCS All Rights Reserved 46

Table 17. Mean Shift Segmentation

 Precision Recall F1-score support

BLB 1.00 0.64 0.78 11

Brown

Spot

0.80 1.00 0.89 4

False

Smut

0.75 0.75 0.75 4

Sheath

Blight

0.62 0.83 0.71 6

Leaf blast 0.71 0.83 0.77 6

Accuracy 0.77 31

Macro

Average

0.78 0.81 0.78 31

Weighted

Average

0.81 0.77 0.77 31

we are getting 77.419 using mean shift segmentation

Table 18. Mean Shift Segmentation

 Precision Recall F1-score support

BLB 1.00 0.64 0.78 11

Brown

Spot

0.80 1.00 0.89 4

False

Smut

0.75 0.75 0.75 4

Sheath

Blight

0.62 0.83 0.71 6

Leaf blast 0.71 0.83 0.77 6

Accuracy 0.77 31

Macro

Average

0.78 0.81 0.78 31

Weighted

Average

0.81 0.77 0.77 31

I. INCEPTION V3

Table 19. Inception V3

ACCURACY 95.833

ERROR 4.166

With INCEPTION V3 we are getting 91.66 Validation

accuracy.

Fig.22. Inception v3 confusion matrix

Table 20. Inception v3 confusion matrix

 Precision Recall F1-

Score

Support

BLB 0.89 0.73 0.80 11

Brown spot 0.67 1.00 0.80 4

False Smut 0.80 1.00 0.89 4

Sheath

Blight

0.80 0.67 0.73 6

Leaf Blast 1.00 1.00 1.00 6

Accuracy 0.84 31

Macro

Average

0.83 0.88 0.84 31

Weighted

Average

0.85 0.84 0.84 31

J. MEAN SHIFT SEGMENTATION

Table 21. Mean Shift Segmentation

ACCURACY 83.87

ERROR 16.12

here we are getting 83.837 accuracy using Mean shift

segmentation.

Table 22. Confusion Matrix for Mean Shift Segmentation

 Precision Recall F1-

Score

Support

BLB 0.89 0.73 0.80 11

Brown

spot

0.67 1.00 0.80 4

False Smut 0.80 1.00 0.89 4

Sheath

Blight

0.80 0.67 0.73 6

Leaf Blast 1.00 1.00 1.00 6

Accuracy 0.84 31

Macro

Average

0.83 0.88 0.84 31

Weighted

Average

0.85 0.84 0.84 31

Dr Radha Karampudi et al, International Journal of Advanced Research in Computer Science, 15 (2), March-April 2024,36-47

© 2024-2027, IJARCS All Rights Reserved 47

V. VOTING CLASSIFIER

Now we take all the 4 model and make a voting classifier.

A. GMM AND BIRCH

We can see we are getting an accuracy of 93.80

B. BIRCH

we can see we are getting accuracy of 90.476

C. Mean Shift Segmentation

We can see we are getting accuracy of 87.8787.

Fig.22(b). Predicting the Accuracy of Voting

Classifier.

VI. CONCLUSION

We can observe that when we compared the above data of

Mean shift , Birch ,Birch and GMM of different models given

which are Resnet50, VGG16,Inception V3,VGG19 The

VGG19 of Birch and GMM is performing really well

compared to the above mentioned models we are getting

around 95.88% accuracy when we used VGG19 which is the

highest observed validation accuracy compared to other

models mentioned. In Summary we can conclude that

combination of BIRCH and GMM image segmentation and

VGG 19 can effectively Identify the Rice leaf diseases and

may provide the support for farmer in rice diseases detection.

VII. REFERENCES

1. Gnanamanickam SS (2009) Rice and Its Importance to

Human Life. Prog Biol Con 8: 1-11 Gomez KA (2001)

Rice, the grain of culture. The Siam Society, Thailand.

2. Barbedo, Jayme Garcia Arnal, 2013. Digital Image

Processing Techniques for Detecting,Quantifying and

Classifying Plant Diseases, vol. 2. SpringerPlus.

3. Chauhan, Nagesh Singh. “DBSCAN Clustering

Algorithm in Machine Learning.”KDnuggets,

Accessed 7 July 2022.

4. Dey, Debomit. “DBSCAN Clustering in ML | Density

based clustering.” GeeksforGeeks, 15 June

2022,Gupta, Aman. “Balanced Iterative Reducing and

Clustering using Hierarchies — BIRCH.”Medium, 1

June 2021, Accessed 7 July 2022.

5. Narein, Adith, and Aditya L. Rao. “Inception V3

Model Architecture.” OpenGenus IQ,/.

Fig.22(a). Predicting the Accuracy of Voting Classifier.

VoteForOne = np.zeros([6,1]) for j in range(2):

VoteForOne[TotalPredict[i][j]]+=TotalAccuracy[j] # Adding accuracy based on

predicted Y

FinalVote = np.argmax(VoteForOne) # Returns index of maximum

row

VoteY.append(FinalVote)

VoteConfMat = confusion_matrix(VoteY, Y_valid) VoteAccuracy =

GetAccuracy(VoteConfMat)

print("Test set score for Voting Classifier on "+": %f" % VoteAccuracy)

return VoteConfMat, VoteY

ConfMat, VoteY =

GetVotingClassifier(yPred1,accuracy1,yPred2,accuracy2,yPred3,accuracy3,

yPred4,accuracy4)

print('\nConfusion Matrix for Majority Voting Classifier :\n') print(ConfMat)

def GetAccuracy(CMat):

ConfSum = np.sum(CMat,axis=0) Num = []

for i in range(len(CMat)):

for j in range(len(CMat[i])): if(i==j):

Num.append(CMat[i][j])

Value = 0

for i in range(len(ConfSum)): Value += Num[i]/ConfSum[i]

Value = Value/len(Num) return float(Value)*100

def GetVotingClassifier(pred1,acc1,pred2,acc2,pred3,acc3,pred4,acc4):

TotalPredict = []

for i in range(len(pred1)):

TotalPredict.append([pred1[i],pred2[i],pred3[i],pred4[i]])

TotalAccuracy = [acc1,acc2,acc3,acc4] VoteY = []

for i in range(len(pred1)):

http://link.springer.com/chapter/10.1007%2F978-90-481-2465-7_1
http://link.springer.com/chapter/10.1007%2F978-90-481-2465-7_1
http://www.thairice.org/html/article/pdf_files/Rice_thegrain_of_Culture.pdf
http://www.thairice.org/html/article/pdf_files/Rice_thegrain_of_Culture.pdf
https://springerplus.springeropen.com/articles/10.1186/2193-1801-2-660
https://springerplus.springeropen.com/articles/10.1186/2193-1801-2-660
https://springerplus.springeropen.com/articles/10.1186/2193-1801-2-660
https://springerplus.springeropen.com/articles/10.1186/2193-1801-2-660
https://www.kdnuggets.com/2020/04/dbscan-clustering-algorithm-machine-learning.html
https://www.kdnuggets.com/2020/04/dbscan-clustering-algorithm-machine-learning.html
https://www.kdnuggets.com/2020/04/dbscan-clustering-algorithm-machine-learning.html
https://www.kdnuggets.com/2020/04/dbscan-clustering-algorithm-machine-learning.html
https://www.kdnuggets.com/2020/04/dbscan-clustering-algorithm-machine-learning.html
https://www.geeksforgeeks.org/dbscan-clustering-in-ml-density-based-clustering/.%20Accessed%207%20July%202022
https://www.geeksforgeeks.org/dbscan-clustering-in-ml-density-based-clustering/.%20Accessed%207%20July%202022
https://www.geeksforgeeks.org/dbscan-clustering-in-ml-density-based-clustering/.%20Accessed%207%20July%202022
https://www.geeksforgeeks.org/dbscan-clustering-in-ml-density-based-clustering/.%20Accessed%207%20July%202022
https://www.geeksforgeeks.org/dbscan-clustering-in-ml-density-based-clustering/.%20Accessed%207%20July%202022
https://www.geeksforgeeks.org/dbscan-clustering-in-ml-density-based-clustering/.%20Accessed%207%20July%202022
https://medium.com/geekculture/balanced-iterative-reducing-and-clustering-using-hierarchies-birch-1428bb06bb38
https://medium.com/geekculture/balanced-iterative-reducing-and-clustering-using-hierarchies-birch-1428bb06bb38
https://medium.com/geekculture/balanced-iterative-reducing-and-clustering-using-hierarchies-birch-1428bb06bb38
https://medium.com/geekculture/balanced-iterative-reducing-and-clustering-using-hierarchies-birch-1428bb06bb38
https://medium.com/geekculture/balanced-iterative-reducing-and-clustering-using-hierarchies-birch-1428bb06bb38
https://iq.opengenus.org/inception-v3-model-architecture
https://iq.opengenus.org/inception-v3-model-architecture
https://iq.opengenus.org/inception-v3-model-architecture
https://iq.opengenus.org/inception-v3-model-architecture

