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Abstract: Imagine a Rice Field, seemingly healthy, yet harboring invisible foes. This paper delves into the world of crop disease 

detection for the Tan spot, Leaf blight, Sheath decay, Bacterial leaf rot, and False smut Dataset consists of 3546 images. The image 

segmentation is done by BIRCH clustering followed by GMM clustering; various texture features have been extracted through this. 

The classification is done using existing models such as VGG16, VGG19, RESNET50, and INCEPTION V3. After comparing 

various models and validation, the observation was made that VGG19 performs well compared to other models. The overall 

accuracy obtained for the VGG19 is 95.88.%. The achieved accuracy surpasses that of conventional backpropagation neural network 

models, indicating significant advancements in crop disease diagnosis. This study introduces a novel approach that opens avenues 

for future research in the field of deep learning for crop disease diagnosis. 
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I. INTRODUCTION 

 

Cereals play a crucial role in sustaining the global human 

population, with approximately 50% of consumed calories 

derived from wheat, rice, and maize [1]. Despite rice ranking 

second in terms of planted area, it holds paramount 

importance as a staple food source in Asian countries, 

particularly in the southeast, where it serves as a vital 

economic crop for millions of farmers and workers across 

extensive hectares [2]. Rice cultivation dates back 10,000 

years, originating in the river valleys of South and Southeast 

Asia and China, making it a fundamental food source 

historically. While Asia remains the primary region for rice 

cultivation, it is also grown in other continents such as Latin 

America, Europe, parts of Africa, and even the USA [1]. The 

agricultural community faces significant challenges due to 

rice diseases like Leaf blasts, Sheath blight, BLB, Brown 

spots, and False smut, causing substantial crop damage 

before harvest and leading to significant losses for farmers. 

Generally, identifying diseases in rice plants relies on either 

visually assessing symptoms or conducting laboratory 

experiments to culture pathogens. Visual assessment is 

subjective and susceptible to errors, while culturing 

pathogens in the lab is time-consuming and may not yield 

timely results [3]. Even with conventional methods, farmers 

face challenges in identifying diseases, especially in rural 

areas where access to agriculture experts and lab facilities is 

limited. Consequently, the research community is actively 

seeking an automated identification and classification 

method that can promptly categorize diseases and offer 

farmers necessary guidance or recommend pesticides for 

infected crops. We captured images of rice diseases in rural 

areas, specifically obtaining 894 pictures of Brown Spot, 779 

images of Bacterial Leaf Blight, 864 images of Sheath Blight, 

858 images of False Smut, and 509 images of Leaf Blast. In 

total, we compiled approximately 3,546 images for training, 

240 images for testing, and 120 images for validation 

purposes. 

 

 

A. Image Preprocessing 

 

We conducted experiments involving different algorithms 

and explored various methods, ultimately discovering that 

clustering segmentations outperformed other available 

segmentation methods. We have provided detailed insights 

into several segmentation methods utilized during the 

experiments and presented their respective outcomes. 

 

 

 
 

Fig.1(a). Thresholding 
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Fig.1(b). Thresholding 

 

B. Thresholding 

 

Thresholding, a form of image segmentation, involves 

modifying pixel values in an image to simplify its analysis. 

This process entails converting a color or grayscale image 

into a binary format, specifically black and white. The 

primary purpose of thresholding is commonly to identify and 

isolate areas of interest within an image, disregarding the 

regions that are not relevant to the analysis ("Thresholding – 

Image Processing with Python"). 

 

 

C. Canny Edge Detector 

 

1. The Canny edge detector is a multi-step algorithm 

designed to identify edges in an input image. The process 

includes a series of steps that need to be followed to 

effectively detect the edges of the image. 

2. Calculating the derivative of a Gaussian filter is 

done to compute the gradient of image pixels, enabling the 

determination of magnitude along both the x and y 

dimensions. 

Table 1. Canny Edge Detector 

        

 

             1/16 

 

 

3. Examining a set of neighboring points along a direction 

perpendicular to a specified edge, eliminate non-maximum 

contributors among the pixels associated with the edge. 

 

 

4. Finally, apply the Hysteresis Thresholding method 

to retain pixels with a gradient magnitude above a certain 

threshold value while discarding those below the specified 

low threshold. 

 

 

 
Fig.2(a). Canny edge Detector 

 

 

 
Fig.2(b). Canny edge Detector 

 

D. K-Means 

 

 K-Means is a clustering algorithm categorized under 

unsupervised algorithms, implying the absence of labeled 

data. Its purpose is to discern distinct classes or clusters 

within the provided data by assessing the similarity of data 

points. Clustering algorithms inherently leverage the 

principle that data points within a cluster exhibit greater 

proximity in the feature space compared to those falling 

outside the cluster .K-Means clustering stands out as one of 

the widely employed algorithms for this purpose, with 'k' 

denoting the number of clusters. 

 

 
 Fig.3(a). K-Means 

 

 

1 2 1 

2 4 2 

1 2 1 
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Fig.3(b).K-Means 

 

E. Elbow Method 

 

 

 

Fig.4(a). Elbow Graph 

 

The total WCSS serves as a metric for the compactness of the 

clustering, and the objective is to minimize this value, making 

the clusters as tightly grouped as possible. 

 

 

 

Fig.4(b). Elbow Graph 

 

 

F. Mean Shift Segmentation 

 

Mean Shift segmentation is a technique for local 

homogenization, particularly effective in mitigating shading 

or tonality variations within localized objects. Typically, 

Mean Shift requires three inputs: 

 

1. A distance function, often the Euclidean 

distance, but other well-defined distance  functions such as 

Manhattan distance may also be utilized. 

 

2. A specified radius, encompassing all pixels 

within this range for calculation purposes based on the chosen 

distance metric. 

 

3. A value difference criterion, allowing the 

inclusion of only those pixels within the radius whose values 

fall within this specified difference for mean calculation 

 

 

Fig.5(a). Mean Shift Segmentation 

 

Fig.5(b). Mean Shift Segmentation 

 

G. DBSCAN 

 
 

Fig.6. DBSCAN 

 

The DBSCAN algorithm relies on the intuitive concepts of 

"clusters" and "noise." The fundamental principle is that the 

point in a cluster must have a minimum number of 

neighboring points within a specified radius. 

 

Fig.7(a). Mid Points 

 

DBSCAN algorithm requires two parameters: 

 

In DBSCAN, 'eps' defines a data point's neighborhood range, 

where distances equal to or less than 'eps' indicate 

neighboring points. If 'eps' is too small, a substantial portion 

of the data may be classified as outliers, while an excessively 

large 'eps' can lead to the merging of clusters, consolidating 

most data points into the same clusters. Determining the 'eps' 
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value can involve analyzing the k-distance graph. 

 

MinPts signifies the minimum number of neighbors within 

the 'eps' radius, with larger datasets requiring a higher 

MinPts. A general guideline for setting MinPts involves 

deriving it from the number of dimensions 'D' in the dataset, 

where MinPts should be at least 'D+1.' It is essential to select 

a minimum MinPts value of at least 3 (Dey). 

 

Algorithmic steps for DBSCAN clustering 

 

1. Randomly choose a point from the dataset and mark it as 

visited. 

2. Check if there are at least 'minpoint' points within a 

distance of 'ε' from the selected point.If so, consider all 

these points as part of the same cluster. 

3. Continue expanding the clusters by recursively checking 

the neighbourhood of each adjacent point. following a 

recursive approach (Chauhan). 

   

 

Fig.7(b).DBSCAN clustering recursive 

approach(Chauhan) 

H. BIRCH 

The Balanced Iterative Reducing and Clustering using 

Hierarchies (BIRCH) is a clustering algorithm for large 

datasets. It starts by generating a compact summary of the 

dataset, aiming to retain key information. This summary is 

clustered instead of the original dataset, making it more 

manageable. BIRCH is often used in conjunction with other 

clustering algorithms, offering a summarized dataset for 

further analysis. 

 

 

The CF tree, integral to BIRCH, is a tree structure with 

balanced height. It collects and manages clustering features 

while retaining essential information about the given data for 

subsequent hierarchical clustering. This design obviates the 

necessity to process the entire input dataset. The tree 

represents the clustered data points as CF, consisting of three 

numerical values (N, LS, SS). 

 

 

In the context of the CF tree: 

 

- N represents the number of items in subclusters. 

 

- LS denotes the vector sum of the data points. 

 

- SS stands for the sum of the squared data points. 

 

 

In the provided image, the values for a specific example are 

illustrated. For a set of five samples with coordinates (3,4), 

(2, 6), (4, 5), (4, 7), and (3, 8), the corresponding CF values 

are N = 5, LS = (16,30), and SS = (54, 190). The image 

visually depicts the structure of the CF tree based on these 

values (Gupta). 

 

 
 

Fig.8 A CF Tree 

 

The diagram shows a hierarchical structure starting with the 

root node, which contains non-leaf nodes. Each non-leaf node 

has B entries, and the leaf nodes contain L cluster features 

(CF). A leaf node is considered a sub-cluster if each CF 

within it has L entries, satisfying the threshold condition 

where T is the maximum diameter of the radius. These leaf 

nodes act as summaries rather than individual data points. 

The BIRCH algorithm progresses through four main phases. 

 
 

Fig.9(a). BIRCH 
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Fig.9(b). BIRCH 

 

I. GMM 

 

The Gaussian mixture model (GMM) involves mixing 

multiple Gaussian distributions. Instead of identifying 

clusters based on nearest centroids, we fit k Gaussians to the 

data. We estimate parameters like mean, variance, and weight 

for each cluster. By learning these parameters for each data 

point, we can calculate the probabilities of it belonging to 

each cluster. 

 

 

Each distribution in the Gaussian mixture model is multiplied 

by a weight (π), where the sum of all weights equals 1 (π1 + 

π2 + π3 = 1). This weighting accounts for the unequal sample 

sizes in each category. For example, if we have 1000 samples 

from the red cluster and 100,000 samples from the green 

cluster, the weights would adjust to reflect this disparity. 

 

 
 

Fig.10.GMM 

 

 

- Initialize the mean (μk), covariance matrix (Σk), and mixing 

coefficients (πk) with random or predefined values. 

 

- Calculate the responsibilities (Ck) for each component k. 

 

- Update the parameters (μk, Σk, πk) based on the current 

responsibilities. 

 

- Compute the log-likelihood function. 

 

- Check for convergence based on a predefined criterion. 

 

- If the log-likelihood value or parameters converge, stop; 

otherwise, repeat from Step2. 

 

 

This algorithm can only ensure convergence to a locally 

optimal solution and does not guarantee convergence to the 

global optimum. Therefore, if the algorithm is initialized 

from different starting points, it may converge to different 

local optima. 

 

 

II.MODELS 

 

The data we received from the segmentation techniques we 

are passing through various models and comparing the result 

here we have used various models which are discussed in 

detail below.  

 

A. VGG19 

 

 

The VGG-19 is a convolutional neural network trained by the 

Visual Geometry Group (VGG) at the University of Oxford. 

The number"19" signifies the network's total number of 

layers, including 16 convolutional layers and three fully 

connected layers. 

 

 

 

Fig.11 .VGG19 

 

 

Fig.12 VGG19 Algorithm 
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III. ARCHITECTURE 

 

● The network took fixed-size (224 * 224) RGB images 

as input, forming a matrix of  shapes (224, 224, 3). 

● The only preprocessing step involved subtracting the 

mean RGB value from each pixel, calculated across 

the entire training set. 

● It utilized 3 * 3 kernels with a stride of 1 pixel to cover 

the entire image. 

● Spatial padding was applied to maintain the spatial 

resolution of the image. 

● Max-pooling was performed over 2 * 2-pixel windows 

with a stride of 2. 

● A Rectified Linear Unit (ReLU) was utilized to 

introduce non-linearity, enhancing classification 

accuracy and computational efficiency over older 

models employing tanh or sigmoid functions. 

● The network consisted of three fully connected layers, 

with the first two having 4096 units each. The final 

layer had 1000 channels for 1000-way ILSVRC 

classification, followed by a softmax function. 

First, we take the image and resize it in height and width into 

244X244 pixels format and divided the dataset into training 

and testing in which we have 3274 images and 240 images 

from that we execute the program for 200 epoch and add an 

early. 

A.  RESNET50 

 

A Convolutional Neural Network with 50 layers is known as 

ResNet-50. ResNet, short for Residual Networks, is a 

foundational neural network in computer vision applications. 

Its key innovation was enabling the training of extremely 

deep networks, surpassing 150 layers. 

The “vanishing gradient problem” is a major challenge for 

neural networks. This occurs when the slope becomes too 

small during the recovery period, causing the weight to shift 

slightly. ResNet solves this problem by introducing “cross-

connecting” or “fast-connecting,” which allows gradients to 

flow through the network more easily and allows networks to 

be trained very deeply without experiencing vanishing 

gradients The network architecture is described as ResNet-50 

architecture, unlike the ResNet model.

 Below is a summary of the main components: 

 

 

 

Fig.13 ResNet50 

 

The first process consists of a 7x7 convolutional layer with 

64 filters and a 2nd step, followed by a max pooling layer 

with a 2nd step. 

- layers follow the model: 1x1 convolution with 64 filters, 

3x3 convolution with 64 filters and 1x1 convolution with 256 

filters, repeated 3 times. 

- Other models shown: 1x1 convolution with 128 filters, 3x3 

convolution with 128 filters and 1x1 convolution with 512 

filters, repeated 4 times. 

- Then comes 1x1 convolution with 256 filters, 3x3 

convolution with 256 filters and 1x1 convolution with 1024 

filters, the same is repeated 6 times. 

- Then there are models of 1x1 convolution with 512 filters, 

3x3 convolution with 512 filters and 1x1 convolution with 

2048 filters repeated 3 times. 

- Finally, there is the intermediate pooling layer and then the 

softmax activation function, which is a process connected to 

1000 nodes. 

 

The total number of layers of this ResNet-50 architecture is 

50, including convolutional layer, layer by layer and all 

layers. 

 

We don't actually count the activation functions and the max/ 

average pooling layers.so totaling this it gives us a 1 + 9 + 12 

+ 18 + 9 + 1 = 50 layers Deep Convolutional network. 

 

First, we take the image and resize it in height and width into 

244X244 pixels format and divided the dataset into training 

and testing in which we have 3274 images and 240 images 

from that we execute the program for 200 epochs and add an 

early stopping model put validation loss for monitoring and 

put up the patience of 3. 

 

B. VGG16 

 

The entrance into the community comprises an image with 

dimensions of 224 by 224 pixels and three color channels. 

Initially, there are convolutional layers with 64 filters, each 

with a size of three by three pixels, and padding is applied to 

maintain the spatial dimensions. Subsequently, a max-

pooling layer with a stride of (2, 2) is applied. Following this, 
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there are convolutional layers with 128 filters, also of size 

three by three, and another max-pooling layer with the same 

stride. This pattern continues with two sets of convolutional 

layers,  each with 256 filters of size three by three, and 

another two sets with 512 filters. Additionally, 1 by 1 

convolutions are utilized to adjust the number of input 

channels, and padding is consistently applied after each 

convolutional layer. This approach contrasts with the larger 

filter sizes seen in AlexNet and ZF-Net, using three by three 

filters instead of eleven by eleven or seven by seven. 

 

 

 

 

 
 

Fig.15. VGG16 

 

C. INCEPTION V3 

 

Inception Networks, including GoogLeNet or Inception v1, 

are known for their computational efficiency compared to 

VGGNet. This efficiency is measured by the number of 

parameters and overall resource costs required. When 

modifying an Inception Network, it's crucial to maintain these 

computational advantages.  

 

However, this can be challenging due to uncertainties about 

the network's performance after modifications. To address 

this, several optimization strategies have been proposed for 

Inception v3. These include factorized convolutions, 

regularization techniques, dimension reduction, and 

parallelized calculations. These strategies aim to relax 

constraints and enhance the adaptability of the model, making 

it more versatile for different use cases.

Fig.14 . VGG16 

 

 

 
 

Fig.16 INCEPTION V3 
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First, we take the image and resize it in height and width into 

244X244 pixels format and divided the dataset into training 

and testing in which we have 3274 images and 240 images 

from that we execute the program for 200 epochs and add an 

early stopping model put validation loss for monitoring and 

put up the patience of 3. 

 

D. Voting Classifier 

 

The voting classifier predicts the output class based on the 

majority votes of various classifiers. It includes results from 

distributions such as RESTNET50, VGG19, VGG16, and 

INCEPTIONV3. Rather than evaluating each candidate 

individually, voters combine their predictions to determine 

the final product. This approach is designed to create a more 

robust model by leveraging all distributions. 

 
Fig.17. Voting Classifier Algorithm 

 

 

 

 
Fig.18. Voting Classifer 

 

 

 

IV. VALIDATION AND RESULTS 

 

 

We need to validate the results of the models we have taken 

before applying the voting classifier.  To that end, we have 

stored approximately 24 images from each of the five disease 

categories, from which the algorithm has not yet been trained 

and passed. For each of the models we have mentioned we 

have obtained the following results; however, we must first 

take all the diseases and prepare them for validation. Here are 

the results for each model after all the photographs were 

imported for validation and images were running for each 

model. 

Here are the results for each model after all the photographs 

were imported for validation and images were running for 

each model. 

 

A. VGG16 

We employed three segmentation strategies that produced 

satisfactory patterns and sent the data to the VGG16. These 

techniques include Birch segmentation, Mean shift 

segmentation, and 

 

B. BIRCH and GMM 

Table 2. BIRCH and GMM 
ACCURACY 91.66 

ERROR 8.333 

 

With VGG16 we are getting around 91.66 Validation 

accuracy. 

 

Table 3. VGG16 

 
Precisi

on 

Recall F1-score Support 

BLB 0.86 0.86 0.86 7 

Brown 

Spot 

1.00 1.00 1.00 4 

False 

Smut 

1.00 1.00 1.00 4 

Sheath 

Blight 

1.00 0.67 0.80 3 

Leaf blast 0.86 1.00 0.92 6 

Accuracy   0.92 24 

 

Table. 4. BIRCH  

ACCURACY 91.66 

ERROR 8.333 

 

 
Fig.19(a).VGG16 

 

By using Birch segmentation, we are getting 91.66 accuracy 

 

 

Table 5. BIRCH Shift Segmentation 

 

 
Precision Recall F1-score Support 

BLB 0.86 0.86 0.86 7 

Brown Spot 1.00 1.00 1.00 4 

False Smut 1.00 1.00 1.00 4 

Sheath 

Blight 

1.00 0.67 0.80 3 
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Leaf blast 0.86 1.00 0.92 6 

Accuracy 
  

0.92 24 

Macro 

Average 

0.94 0.90 0.92 24 

Weighted 

Average 
0.92 0.92 0.91 24 

 

Fig.19(b). BIRCH Segmentation 

 

C. Mean Shift Segmentation 

 

By using Mean Shift segmentation, we are getting 74.19 

accuracy 

 

Table 6.  Accuracy of Meanshift Segmentation 

 

ACCURACY 74.193 

ERROR 25.806 

 

Table 7. Meanshift Segmentation 

 

 Precision Recall F1-score support 

BLB 1.00 0.27 0.43 11 

Brown 

Spot 

1.00 1.00 1.00 4 

False 

Smut 

1.00 1.00 1.00 4 

Sheath 

Blight 

0.50 1.00 0.67 6 

Leaf blast 0.75 1.00 0.86 6 

Accuracy   0.74 31 

Macro 

Average 

0.85 0.85 0.79 31 

Weighted 

Average 

0.85 0.74 0.711 31 

 

 

 
Fig.20.Confusion Matrix  for Mean Shift Sementation 

 

 

D. RESNET 50 

Table 8. RESNET 50 

 

ACCURACY 66.66 

ERROR 33.33 

 

With RESNET 50 we are getting 66.66 accuracy 

 

Fig.21.  RESNET 50 

 

 

Table 9. RESNET 50 

 

 Precision Recall F1-score support 

BLB 1.00 0.67 0.80 6 

Brown Spot 0/60 0.75 0.67 4 

False Smut 0.00 0.00 0.00 4 

Sheath 

Blight 

1.00 0.86 0.92 7 

Leaf blast 0.33 1.00 0.50 3 

Accuracy   0.67 24 

Macro 

Average 

0.59 0.65 0.58 24 

Weighted 

Average 

0.68 0.67 0.64 24 

 

E. BIRCH 

 

we are getting 79.166 accuracy using BIRCH 

 

Table 10. BIRCH 

 

 Precision Recall F1-score support 

BLB 0.86 0.86 0.86 7 

Brown Spot 1.00 0.75 0.86 4 

False Smut 1.00 0.50 0.67 4 

Sheath 

Blight 

1.00 1.00 0.67 3 

Leaf blast 0.83 0.83 0.83 6 

Accuracy   0.79 24 

Macro 

Average 

0.84 0.79 0.78 24 

Weighted 

Average 

0.85 0.79 0.80 24 
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F. Mean Shift Segmentation 

 

Table 11.Mean Shift Segmentation 

 

ACCURACY 80.64 

ERROR 19.35 

 

we are getting 80.645 accuracy using Mean shift 

segmentation. 

 

Table 12 .  Mean shift segmentation 

 

 Precision Recall F1-score support 

BLB 1.00 0.50 0.67 12 

Brown 

Spot 

0.67 0.75 0.71 8 

False 

Smut 

0.80 1.00 0.89 4 

Sheath 

Blight 

0.50 0.80 0.62 5 

Leaf blast 0.67 1.00 0.80 2 

Accuracy   0.71 31 

Macro 

Average 

0.73 0.81 0.74 31 

Weighted 

Average 

0.79 0.71 0.71 31 

 

 

G.VGG19 

 

 

BIRCH and GMM 

 

 

Table 13. VGG19 

 

 

ACCURACY 95.833 

ERROR 4.166 

 

 

With VGG19 we are getting 95.833 Validation accuracy 

 

 

 
 

Fig. 22.  VGG19 Model 

 

Table 14.  Confusion Matrix for VGG19 

 

 Precision Recal

l 

F1-

score 

support 

BLB 1.00 0.83 0.91 6 

Brown 

Spot 

0.80 1.00 0.89 4 

False 

Smut 

1.00 1.00 1.00 4 

Sheath 

Blight 

1.00 1.00 1.00 7 

Leaf blast 1.00 1.00 1.00 3 

Accuracy   0.96 24 

Macro 

Average 

0.96 0.97 0.96 24 

Weighted 

Average 

0.97 0.96 0.96 24 

 

 

 

Table 15. BIRCH Segmentation 

ACCURACY 91.66 

ERROR 8.333 

 

 

By using Birch segmentation we are getting 91.66 accuracy 

 

 

H. Mean Shift Segmentation 

 

 

Table 16. Mean Shift Segmentation 

ACCURACY 77.419 

ERROR 22.5806 
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Table 17. Mean Shift Segmentation 

 Precision Recall F1-score support 

BLB 1.00 0.64 0.78 11 

Brown 

Spot 

0.80 1.00 0.89 4 

False 

Smut 

0.75 0.75 0.75 4 

Sheath 

Blight 

0.62 0.83 0.71 6 

Leaf blast 0.71 0.83 0.77 6 

Accuracy   0.77 31 

Macro 

Average 

0.78 0.81 0.78 31 

Weighted 

Average 

0.81 0.77 0.77 31 

 

we are getting 77.419 using mean shift segmentation 

 

 

Table 18. Mean Shift Segmentation 

 

 Precision Recall F1-score support 

BLB 1.00 0.64 0.78 11 

Brown 

Spot 

0.80 1.00 0.89 4 

False 

Smut 

0.75 0.75 0.75 4 

Sheath 

Blight 

0.62 0.83 0.71 6 

Leaf blast 0.71 0.83 0.77 6 

Accuracy   0.77 31 

Macro 

Average 

0.78 0.81 0.78 31 

Weighted 

Average 

0.81 0.77 0.77 31 

 

 

I. INCEPTION  V3 

 

 

Table 19. Inception V3 

 

 

ACCURACY 95.833 

ERROR 4.166 

 

With INCEPTION V3 we are getting 91.66 Validation 

accuracy. 

 

 

 

Fig.22. Inception v3 confusion matrix 

Table 20. Inception v3 confusion matrix 

 Precision Recall F1-

Score 

Support 

BLB 0.89 0.73 0.80 11 

Brown spot 0.67 1.00 0.80 4 

False Smut 0.80 1.00 0.89 4 

Sheath 

Blight 

0.80 0.67 0.73 6 

Leaf Blast 1.00 1.00 1.00 6 

Accuracy   0.84 31 

Macro 

Average 

0.83 0.88 0.84 31 

Weighted 

Average 

0.85 0.84 0.84 31 

 

J. MEAN SHIFT SEGMENTATION 

Table 21. Mean Shift Segmentation 

 

ACCURACY 83.87 

ERROR 16.12 

 

here we are getting 83.837 accuracy using Mean shift 

segmentation. 

 
Table 22. Confusion Matrix for Mean Shift Segmentation 

 
 Precision Recall F1-

Score 

Support 

BLB 0.89 0.73 0.80 11 

Brown 

spot 

0.67 1.00 0.80 4 

False Smut 0.80 1.00 0.89 4 

Sheath 

Blight 

0.80 0.67 0.73 6 

Leaf Blast 1.00 1.00 1.00 6 

Accuracy   0.84 31 

Macro 

Average 

0.83 0.88 0.84 31 

Weighted 

Average 

0.85 0.84 0.84 31 
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V. VOTING CLASSIFIER 

 

Now we take all the 4 model and make a voting classifier. 

 

A. GMM AND BIRCH 

 

 
We can see we are getting an accuracy of 93.80 

B. BIRCH 

 

we can see we are getting accuracy of 90.476 

C. Mean Shift Segmentation 

 

 
 

We can see we are getting accuracy of 87.8787. 

 

 

 
 

Fig.22(b). Predicting the Accuracy of Voting 

Classifier. 

 

VI. CONCLUSION 

 

 

We can observe that when we compared the above data of 

Mean shift , Birch ,Birch and GMM of different models given 

which are Resnet50, VGG16,Inception V3,VGG19 The 

VGG19 of Birch and GMM is performing really well 

compared to the above mentioned models we are getting 

around 95.88% accuracy when we used VGG19 which is the 

highest observed validation accuracy compared to other 

models mentioned. In Summary we can conclude that 

combination of BIRCH and GMM image segmentation and 

VGG 19 can effectively Identify the Rice leaf diseases and 

may provide the support for farmer in rice diseases detection.  

 

 

VII. REFERENCES 

 

1. Gnanamanickam SS (2009) Rice and Its Importance to 

Human Life. Prog Biol Con 8: 1-11 Gomez KA (2001) 

Rice, the grain of culture. The Siam Society, Thailand.   

2. Barbedo, Jayme Garcia Arnal, 2013. Digital Image 

Processing Techniques for Detecting,Quantifying and 

Classifying Plant Diseases, vol. 2. SpringerPlus. 

3. Chauhan, Nagesh Singh. “DBSCAN Clustering 

Algorithm in Machine Learning.”KDnuggets, 

Accessed 7 July 2022.  

4. Dey, Debomit. “DBSCAN Clustering in ML | Density 

based clustering.” GeeksforGeeks, 15 June 

2022,Gupta, Aman. “Balanced Iterative Reducing and 

Clustering using Hierarchies — BIRCH.”Medium, 1 

June 2021, Accessed 7 July 2022. 

5. Narein, Adith, and Aditya L. Rao. “Inception V3 

Model Architecture.” OpenGenus IQ,/.

Fig.22(a). Predicting the Accuracy of Voting Classifier. 

VoteForOne = np.zeros([6,1]) for j in range(2): 

VoteForOne[TotalPredict[i][j]]+=TotalAccuracy[j] # Adding accuracy based on 

predicted Y 

FinalVote = np.argmax(VoteForOne) # Returns index of maximum 

row 

VoteY.append(FinalVote) 

 

 

 

VoteConfMat = confusion_matrix(VoteY, Y_valid) VoteAccuracy = 

GetAccuracy(VoteConfMat) 

print("Test set score for Voting Classifier on "+": %f" % VoteAccuracy) 

 

return VoteConfMat, VoteY 

 

 

ConfMat, VoteY = 

GetVotingClassifier(yPred1,accuracy1,yPred2,accuracy2,yPred3,accuracy3, 

yPred4,accuracy4) 

print('\nConfusion Matrix for Majority Voting Classifier :\n') print(ConfMat) 

def GetAccuracy(CMat): 

ConfSum = np.sum(CMat,axis=0) Num = [] 

for i in range(len(CMat)): 

for j in range(len(CMat[i])): if(i==j): 

Num.append(CMat[i][j]) 

Value = 0 

for i in range(len(ConfSum)): Value += Num[i]/ConfSum[i] 

Value = Value/len(Num) return float(Value)*100 

def GetVotingClassifier(pred1,acc1,pred2,acc2,pred3,acc3,pred4,acc4): 

TotalPredict = [] 

for i in range(len(pred1)): 

TotalPredict.append([pred1[i],pred2[i],pred3[i],pred4[i]]) 

 

TotalAccuracy = [acc1,acc2,acc3,acc4] VoteY = [] 

for i in range(len(pred1)): 
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