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Abstract: A group of neurological disorders that manifests in a wide range of motor and cognitive symptoms, Parkinson's Disease (PD) ranks 

second among those affecting older adults. Many people mistakenly believe that PD symptoms are caused by other conditions, such as essential 

tremor or natural aging. There may not be a cure for PD, but there are numerous medications that can help with symptoms. Since gait impairment 

is a prominent and early sign of PD in a clinical context, doctors typically use visual observations to analyse gait abnormalities as one of many 

manifestations to determine the severity of PD. Nevertheless, therapists' reliance on their own knowledge and judgment makes gait examination a 

difficult and subjective process. Extracting useful gait features from various input signals for gait analysis has recently been used Deep Learning 

(DL) models. Intermediate Medical Unit (IMU) patients with movement problems may benefit from a quick and clinically relevant evaluation of 

gait abnormalities performed automatically utilizing DL algorithms. Using gait analysis, this study provides a comprehensive overview of various 

DL frameworks that have been created for the purpose of PD prediction and categorization. At the outset, In the first part of the study, various PD 

prediction and classification systems that have been developed by various researchers and that rely on DL algorithms via gait analysis are reviewed 

briefly. To find a better way to identify and categorize the PD, we next undertake a comparative analysis to learn about the shortcomings of those 

algorithms. 
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I. INTRODAUCTION 

The neurodegenerative PD is characterized by 
progressive motor impairments [1, 2]. The prevalence of PD 
ranges from 2% to 3% in the elderly population, placing it 
second only to Alzheimer's disease among neurodegenerative 
diseases [3]. Reduced brain dopamine levels due to death of 
dopaminergic neurons in the substantia nigra are a hallmark of 
PD, as shown in Fig. 1. Slowness and gait abnormalities are 
symptoms of a diminished capacity to control one's 
movements [4]. A α-synuclein protein serves as a biomarker 
for PD.  An essential part of Lewy bodies, Oligomer is 
generated when the α-synuclein protein's activity is disturbed, 
leading to the death of brain cells [5]. The exact relationship 
between neuron loss and PD remains unclear, despite much 
research into the underlying mechanism. 
 

 

Figure 1.  Brain Function between Normal and PD Affected Persons. 

So far, PD is thought to be a degenerative disorder 
associated with aging that can be triggered by both hereditary 
and environmental variables. The average age is 60 years old, 
making aging a major factor. Protein metabolisms and 
mitochondrial capabilities may decline with age, which may 
cause dopaminergic neurons in the substantia nigra to die off 
[6].  

The percentage of PD patients with a family history is 
around 15%, and between 5% and 10% have a Mendelian-
inherited monogenic variant. Extensive research has identified 
genetic risk factors and PD variations. Researchers have 
looked at environmental factors and found that things like 
coffee consumption and smoking are associated with a higher 
incidence of PD [7]. Nevertheless, because of the 
compounding factors' long-term effects, the environmental 
factors' impact on PD remains unclear. According to 
Klingelhoefer and Reichmann's [8] theory, PD begins in the 
olfactory bulb or enteric nervous system, travels via the 
rostrocranial nerve to the substantia nigra, and then continues 
to transmit into the central nervous system. 

Due to the lack of suitable biomarkers, early symptoms 
and clinical tests are crucial diagnostic signs for PD [9]. In the 
early stages of Parkinson's disease, several symptoms can 
manifest. These include cognitive problems like sadness or 
worry, movement concerns like slow movement or tremor, 
stiffness or altered posture and gait, and non-movement 
symptoms like sleep difficulty or visual degeneration. The use 
of Magnetic Resonance Imaging (MRI) or clinical scales 
during physical examinations is standard practice [10]. 
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A person's gait, which includes the cortical regions that are 
responsible for motor and cognitive functions, can affect their 
patterns of walking and running [11]. The most prominent 
symptoms of PD, as mentioned before, are abnormalities and 
impairments in gait. With the development of more precise 
quantitative tools, gait analysis has become an important tool 
in the fight against musculoskeletal and neurological disorders 
that induce abnormalities in walking and gait [12]. 
Impairments in gait and other movement-related 
abnormalities can be caused by three main sources [13] 

• Tremor: As a general rule, tremors begin in the 
limbs or hands and tend to happen more frequently 
when at rest. 

• Slowness of movement: Patient gait is slower and 
step length is shorter compared to healthy 
individuals, which might cause a slowness of 
movement. 

• Muscular stiffness: Stiffness in the muscles: When 
people have tension in their muscles, it makes their 
posture more rigid, which in turn makes it harder for 
them to walk steadily. 

 

 

Figure 2.  Gait and Postural Symptoms of PD Patients. 

And abnormal gait patterns are a marker of non-movement 
disorders such depression, anxiety, and cognitive impairment 
[14].  As shown in Fig. 2, the gait patterns of individuals with 
PD will display a range of impairments and abnormalities due 
to the impact on both motor and cognitive brain functions. 
There are three tiers to the description of the gait changes: 
early, mild-to-moderate, and advanced. Some examples of 
gait metrics are bradykinesia, postural stability, timing 
control, and gait planning [14]. Several noticeable alterations 
in gait characteristics can be utilized to diagnose PD, as shown 
in Table I.  

• Early Stage: In the early stages of Parkinson's 
disease, the patient first exhibits a slow gait speed 
and short step length. These gait problems are caused 
by aging or other medical conditions. Reduced arm 
swing, greater interlimb asymmetry, and smoothness 
of movement are PD-specific symptoms. During the 
stance phase, the Range of Motion (ROM) of the 
lower limb joints decreases, and these deficits are 
frequently unilateral or bilateral. Dual tasking makes 
impaired walking patterns more noticeable in PD 
patients. 

• Mild-To-Moderate Stage: An increased risk of 
falling owing to instability in posture and gait 
planning characterizes the mild-to-moderate stage of 
Parkinson's disease, which is characterized by severe 

gait abnormalities in individuals. Common 
alterations in gait include a less swinging arm, more 
cadence, shuffling steps, and more dual support. In 
addition to disintegrating into pieces, some patients 
may walk with a hunched over position. 

• Advanced Stage: Freezing of Gait (FOG) is a 
noticeable and episodic symptom that worsens gait 
patterns in patients with advanced Parkinson's 
disease. A number of circumstances, such as those 
involving movement, perception, thought, and 
feeling, might set off FOG. We currently lack 
accurate biomarkers and objective metrics to assess 
FOG. There is an increase in the likelihood of falling 
due to impaired balancing, gait planning, and 
postural stability. Motor function loss from 
deteriorating muscle control can necessitate the use 
of wheelchairs or other assistive devices for some 
patients. 

Table I.  Physical Disability and Gait Issues 

Gait parameters Indications 
Changes with 

PD 

Turning Postural stability and Gait 

planning 

Fragmentation 

Variability and 

imbalance in gait 

Gait planning and 

postural stability 

Increased 

Movement velocity Bradykinesia Reduced 

Duration of dual 

support 

Regulating the Time Increased 

Step/Stride length Bradykinesia Reduced 

Limb coordination Postural stability and Gait 

planning 

Reduced 

Cadence Timing Control Increased 

ROM of lower limb 

joints 

Bradykinesia Reduced 

Initiation Postural stability and Gait 

planning 

Freezing 

 
To move ahead in a rhythm, the human body must control 

its posture, balance itself, and coordinate its limbs—all while 
walking on two wheels [15]. Identifying two consecutive gait 
events—like a heel-strike or toe-off—on the same foot is a 
crucial way to identify a gait cycle. The two halves of a gait 
cycle are the stance and the swing. During the walking phase, 
when both feet touch the floor, this is called dual support.  

Fig. 3 shows the gait cycle in PD patients, including the 
swing and stance phases [16]. A variety of parameters (Table 
I) can be computed from gait data using various gait analysis 
tools. 
 

 

Figure 3.  Gait Cycle for PD Patients. 

There are a number of popular clinical measures and tests 
that can be used to evaluate gait in people with PD. There are 
a number of tests and scales that are specific to PD. These 
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include the Unified PD Rating Scale (UPDRS), the Hoehn and 
Yahr (H&Y) Scale, the Freezing of Gait Questionnaire (FOG-
Q), and the PD Quality of Life Questionnaire-39 (PDQ-39) 
[17]. Classification algorithms are created to forecast the 
severity levels/scales of PD patients based on their gait 
patterns; in particular, the UPDRS and H&Y scales are often 
used in PD staging jobs. The transition, gait, and fall risk 
metrics are commonly measured by many broad scales and 
tests that assess gait abnormalities [18]. For the purpose of 
assessing the gait performance of PD patients following 
targeted gait treatments, several tests/scales can be utilized 
effectively.  

Because gait impairment is one of the first and most 
noticeable symptoms of PD in a clinical context, doctors 
typically use visual observations in conjunction with other 
many manifestations to determine the severity of the disease 
[19]. Misdiagnosis is possible due to assessment bias, since 
this type of evaluation relies heavily on the knowledge and 
skill of the doctors doing it.  

Research into PD prediction and classification using gait 
data has recently advanced to new technologies, namely 
Artificial Intelligence (AI) [20]. AI encompasses ML and DL 
models that are utilized to assist in the diagnosis of PD through 
the analysis of gait metrics. When it comes to diagnosing 
Parkinson's disease, these models are an intriguing and easily 
interpretable choice, particularly for use in the early stages of 
the disease when gait abnormalities manifest and worsen, and 
for successfully discriminating between the phases of the 
disease. Fig. 4 shows the DL architecture. 
 

 

Figure 4.  Structure of DL. 

The performance of DL models on PD identification and 
diagnosis is more efficient than that of ML frameworks [21]. 
With the use of DL algorithms, doctors are able to make more 
accurate diagnoses based on patient data that has distinctive 
and important characteristics [22]. For a quantitative 
evaluation of the severity of PD disease using gait data, DL 
models such as Convolutional Neural Networks (CNNs), 
Recurrent Neural Networks (RNNs), Long Short-Term 
Memory (LSTMs), Deep Belief Networks (DBNs), etc., are 
useful. The healthcare organization generates a tremendous 
amount of data, and DL models have proven helpful in making 
decisions and automated predictions from this data [23]. 
Multiple DL frameworks for PD classification and prediction 
have emerged in recent years. There are no linked signs, 
therefore the particular strategy of preventing a PD is 
undetermined, despite considerable advancements in 
detection and prognosis. 

A comprehensive review of different DL frameworks for 
PD detection and diagnosis utilizing gait signals is the main 
objective of this research. Additionally, to propose future 
scope, a comparative study is given to address the advantages 
and disadvantages of those frameworks. What follows is the 
preparation of the remaining sections: In the second section, 
we'll look at many frameworks that can identify PD from gait 
data. A comparison of those models is given in Section III. 

Part IV provides a synopsis of the full survey as well as 
suggestions for the forthcoming scope. 

II. SURVEY ON DEEP LEARNING MODEL FOR PD 

SEVERITY DETECTION 

The use of CNN and Time-Frequency Representations 
(TFRs) for multimodal examination of motor abilities in PDs 
patients was proposed by Vásquez-Correa et al. [24]. This 
approach simulates the challenges of initiating and 
terminating skeletal and vocal muscle movements.  In addition 
to accurately assessing the patients' neurological status, this 
model can also detect the effects of the disease on their ability 
to speak and any problems with their lower or upper limbs or 
muscles. Using a CNN model, it can identify when transitions 
occur in speech, handwriting, and gait. Classification of PD 
from gait data is assisted by the obtained from CNN models. 

To detect PD using vision-based freezing of gait (FOG) 
research, Hu et al. [25] created a Graph sequence recurrent 
neural network (GS-RNN). The spatial-temporal data, 
provided as dynamic graph sequences, was processed using 
the GS-RNN model. GS-RNN models both the structural and 
temporal graph patterns simultaneously with its composition 
of Graph RNN cells and vertex-wise RNN cells. With graph 
sequences of dynamic structures as inputs, the GS-RNN was 
trained to learn the FoG patterns using graph recurrent cells. 
Anatomical joint graphs are helpful for PD severity 
evaluations because they permit straightforward interpretation 
of detection results. 

A Deep 1D-Convnet was built by El Maachi et al. [26] to 
accurately diagnose PD and forecast its severity from gait. 
Foot sensors that measure the vertical ground reaction force 
(VGRF) provide their inputs to this model. In the initial 
section of the network, there are 18 input-corresponding 
parallel 1D-Convnets. Part two is a fully linked network that 
takes the combined 1D-Convnet outputs and uses them to 
classify PD. 

Using gait analysis, Lu et al. [27] created a model based 
on automatic vision that may determine the severity of PD 
motor symptoms. To detect motor deficits in non-intrusive 
video recordings, the SORT algorithm was employed. Then, 
from every single frame of the movie, 3D skeletons of the 
body were retrieved. A CNN was utilized to classify 
participants over time by training a Hybrid Ordinal Focal 
method with a Double-Features Double-Motion Network 
(OF-DDNet). For the purpose of PD evaluations, the bounding 
boxes and MDS-UPDRS gait scores were employed for 
movement classification. 

To better detect FOG in PD using wearable sensors, Li et 
al. [28] created a DL model.  The technology uses the patient's 
motion signal to identify FOG with the use of a wearable 
accelerometer. This system uses 1D-Deep CNN to 
automatically learn feature representations from multi-
channel acceleration signals. Next, the RNN was used to 
represent the interdependencies between the activations of 
features over time. This model's detection performance was 
improved by incorporating the squeeze-and-excitation blocks 
and attention mechanism. And to make sure that unbalanced 
datasets didn't affect the PD detection model training, data 
augmentation was employed. 

By utilizing LSTM networks, Balaji et al. [29] developed 
a system for the autonomous and non-invasive evaluation of 
PD severity. This model made use of the LSTM structure to 
make use of the temporal information in the gait sequence. 
This methodology assesses three distinct walking tasks and 
uses the UPDRS and the Hoehn & Yahr (H&Y) Scale to 
determine the degree of severity. Overfitting of the data is 
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minimized in this model by means of the dropout and L2 
regularization techniques. Due to its low memory requirement 
and small number of hyperparameter tuning options, the 
Adam optimizer was chosen to solve the cost function for PD 
diagnosis.  

Using a pairwise deep ranking algorithm, Oğul and 
Özdemir developed a relative evaluation of PD patients based 
on gait signals [30]. This model's data came from two PD 
patients who used information from many ground response 
force sensors. After that, the ranking tasks were performed by 
RSRNA, which stands for the Siamese Recurrent Network 
with Attention. This network takes two multivariate time 
series as inputs and outputs a probability indicating the signal 
with the higher probability of having a continuous property.  
An enhanced Long Short Term Memory (LSTM) with an 
attention mechanism was used to develop the recurrent layer, 
which captures remote associations in input signals crucial to 
gait skills. 

By utilizing Inflated 3D networks (I3D) derived from 
movies, Yin et al. [31] created a 3D-CNN model for the 
purpose of PD severity classification. In this model, the CNN 
layer was substituted with the temporal relative self-attention 
block, allowing any 3D network to incorporate Temporal Self-
Attention (TSA) for action recognition.  During the transfer 
learning (TL) process, it was used to identify the visual cues 
that occur over time and to remove the significant difference 
in motion variations between the PD and non-PD datasets. 
Using the task assembling method, they were able to extract 
patient-level severity scores from the MDS-UPDRS, which 
allowed us to efficiently estimate PD patients' severity using a 
single score. 

Using plantar pressure data, Shalin et al. [32] predicted the 
FOG in PD using a long short-term memory (LSTM). While 
walking a predetermined course that causes a freeze, data on 
plantar pressure was obtained from pressure-sensing insole 
sensors worn by several PD patients. They balanced and 
normalized the dataset, and then they extracted FOG instances 
to use as labeled features. Long short-term memory (LSTM) 
models were used to classify the observed data as PD. 

To use gait dynamics for the prediction of MS and PD, 
Kaur et al. [33] built a vision and DL pipeline. This model may 
be applicable to many walking tasks and subjects since it 
categorizes the strides of People with Multiple Sclerosis 
(PwMS), Healthy Older Adults (HOA), and People with PDs 
(PwPD). Before being used to test on walking-while-talking 
(WT) trials for prediction tasks, the ternary classifiers (HOA, 
PwMS, or PwPD) were trained on walking trials. The 
neurological gait analysis' posture estimate block was further 
enhanced by extracting 3D multi-view fused body keypoint 
locations from the recorded gait movies. 

An auxiliary PD diagnostic system was created by Chen et 
al. [34] with the help of wearable sensors, a GUI, and a 
Random Forest classifier refined by Genetic Algorithm. As 
part of the model, participants record their upper-body 
motions by wearing wrist sensors. Classifier performance is 
assessed using Leave-One-Out Cross-Validation (LOOCV), 
and the GA optimized RF classifier differentiates between PD 
and non-PD states. With the GUI, neurologists have a better 
basis for decision-making, which opens up several 
possibilities for PD auxiliary diagnosis. 

To automatically measure the motor severity of PD in 
finger tapping and postural stability, Yang et al. [35] used a 
DL model. A pose extraction stage, an extraction stage for 
domain knowledge, and a classification step make up this 
model. To estimate the position, DL approaches are used to 
extract the critical spots for postural stability and finger 
tapping. Several explicit features, previously specified by 

seasoned neuro-physicians, were extracted using domain 
knowledge extraction. Last but not least, a DL classifier was 
trained to infer the severity of PD using MDSUPDRS.  

A model for Parkinson's disease prediction was proposed 
by Sabo et al. [36] using zeno-instrumented walkways and 
video-based gait features in individuals with PD. This method 
included comparing gait characteristics calculated from color 
video in elderly individuals with PD using 2D human pose-
estimation libraries with those obtained from a Zeno-
instrumented sidewalk. They used the automated heel-strike 
detection method to examine the correlations as the subjects 
walked towards and away from the camera separately.  From 
Zeno and the video, they determined the number of steps and 
the change in coefficient step width using 2D pose-estimation 
libraries. When assessing the gait features of persons with PD, 
they sought for moderate to high positive correlations. 

To classify PD from gait analysis according to severity 
levels, Yang et al. [37] developed a ResNet-based model 
named PD-ResNet. The input gait features were enhanced in 
dimensions using a polynomial elevated dimensions approach. 
The next step was to convert the processed data into 3D format 
so that PD-ResNet could use it. To make it better at 
generalizing, they used data augmentation, early stopping 
technologies, and the Synthetic Minority Over-Sampling 
Technique (SMOTE). In the end, they built a better focused 
loss function to train PD-ResNet on the challenging instances 
and remove the aberrant samples to improve its classification 
performance. 

To predict the severity level of PD using gait analysis, 
Vidya & Sasikumar [38] built a CNN-LSTM network, which 
is a mix of CNN and LSTM. The main VGRF signals from the 
variability analysis were first decomposed using Empirical 
Mode Decomposition (EMD) to get the important Intrinsic 
Mode Functions (IMFs) that contained important gait 
characteristics. The CNN-LSTM classification model was 
trained using the prominent IMFs recovered from the chosen 
VGRF signals using power spectral analysis. To solve the 
issue of data overfitting in the classifier model, this model uses 
dropout techniques in conjunction with L2 regularization. To 
reduce tuning and memory requirements for PD diagnosis, the 
CNN-LSTM network employs the Adam optimizer. 

Aşuroğlu and Oğul [39] developed a multi-stage DL 
method for evaluating the severity of PD. Ground Reaction 
Force (GRF) signals are processed in this model using a 
number of time-domain and frequency-domain properties. 
The UPDRS values were then computed with the use of CNN 
with Locally Weighted Random Forest (LWRF), which also 
helps to decrease inter-patient variability in GRF signals. 
Predictions of PD detection severity levels were made from 
the UPDRS data.  

A hybrid DL method for FOG prediction in PD patients 
was developed by El-ziaat et al. [40].  The angular axis 
spectrogram data was used as input data in this model. 
Subsequently, three max-pooling layers were utilized to 
extract features from spectrogram images using the Conv-
LSTM. Various occurrence cases of fog episodes were utilized 
to aid in their prediction using the time-series episodes 
windowing and relay of angular axes feature. The 2D-CNN 
model was trained using the observed data to predict the FOG 
of PD patients. 

Dong et al. [41] developed static-dynamic temporal 
networks to evaluate PD severity by gait analysis. Initially, the 
pressure signals are collected by various sensors on the bottom 
of the foot, and each signal is assigned a distinct depth 
attribute. A parallel One-Dimensional CNN (1D-CNN) was 
used to convolve time series data to extract time-related 
properties. At each level of the sole, the computed numerous 
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dynamic time series signals of the force points transfer were 
analysed using two-dimensional CNN (2D-CNN) 
parallelization to identify motion features. Finally, the severity 
prediction and the weights of individual PD sensor inputs were 
combined using the attention method. 

To diagnose PD, Chen et al. [42] built a FuseLGNet model 
that combines local and global data.  One feature extractor 
uses three convolutional layers to extract spatial information, 
while the other uses the FuseLGNet model with a self-
attention mechanism to focus on relevant data when there are 
noticeable changes in gait. This method combines the two 
extractors. down order to extract the local features, the low-
level extractor zeroes down on significant gait alterations. The 
high-level extractor uses the self-attention mechanism of the 
transformer to acquire global features from the gait image. To 
detect PD, the data collected from both extractors was pooled. 

In their work on PD stage categorization, Pedrero-Sánchez 
et al. [43] created a two-stage DNN model. Two steps make 
up this model. The first step was to categorize the participants' 
actions using a semantic segmentation of the raw sensor 
information. The biomechanical variables that are deemed 
clinically relevant for functional assessment are obtained 
through this activity. Spectrogram images of the sensor 
signals, raw sensor signals, and biomechanical variables 
formed the three input branches of the neural network model 
used in the second step. The DNN model was trained using all 
this data to identify the initial three stages of PD. 

Kwon et al. [44] developed a spatial-temporal graphical 
CNN to assess FOG in Parkinson's disease patients. The 
recorded motion capture sequence was first segmented into 

discrete analysis windows. Then, the AT model and a 4-layer 
Adaptive temporal-spatial Graphical Convolutional Network 
(AGCN) were processed.  The AGCN model learned attention 
maps for the movement of individual limbs and joints, but the 
AT model predicted the most fundamental aspects of motion. 
Temporal Average Pooling (TAP) processing was applied to 
the final AGCN layer for the purpose of evaluating the 
temporal data. Predicting medication status, FOG score, and 
MDS-UPDRS-III total score will help with PD detection and 
diagnosis. 

Using a skeleton-silhouette fusion convolution network, 
Zeng et al. [45] created a method for quantifying gait deficits 
in PD through video analysis. The UPDRS gait scores were 
predicted using features extracted from the gait movies using 
the skeleton-silhouette neural network. To learn how each 
body part-related feature contributed to accurate gait score 
prediction, they graded the saliency values extracted from the 
convolutional network. Also, to improve low-resolution 
clinical rating scales for PD treatments, the additional features 
were extracted to contribute continuous gait impairment 
measurements. 

III. COMPARATIVE STUDY 

In this part, a comparative study is presented according to 
the benefits and drawbacks for PD detection using different 
DL methods which are briefly studied in above section are 
illustrated below Table II. 

  

Table II.  Comparison of Different PD Prediction with Different DL Algorithms 

Ref 

No. 
Techniques Merits Demerits 

Performance 

Evaluation 

[24] TFRs and CNN To evaluate the onset and offset of each step in 

the disease evaluation process, a robust 

technique was developed. 

The assessment of motor abilities was 

plagued by miss-classification mistakes 

caused by noisy, irrelevant data. 

Accuracy = 97.3% 

[25] GS-RNN, Graph RNN and 

Vertex-wise RNN 

Lower computational cost without 

compromising model learning capacity. 

 

This model produces  

incorrect predictions due to the key vertices 

which were not correctly located on patient 

subjects. 

Accuracy = 

82.5%; 

Sensitivity = 

83.8%; 

Specificity = 

82.3% 

[26] Deep 1D-Convnet A large number of older persons have started 

using this model to track and analyze their gait 

patterns as they go about their everyday lives 

The parameter configuration were not 

configured well which lowers the 

classifier’s performances 

Accuracy = 

85.3%; 

[27] SORT algorithm, TCNN, 

OF-DDNet 

Lower computational cost and robustness to 

analyze between two motion features 

This model trains on the small datasets 

which results in overfitting and uncertainty 

issues. 

F1-score = 0.83; 

AUC = 0.90; 

Precision = 0.86 

[28] 1D – Deep CNN, RNN, 

Squeeze-And-Excitation 

Blocks And Attention 

Mechanism 

High operating efficiency and better 

convergence rate 

Both the processing cost and the difficulty 

of interpreting the data made this model 

unsuitable 

Sensitivity = 

0.951; 

Specificity = 0.98; 

AUC = 0.931 

 [29] LSTM, Adam optimizer, 

Dropout and L2 

regularization 

This model leads to high generazability and 

avoids over-fitting issues. 

This model long training time and 

high sensitivity to random weight 

initialization. 

Accuracy = 

96.6%; 

Sensitivity = 

96.2%; 

Specificity = 

96.08%  

 [30] RSRNA, 

LSTM 

In addition to removing the bias that arises from 

using subjective grading scales, the model 

provides a more trustworthy and easy-to-

understand picture of how the disease is 

progressing 

Unfortunately, this model was unable to 

evaluate the system's ability to track a 

single person's development over time due 

to a lack of data from several samples. 

Area Under Curve 

(AUC) = 0.878; 

Ranking Accuracy 

= 81% 

 

 [31] 3D-CNN, TSA, TL This model obtains efficient results on both 

larger and smaller datasets. 

The gathered video samples includes many 

irrelevant perspectives, scene modification 

which lowers the severity score prediction. 

Average Accuracy 

= 81.1%; 

Matthews 

correlation 

Coefficient = 0.60 

 [32] LSTM 

 

Lower computational time and work This model was not partially automated and 

LSTM parameter were not fine-tuned 

properly  

Sensitivity = 

84.1%;  Specificity 

= 85.9%  
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Article [45] provides superior gait analysis-based PD 
prediction results, according to the aforementioned 
comparison study of articles [24–45]. To anticipate the initial 
phases of PD by gait analysis, a skeleton-silhouette fusion 
neural network was built, as described in the publication [45]. 
Two cell phones were used to record the participant's gaits, 
one from a sagittal view and one from a coronal view, to 
identify any gait problems. The videos were analyzed using 
Mask R-CNN to extract both human silhouettes and skeletal 
sequences. After that, the sequences of silhouettes were 
converted to Glei (Lone-Term Gait Energy Image) and the 
sequences of skeletons were organized into undirected pose 
graphs. A skeleton stream and a silhouette stream make up the 
two-stream network, and they both detect aspects of lower-
limb motion and parkinsonian gait in terms of space and time. 
Lastly, to forecast MDS-UPDRS gait scores, all features were 
fused using completely linked layers.  

A number of supplemental features were retrieved to 
validate the usefulness of the saliency values for the PD 
detection, and saliency values were derived to identify which 
body areas contribute more to correct gait prediction. 

IV. COMPLICATIONS UNDERTAKEN 

It is challenging to diagnose early-stage PDs. People with 
PDs can greatly enhance their quality of life by receiving 
treatment early on. Improving the accuracy of early PD 
diagnoses through the use of deep learning models is the main 
focus of this effort. 

V. CONCLUSION 

Many people around the world, especially the elderly, 
suffer from PD, a devastating disease. In healthcare, 
determining the exact and early stage of PD is a great 
challenge. These days, DL algorithms are being used more and 
more in healthcare for rapid and precise identification, 
especially when it comes to determining the severity of PD. 
To tackle the issue of incorrect diagnosis, numerous 
researchers have proposed various methods in the literature 
that utilize DL methodologies. This work presents a thorough 
evaluation of various DL approaches for PD, comparing them 
based on their abilities, shortcomings, and prediction 
efficiency. Key access for researchers to construct fully 
functional models that could improve PD prediction and 

 [33] DL model This model results in lower computational cost 

and adaptable to real-time applications 

This model's small sample size and gender 

variations among groups limits the 

generalized interpretations. 

Accuracy = 

79.3%; 

AUC = 0.93 

 [34] GA optimized RF, LOOCV, 

GUI 

This model decreases the need for neurologists 

and minimizing the time length required to 

diagnose a PD. 

The efficiency of this model was limited 

due to small scale of training data 

Accuracy = 94.4% 

 [35] DL model, Domain 

knowledge extraction 

This model It increases the interpretability while 

decreasing the requirement for a large volume of 

data. 

This model results with overfitting issues F1-Score = 88%; 

 

 [36] Heel-strike detection 

algorithm, Zeno 

instrumented walkway 

This model does a good job of highlighting the 

pros and limitations of quantitative gait 

measurement in PD patients using a consumer-

grade camera. 

Inconsistent step-to-stride time correlations 

led to inappropriate detection and increased 

generalizability error 

 

Sensitivity = 89% 

 [37] ResNet, SMOTE, 

Polynomial elevated 

dimensions technique, Focal 

loss function 

To minimize the likelihood of error, the 

movement signal was thoroughly examined 

throughout the model. 

The computational time was high as this 

method utilizes complex features in the 

training tasks. 

Accuracy = 

95.5%; 

Precision = 94.4%; 

 

 

 [38] CNN-LSTM, Empirical 

Mode Decomposition 

Lower computational time and memory space It provides lower efficiency on smaller 

dataset 

Accuracy = 

98.52% 

 [39] CNN-LWRF The features were selected with large variance to 

eliminate the classification problems. 

Model trained on limited Parkinson's 

patient population in gait dataset, 

addressing heterogeneity in disease severity 

and lower UPDRS values. 

Accuracy = 

99.5%; 

Sensitivity = 

98.7%; 

F1-Score = 99% 

 [40] Conv-LSTM, Max-pooling 

layers, 2D-CNN 

Robust to the noisy data and overfitting issues The parameters of the recommended DL 

models and windowing sizes were 

inadequately adjusted  

Accuracy = 94%; 

Precision = 

94.85%; 

Recall = 92.8%; 

 [41] 1D-CNN, 2D-CNN, 

Attention mechanism 

Because it uses a number of non-linear 

activation functions, this model is able to handle 

the gait classification problem 

High generalization error and slower 

convergence rate was resulted 

Precision = 92.5%; 

Recall = 

 90% 

 [42] FuseLGNet, Transformer's 

self-attention mechanism 

This model effectively reduces uncertainty, 

increases reliability and provides robustness 

solution for PD prediction issues 

This model necessitates large number of 

parameters and high computational  

complexity 

Accuracy = 

98.25%  

 [43] DNN, 

Biomechanical Variables 

This model identifies PD initial stages using a 2-

minute functional test, making it feasible in 

clinical context with easy instrumentation 

requirements. 

This model fails to 

 capture temporal signal dynamics and 

provides insufficient data resolution for 

analysis. 

Accuracy = 

99.64%; 

 

 [44] AT model and AGCN, TAP  This model is able to accurately assess FOG 

automatically because it captures complicated 

movement patterns in kinematic data 

The results were not generalizable, and the 

severity of FOG was not measured as a 

continuous outcome 

F1-Score = 96.8%; 

[45] Skeleton-silhouette fusion 

convolution network 

This model eliminates the common error 

accumulation and robust to the noises facts for 

by skeleton estimation 

This model needs to focused on the 

proximal-distal configuration which 

provides heavy margin on the skeleton 

steams 

Sensitivity = 

92.6%; 

Spearman Co-

efficient = 0.78 
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diagnosis and give individualized treatments for PD patients 
is the discussion of the discussed problems and performances. 
As a result, we will be utilizing state-of-the-art computational 
models for PD prediction in the near future. These models will 
analyze the stages of parkinsonian gait with linear 
interpolation and proximal-distal configuration adjustments. 
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