
DOI: http://dx.doi.org/10.26483/ijarcs.v15i1.7040 

Volume 15, No. 1, January-February 2024 

International Journal of Advanced Research in Computer Science 

RESEARCH PAPER 

Available Online at www.ijarcs.info 

 

© 2023-2025, IJARCS All Rights Reserved       5 

ISSN No. 0976-5697 

PREDICTING CARDIAC ISSUES FROM ECHOCARDIOGRAMS: A 

LITERATURE REVIEW USING DEEP LEARNING AND MACHINE LEARNING 

TECHNIQUES 

 

B.Arockia Valanrani  
Research Scholar, Department of Computer Science, 

Vellalar College for Women,  

Thindal, Tamilnadu, India. 

 

Dr.S.Devi Suganya  
Assistant Professor, Department of Computer Science, 

Vellalar College for Women,  

Thindal, Tamilnadu, India. 

 

Abstract: Cardiovascular disease (CVD) has a substantial impact on overall health, well-being, and life-expectancy. Echocardiography is a widely 

used imaging technique in cardiovascular medicine, utilizing various medical imaging technology to visualize heart chambers and valve’s motion 

activity. In order to diagnose and treat complicated cardiovascular problems, it takes high-resolution images of the heart and its surroundings. 

However, it has limitations such as long procedure times, multiple measurement values, complex analyses, individualized assessments, operator 

subjectivity, and wide observation ranges. This makes it challenging for sonographers to accurately detect and diagnose heart diseases. In recent 

days, Deep Learning (DL) is increasingly used in clinical computer-assisted systems for disease detection, feature segmentation, functional 

evaluation, and diagnosis. It is an alternate technique for accurate detection and treatment of cardiovascular disorders; it improves the diagnostic 

capacities of echocardiography by identifying pathological conditions, extracting anatomically significant data, measuring cardio-motion, and 

calculating echo image quality. This paper presents a detailed review of various DL frameworks developed to analyse different cardiac views using 

echocardiography for improving the prediction and diagnosis of CVD. At the outset, a variety of echocardiography systems linked with DL-based 

segmentation and classification are reviewed briefly. Afterwards, a comparison research is carried out to gain insight into the shortcomings of 

those algorithms and provide a fresh approach to improve the accuracy of cardiac view categorization in echocardiography systems. 
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I. INTRODUCTION  

When it comes to global mortality, cardiovascular disease 
(CVD) takes the cake. Reducing mortality and treating patients 
at an early stage both depend on early detection of CVD [1]. 
Echocardiography (echo), cardiac magnetic resonance imaging 
(CMRI), computed tomography (CT), and multiple gated 
acquisition scan (MUGA) are some of the imaging modalities 
used to diagnose cardiovascular disease [2].  Echo is the most 
popular since it is accessible, cheap, portable, and does not 
involve any kind of intrusive procedure. Echocardiography is a 
kind of ultrasonography that uses M-Mode imaging to record the 
heart's electrical activity while it beats, giving doctors a better 
image of the blood flow to the organ. [3]. Echocardiography 
captures the heart's natural motion by means of successive 
frames that stand in for a three-dimensional model. The 
following are the dimensions of the frame: width, height, and 
time [4]. The sample echocardiogram is shown in Fig.1. 

 

Figure 1. Echocardiography 

One option for the recorded echo data is a static image taken 
at a certain moment of the heart, while another is a video 
sequence that spans the whole cardiac cycle. The contraction of 
the ventricles (systole) and their relaxation (diastole) are the two 
phases that make up a single cardiac cycle [5]. Multiple echo 
modes, including A-mode, B-mode, M-mode, and Doppler, are 
available, each with its own set of advantages and disadvantages 
depending on the application [6]. 

• A-mode: The most basic kind of ultrasonography is 
known as A-mode. The echoes are shown on the screen 
as a function of depth while a single transducer scans a 
line across the body. Another use of A-mode ultrasound 
is therapeutic ultrasound, which allows for the precise 
targeting of harmful wave energy to a particular tumor 
or calculus. 

• B-mode: The B-mode ultrasound uses a two-
dimensional image that is created by scanning a plane 
across the body using a linear array of transducers all at 
once. 

• M-mode: “M” is for motion. As the organ boundaries 
that generate reflections shift in relation to the probe, m-
mode allows physicians to see and quantify range of 
motion via a quick succession of B-mode scans whose 
images follow each other sequentially on screen. 

• Doppler mode: Using the Doppler effect, sonographers 
may see the flow of blood and determine whether 
anatomical structures are approaching or evading the 
probe, as well as the relative speed of the two [7]. A 
blood flow jet crossing a heart valve is one example of 
a sample volume that may have its velocity and direction 
shown graphically by determining the frequency shift of 
that volume. Cardiovascular research and the diagnosis 
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of portal hypertension, which causes blood to flow 
backwards via the liver's vasculature, benefit greatly 
from this. Spectral Doppler, color Doppler, and power 
Doppler all provide visual representations of Doppler 
data. The data is often played back over stereo speakers, 
which create a unique, artificial, pulsating noise [8]. The 
overview of Doppler mode is shown in Fig. 3. 
 

 

Figure 2. Sample Illustration of A, B and M-mode 

 

Figure 3. Doppler Mode 

• Two Dimensional (2D) and Three Dimensional (3D) 
Echocardiogram: 2D echocardiographic imaging 
offers tomographic views of cardiac structures, guiding 
M-mode and Doppler echocardiograms. The scan line is 
swept across an arc, instead of a fixed line of sight. After 
complex manipulation, a 2D tomographic image is 
generated for display, providing a comprehensive view 
of cardiac structures [9]. 3D echocardiographic images, 
obtained through a transducer, are more accurate than 
2D echocardiography for localizing valvular 
abnormalities, Left Ventricular (LV) volume 
calculation, Right Ventricle (RV) assessment, guiding 
surgical interventions, and complex congenital heart 
disease. They also provide comprehensive assessment 
of vena contracta, improve valvular regurgitation 
quantification, and provide a more rapid evaluation of 
mitral valve area in mitral stenosis [10]. 

Various heart problems may be better seen and diagnosed 
when these modes are used together. Echocardiography imaging 
provides many perspectives of the heart by manipulating the 
transducer at various angles to record the heart's movements 
[11]. It is possible to identify and evaluate many anatomical 
structures after the doctor physically identifies the image. As 
shown below, there are three distinct perspectives that may be 
adjusted based on the position of the transducer: Location A, 
Location B, and Location C [12]. 

• There are four perspectives at Location A: apical 2 
chambers (A2C), apical 3 chambers (A3C), apical 4 
chambers (A4C), and apical 5 chambers (A5C) 
respectively [13]. 

• Parasternal long axis (PLA) is the only view in Location 
B [14].  

• A total of three perspectives make up Location C: 
parasternal short axis of aorta (PSAA), parasternal short 
axis of papillary (PSAP) and parasternal short axis of 
mitral (PSAM) respectively [15] 

In essence, the echocardiograph provides all of the 
aforementioned viewpoints with discriminative information 
based on spatial and temporal perspective.  Despite its usefulness 
in assessing heart anatomy and function, the non-invasive 
imaging technique known as echocardiography isn't without its 
drawbacks, including a lengthy procedure time, a large range of 
possible measurement results, complicated analysis, and a high 
degree of operator subjectivity. These limitations demand 
medical specialist training in echocardiography, as they increase 
complexity and user subjectivity, and necessitate specialized 
training for accurate diagnosis. 

Important quantitative metrics such as myocardial mass, 
wall thickness, left ventricular (LV), right ventricular (RV), and 
ejection fraction (EF) may be extracted from echo images by a 
critical process known as cardiac image segmentation [16]. On 
the most important anatomical structures, such as the ventricles, 
atria, and arteries, imaging techniques including CT, 
ultrasonography, and CMRI are utilized. Cardiac Image 
segmentation is a process that removes disturbances and edge 
enhancements, computes the region of interest (ROI) in echo 
images and estimates LV shape. When doctors do an LV shape 
estimate, it's quite similar to drawing an outline of the heart's 
components [17]. By segmenting the image data, this method 
guarantees that the final products are accurate representations of 
the underlying anatomy. The segmentation process in medical 
imaging yields an estimate of the chamber or wall form [18]. The 
intricacy of the heart's internal architecture, together with severe 
disruptions in echo images and poor contrast in fine structures, 
makes it difficult for the segmentation process to estimate the 
form of the heart valves. Evaluating the time-dependent 
development of LV reconstruction is extremely laborious 
because of the large estimate error caused by the substantial 
variations in LV outline created by various physicians. 

Researchers have recently made strides in employing new 
technologies, such as Artificial Intelligence (AI), to improve the 
clinical assessment of echocardiography using echocardiographs 
[19]. An appealing alternative for early detection and treatment 
of cardiovascular diseases, especially for lower complexities, is 
Machine Learning (ML) and Deep Learning (DL) models, which 
are AI tools that automatically segment and categorize a variety 
of cardio-pathological disorders. These include disorders 
involving the left ventricle, mitral regurgitation, and wall motion 
[20]. Generally, ML approaches are used to predict malignant 
disease development and treatment, improving diagnostic 
quality in soft-tissue examination tasks [21]. They provide 
efficient image interpretation, segmentation, and precise 
decision-making, improving cardiovascular care and reducing 
disparities [22]. In both intra- and inter-reader contexts, ML 
models exhibit a great deal of variability and are prone to errors. 
Fetuses and babies have smaller hearts with less defined borders, 
making manual assessment of cardiac parameters more difficult. 

When compared to the ML frameworks, DL models 
provides an efficient performance on heart diseases 
segmentation and classification. As an affordable, less 
subjective, and time-saving substitute for human intervention, 
DL systems are becoming more attractive. By using such a 
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system, the effort may be significantly reduced, variability 
between and among readers can be controlled, and the lack of 
cardiology experts in low-resource areas can be addressed [23]. 
The Convolutional Neural Network (CNN), the Recurrent 
Neural Network (RNN), the Long-Short Time Memory (LSTM), 
the Deep Belief Network (DBN), and many more are examples 
of DL models. By using important and distinctive characteristics 
found in pertinent medical data, these models aid doctors in 
making an unbiased and trustworthy diagnosis of the condition 
[24].  DL's primary goal is to improve the diagnostic capacities 
of echocardiography via the detection of pathological 
conditions, the quantification of cardio-motion, and the 
enhancement of echo image quality. It measures cardiac motion 
characteristics including myocardial velocity (MV), EF, and 
longitudinal strain (LS), and it aids doctors in classifying cardio-
views and detecting cardio-pathological illnesses like mitral 
regurgitation, left ventricle problems, and wall motion disorders 
[25]. In recent years, there have been several DL frameworks 
developed to segment, predict and classify various categories of 
CVD using echocardiograph (echo data\image).  

In order to improve heart disease prediction tasks, this work 
aims to provide a comprehensive overview of several DL models 
and how they are used to the segmentation and classification of 
cardiac images using echocardiograph. Additionally, in order to 
propose future scope, a comparison research is given to address 
the pros and cons of those models. The rest of the sections are 
prepared as follows: In Section II, we'll look at a variety of 
models that have been developed to extract cardiac images from 
echocardiography data and then categorize them. The evaluation 
of various models in comparison is presented in Section III. The 
whole research is summarized in Section IV, and future scope. 

II. LITERATURE SURVEY  

This section divides into two modules based and DL based 
segmentation and classification models using the cardiac views 
echocardiograph data. 

A. Survey on Cardiac Image Segmentation for Cardiac View 

Representation 

In order to fully segment the four chamber views of pediatric 
echocardiography images, Hu et al. [26] created a DL model that 
used Bilateral Segmentation Network (BiSeNet). The BiSeNet 
model included the Feature Fusion Module (FFM), a 
geographical route, and a context path. Two routes make up this 
model: one for capturing low-level spatial information and 
another for capturing high-level context semantic elements. 
Then, the FFM was introduced to integrate the features learned 
from these two paths for automatic pediatric echocardiography 
segmentation. 

To improve left ventricular segmentation in two-dimensional 
echocardiography, Leclerc et al. [27] suggested a Localization 
U-Net (LU-Net). Through end-to-end learning problems, this 
model seeks to detect the LV before segmenting the endocardial 
and epicardial boundaries. In this model, two U-Nets work 
together to train three tasks at once: first, U-Net segmentation in 
the region proposal network (RPN); second, U-Net segmentation 
on an ultrasound image cut from the localization network; and 
last, U-Net segmentation on the LV bounding box. Using this 
method, gradients may be transferred from the output to the input 
of the network. Additionally, an attention model was employed 
to enhance segmentation and clinical index estimation in 2DE. 

In order to quantify cardiac indices from echocardiography 
images, segment the heart based on regions, and retrieve 
echocardiograms in real time, Zamzmi et al. [28] created 
Trilateral Attention Network (TaNet).  This model learns the 
context link among regions of interest (ROIs) and uses a Spatial 

Transformer Network (STN) module to localize them. Then, the 
low-level, textural, and high-level characteristics that were rich 
were encoded using the lightweight routes. In order to segment 
the cardiac area, the feature embeddings from each of these paths 
were combined.  Finally, the TaNet was applied to jointly to 
segment, quantify and localize the cardiac indices. 

In order to get strain measurements from echocardiography 
footage, Deng et al. [29] created a DL model for myocardial 
segmentation and motion estimation. In order to segment and 
extract the target frame's centerline, the model employs a 3D 
cardiac segmentation network (3D-CSN). At each instant, the 
motion network generates a velocity vector based on its 
estimation of the movement field of pixels in the ROI. In order 
to estimate strain and segment cardiac tissue, these velocities 
compute global and local line arc lengths and propagate the 
centerline location. 

Lal [30] developed an automatic two-chamber segmentation 
model called TC-Signets for echocardiography. This model 
integrates U-Net with modified skip connection (MSC), Atrous 
Spatial Pyramid Pooling (ASPP) modules, squeeze and 
excitation modules (SEM). The U-Net model includes an 
encoder, bridge, and decoder for echocardiogram segmentation 
tasks. The ASPP extract multiple scale features by expanding 
convolutional layers. MSC was incorporated between the 
encoder and decoder levels to reduce the path size and 
convolutional blocks along with the skip connections. The SEM 
was used to apply the weighting functions to channels based on 
their importance to capture the relevant features from echo data. 

To segment echocardiogram sequences, Sirjani et al. [31] 
created EchoRCNN, a semi-automated neural network that 
combines a CNN cardiac image segmentation structure based on 
mask regions with a reference-guided mask propagation video 
object segmentation network. The network learns to distinguish 
between ventricles from ultrasound cardiac data. From the 
output of the network, the estimated EF for the LV was derived. 
The output area for robust image segmentation was finally 
identified for fractional area changes for the right ventricle.  

A DL segmentation model for myocardial T1 mapping was 
built by Bhatt et al. [32] utilizing MRI relaxation-based synthetic 
contrast augmentation.  To automate the segmentation of native 
and postcontrast T1 maps as well as the measurement of global 
and segmental myocardial T1 and ECV, this technique 
developed a fully automated segmental relaxometry method 
using synthetic contrast augmentation with neural 
networks (FASTR-SCANN). During the training and testing of 
CNN for the cardiac T1 segmentation task, the synthetic 
inversion recovery images were obtained from the fitted T1 
relaxation signal model. These images were generated with 
strong blood-myocardium contrast. 

The TF-Unet algorithm was proposed by Fu et al. [33] for 
the automated segmentation of cardiac MRI images. This 
approach uses U-Net and Transformer to automate the process 
of medical image segmentation, making it powerful. Full use of 
convolutional advantages in detail grasping was then achieved 
by using CNN for feature extraction and spatial encoding of 
inputs. Lastly, in order to make the most of Transformer for 
effective cardiac image segmentation, it was utilized to model 
features at various sizes and add distant dependencies to high-
level features.  

In order to analyze myocardial strain, Barbaroux et al. [34] 
used spatio-temporal CNN to automate the segmentation of 
long- and short-axis DENSE cardiovascular MRI. This 
technique involves training 2D+time nnU-Net models to 
segment the left ventricle myocardium using DENSE magnitude 
data in both short- and long-axis images. A dataset including 
short-axis and long-axis slices from both healthy individuals and 
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patients with different diseases was used to train the networks. 
When it comes to cardiac myocardial segmentation, our spatio-
temporal model delivers consistent performance throughout the 
cine stream.  

An open-source, fully-automated hybrid cardiac substructure 
segmentation system (OFHCSS) was developed by Finnegan et 
al. [35]. An automated segmentation of the whole heart, its 
chambers, major vessels, valves, coronary arteries, and 
conduction nodes was achieved by the use of a multi-stage 
approach that combined DL with multi-atlas mapping and 
geometric modeling. In order to guarantee the performance 
dependability for appropriately delineating cardiac 
substructures, the atlases used to create automated 
segmentations were incompatible with the assessment images. 

In order to separate the left heart's anatomy from 
echocardiography images, Mortada et al. [36] created a DL-
based method. In order to automatically segment an 
echocardiographic image into LVendo, LVepi, and LA, it was 
created as a mix of two convolutional neural networks, namely 
a U-Net and the YOLOv7 algorithm. To aid in cardiological 
clinical practice, doctors obtained and annotated apical two- and 
four-chamber images at end-systole and end-diastole for each 
patient. This allowed for automated segmentation of the left 
heart's anatomical features. 

B. Survey on DL Interpretation of Echocardiography for 

Cardiac View Classifications  

Shahin & Almotairi [37] developed a DL model for 
classifying and identifying physiological locations in 
echocardiography views. In the beginning, the neutrosophic sets 
retrieved spatial CNN characteristics from every frame of the 
echo-motion activity, and new temporal features were identified. 
After that, in order to get the deep features, this model triggers a 
deep ResNet model that has already been trained. Using the 
features concatenation approach, spatial and neutrosophic 
temporal CNN features were merged in the end. At last, the 
LSTM network was trained using the fused CNN features in 
order to locate and categorize echo-cardio images. 

Kusunose et al. [38] suggested a CNN model for accurate 
view classification of echocardiography images. This approach 
used the building and training of three CNN models to identify 
the echocardiographic images. As its input, the first model made 
use of the time-averaged image. The second model used selected 
images which were trained independently with and the averaged 
probability as input. Finally, the third model was employed 
alongside with the view classification model in the prediction 
phase to classify the echocardiography image views.  

Østvik et al. [40] developed the EchoPWC-Net model for 
motion estimation and improved myocardial function imaging in 
echocardiography. The model employs a CNN to distinguish 
between diastole and systole in B-mode images and a cardiac 
view classification network (CVC-Net) to follow legitimate 
acoustic windows. The U-Net architecture segments the 
myocardium, and centerline extraction extracts the myocardia's 
contour and endo and epi cardial borders. Finally, EchoPWC-
Net was used for motion estimation and enhanced myocardial 
function imaging in echocardiography. 

Khan et al. [40] presented a Cycle Generative Adversarial 
Network (GAN) model for developing the high quality 
electrocardiograph images simultaneously reducing the speckle 
noise and blocking artifacts. The model uses a generator network 
to minimize variation between fake and target image 
distributions, and an additional generator to convert clean 
images to real ones. Additionally, a block artifact model is 
integrated to eliminate block-artifact and speckle noise resulting 
in high-quality echocardiograph images. 

For the purpose of echocardiography video categorization, 
Feng et al. [41] proposed a spatio-temporal network with two 
streams of attention. The network consists of spatial context and 
motion streams, which input echo frames and optical flow. 
Visual features are extracted from each stream and fed into a 
CNN through a pre-trained auto-encoder and LSTM classifier. 
An attention module is employed to enhance task-related time 
steps for better network performance. The learned features are 
concatenated for normal and abnormal echo video classification. 

An echocardiography model for self-supervised cardiac view 
synchronization was created by Dezaki et al. [42]. The model 
makes use of two types of supervisory signals: 
interdependencies between different cines and intra-view self-
supervision for a single cine. The repetition counting method 
(RepNet) was used to approximate a single period for 
synchronization. The encoder network improved the 
embeddings for temporal synchronization, and a 2D network 
was used to insert temporally stacked frames into a 3D 
convolutional network.  Finally, the ResNet model was adopted 
to classify and synchronize 2DE videos. 

Using a combination of DL and natural language processing 
(NLP), Hagberg et al. [43] created a model that can identify the 
size and function of the RV from echocardiographic images. A 
view classifier was created to choose the 4-chamber or RV-
focused view, and this model used 2DE video loops to determine 
the size and function of the RV. Annotation by humans and NPL 
algorithms worked together to accurately categorize RV 
functions and sizes. 

Evain et al. [44] developed the EchoPWC-Net model for 
motion estimation using echocardiography. A Convolutional 
Neural Sub-Network (CNSN) estimator and normalized cross-
correlations from 2DE images are used by the model to forecast 
dense displacement maps. By using prior flows and dilation 
convolutions, the estimator improves flow accuracy and 
iteratively obtains a displacement field that contains a fourth of 
the input image. In order to improve the network's parameters, 
which are used to detect motion in 2DE images, a multi-scale 
loss function and the calculated distance between intermediate 
estimated flows are used. 

In order to automatically recognize regional wall motion 
abnormalities (RWMAs) in echocardiography data, Lin et al. 
[45] built a DL model for myocardial infarction patients. 
Initially, the view selection of myocardium was processed using 
Xception model. Next, LSTM-Unet separates the Xception 
output frames. In the end, the segment and the original video 
were used as inputs in the 3D-CNN model, which can identify 
and categorize abnormalities in regional wall motion and 
quantify heart function in myocardial infarction. 

Darmawahyuni et al. [46] developed a generalization model 
of deep learning for ECG signal categorization in intra and inter-
patients’ scenarios. This technique reduced artifacts and noise in 
ECG data by pre-processing them using discrete wavelet 
transforms. The last step was to segment the pre-processed data 
according to rhythm and beats. This allowed us to detect not only 
the next heartbeat, but also the waveforms included inside each 
beat. In the end, the ECG signal classification process made use 
of 1D-CNNs for feature extraction and classifier learning the 
properties of each rhythm and beat event. 

To identify mitral regurgitation (MR) in children using 
echocardiography, Edwards et al. [47] built a CNN model. In 
order to identify the perspective and the existence of MR, the 
echocardiograms were tagged using clip and frame. Using the 
annotated data, two CNNs were trained to categorize parasternal 
long-axis color Doppler images according to view and the 
presence of any MR, including physiological MR. Frames were 
used to create the view classification model for MR detection. 
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Tokodi et al. [48] suggested a DL model to analyze the right 
ventricular EF (RVEJ) using 2DE. This model utilizes 2DE 
videos and 3DE RVEF values as input. The RVEF was predicted 
using the pre-processed image sequences and their associated 
binary masks by means of the spatiotemporal neural networks. 
Each frame's characteristics were extracted using the ShuffleNet. 
To combine the data and assess changes over time in the image 
sequence, a temporal convolutional layer was used. The last step 
was to use occlusion sensitivity visualization (OSV) to hide parts 

of the input image and see how much of an effect the specified 
area had on RVEJ prediction. 

III. COMPARATIVE ANALYSIS 

Tables 1 and 2 below offer a comparison of the pros and cons 
of using various DL methods for segmentation and classification 
in cardiac views derived echocardiography, as discussed briefly 
in the previous section.  

Table I. Comparison of Different Segmentation Models for Cardiac Views Interpretation 

Ref No. Technique Merits Demerits Performance Evaluation 

[26] BiSeNet, FFM This model effectively 

removes the presence of 

shadowing and inter-

variability in the images. 

It takes significant amount of 

time to train the model 

Accuracy = 91.3% 

Precision = 90.5% 

Recall = 92.8% 

Dice Coefficient (DC) = 

0.908; 

Jaccard Index (JI) = 0.832 

[27] LU-Net, RPN, 

Attention model 

This model was highly 

optable to apply in the real 

time medical treatment 

applications 

The parameters were 

sensitive and the execution 

time was high 

Correlation Coefficient 

(CC) = 0.96; 

Mean Absolute Error 

(MAE) = 8.1; 

Limit Of Agreement (LOA) 

= 1.7 

[28] TaNet, 

STN, 

Lightweight 

Pathways 

Retrieves high-quality 

echos, segmenting complex 

chambers, high inference 

speed 

This model was slightly 

automated and trained with 

limited dataset 

F1-Score = 0.96; 

Intersection Over Union 

(IOU) = 0.97; 

CC rate = 0.99 

[29] 3D-CSN, 

Motion 

Network, 

Highly automated, 

enhanced reproducibility, 

high processing speed 

This model required large 

synthetic data for training and 

slightly opts to overfitting 

issues 

Average DC = 0.82; 

End-point error = 0.05 per 

frame 

Spearman 

correlation = 0.90 

[30] U-Net, MSC, 

ASPP, SEM, 

This model eliminates the 

training issues like 

vanishing gradients and 

degradation problems. 

The parameter were not  

optimized properly which 

yield high generalizability 

error 

Accuracy = 95% 

F1-Score = 94% 

DC = 0.92; 

JI = 0.83 

[31] Mask region-

based CNN, 

Video object 

Segmentation 

Network. 

This method aids 

radiologists in efficiently 

tracking heart function over 

time. 

Error propagation was high 

throughout the 

echocardiography series 

Precision = 97.03 ± 0.01; 

Recall = 93.14 ± 0.04; 

 Dice Score = 94.97 ± 0.02 

[32] FASTR-

SCANN, 

Postcontrast T1 

map 

segmentation 

model 

High network performance 

and lower error rate 

Manual expert labelling of 

training data needs to be 

devised properly 

Accuracy = 92.8%; 

 

[33] CNN, U-Net 

and 

Transformer 

Data interpretation and 

convergence rate was 

efficient 

 Learning rate was 

insufficient which decreases 

the training speed of the 

model 

Dice score = 91.72%; 

Accuracy = 87.45% 

[34] 2D+time nnU-

Net, CNN 

Lesser computational 

complexity and burden 

However, this model provides 

poor contrast between blood 

and myocardium with 

potential spiral streaking 

artifacts. 

DICE = 0.83 ± 0.05; 

 

[35]   DL, multi-

atlas mapping 

and geometric 

modelling 

Even for the smaller 

structures, robust and 

anatomically consistent 

segmentations were 

provided. 

The acquisition parameters 

were consecutively low so 

specific substructures were 

not contoured properly 

Accuracy = 79%; 

Dice Score = 0.89; 

F1-Score = 78% 

[36] YOLOv7, U-

Net,   

This method was easily-

reproducible and machine-

independent 

High manual leads to 

maximized  

inter-cardiologist variability 

and subjectivity  

Dice = 87.57%; 

Accuracy = 88% 

 

 

Table II. Comparison of Different DL Associated Echocardiography Model for Cardiac Views Classification 

Ref No. Technique Merits Demerits Performance Evaluation 
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[37] CNN, ResNet, 

LSTM 

The suggested technique 

has significantly reduced 

the time cost required for 

training and feature 

extraction. 

The hyper-parameters were 

not regularized or configured  

properly results with high  

classification errors 

Accuracy = 96.3%; 

Precision = 96.4%; 

Sensitivity = 95.7%; 

Specificity = 99.4% 

[38] CNN, View 

classification 

model 

Cost-effective and 

reduced training time 

This model required large 

clinical data to train the 

model 

F1-Score = 94.1%; 

Error rate = 1.9%; 

 

[39] EchoPWC-Net, 

U-Net, CNN, 

CVC-Net, 

Centreline 

Extraction 

This model reduces the 

image noises and robust 

to overfitting issues 

 

It restricted the values within 

the measured strain making it 

harder to spot localized 

problems. 

Runtime = 18.9 ± 0.7 

frames per second (FPS); 

Standard 

Deviation (SD) = 0.16 

[40] CycleGAN, Block 

artifact model 

Rapid reconstruction 

time, low powered high 

visual quality  and 

enhanced resolution effect 

on echocardiograph 

images 

The convergence rate was 

slower and in some cases the 

training was unstable 

Average Reconstruction 

Time = 6.59 milliseconds; 

Peak Signal-To-Noise 

Ratio (PSNR) = 26.16; 

[41] CNN-LSTM, 

Auto-encoder, 

Attention Module 

This model works well on 

larger dataset  with lesser 

complexities 

Increase in the data, increases 

the significance of high 

misclassification error 

Accuracy = 91.18%; 

Sensitivity = 94.11%; 

Specificity = 88.24 

[42] RepNet, 2D 

network, 3D 

convolutional 

network, ResNet 

 

Accurately, it can 

generalize to views that 

weren't in the training set. 

The technique assumes no 

specific echo view making it 

insensitive to different cardiac 

views. 

SD = 4.6; 

MAE = 3.9 

[43] NLP, DL model Rapid and cost-effective 

expansion of training 

dataset utilized for 

medical diagnostic 

domains with limited 

labeled image data 

Biased selection towards 

higher-quality as the view 

classifier couldn't find 

relevant views for image 

classification. 

Accuracy on RV size = 

83%; 

Accuracy on RV function 

= 82% 

[44] EchoPWC-Net, 

CNSN 

Better generalization 

ability and eliminates  

overfitting issues 

Hugh computational time and 

lower learning rate 

Mitral Annular Plane 

Systolic Excursion 

(MAPSE) = 0.85; 

Global Longitudinal Strain 

(GLS) = 0.71 

[45] Xception, LSTM-

UNet, 3D-CNN 

High data interpretability 

and memory capacity 

The well-defined boundaries 

close to the imaging area's 

edge yielded a relatively 

lower IOU. 

Accuracy = 94%; 

DC = 89%; 

Area Under Curve (AUC) 

= 91% 

[46] 1D-CNN This model was much 

robust to  

uncertainty and noisy 

images  

The partition of the different 

wave categories from the 

ECG signals was not 

conducted before the 

categorization. 

Accuracy = 92.17% 

Sensitivity = 96.97%  

Precision = 92.23%; 

F1-score = 94.39% 

[47] CNN 

model 

This model result with 

lower computational cost 

and time 

Higher  generalization error 

due to smaller training data 

Accuracy = 89%  

Precision = 93%; 

Recall = 86%; 

F1-Score = 88% 

[48] ShuffleNet, OSV, 

temporal 

convolutional 

layer 

Dynamic clinical tasks, 

cost-effective and less 

memory space 

Retrospective design using 

3DE data might cause 

selection bias in RV analysis 

due to limited subjects. 

Accuracy = 77.4%; 

AUC = 0.92 

 
 

IV. RESULT AND DISCUSSION 

This section examines the literature on efficient procedures 
and compares their performance to find out how they stack up 
against one another. For the cardiac image segmentation, 
BiSeNet [26], U-Net [30], FASTR-SCANN [32], U-Net-
Transformer [33], OFHCSS [35] and U-Net-YOLOv7 [36] are 
considered for the evaluation. Then, CNN-ResNet [37], CNN-
LSTM [41], Xception [45], 1D-CNN [46], CNN [47] and 
ShuffleNet [48] are taken for the cardiac view classification. For 
the evaluation, both segmentation and classification compared in 
terms of accuracy.  

Accuracy: It is the proportion of the number of exact 
identifications of positive and negative cases over the total cases 
tested. 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 (𝑇𝑃)+𝑇𝑟𝑢𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒 (𝑇𝑁)

𝑇𝑃+𝑇𝑁+𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 (𝐹𝑃)+𝐹𝑎𝑙𝑠𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒 (𝐹𝑁)
 (1) 

Eqn. (1) states that TP is the number of positive instances 
that were properly recognized as normal, and TN is the number 
of negative cases that were correctly identified as abnormal. 
Another difference between FP and FN is that FP represents the 
amount of false positives while FN represents the number of 
false negatives. 

Fig. 4 shows the comparison of various DL based 
segmentation models in terms of accuracy. It is observed that the 
U-Net [30] 4.05%, 2.37%, 8.63%, 20.25% and 7.95% higher 
than BiSeNet, FASTR-SCANN, U-Net-Transformer, OFHCSS 
and U-Net-YOLOv7. This results indicates that the U-Net [30] 
has better segmentation accuracy than other models as it 
employs integrates U-Net with MSC, ASPP and SEM. The 
model includes an encoder, bridge and decoder for 
echocardiogram segmentation extracting multiple scale features 
through convolutional layers, and incorporating MSC to reduce 
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path size and convolutional blocks. SEM applies weighting 
functions to channels to capture relevant features from echo data 
for automatic segmentation task. 

 

 

Figure 4. DL based Segmentation models for cardiac view Representation 

Fig. 5 shows the comparison of DL based classification 
models in terms of accuracy. It is observed that the CNN-ResNet 
[37] model 5.62%, 2.45%, 4.48%, 8.20% and 24.42% higher 
than CNN-LSTM, Xception, 1D-CNN, CNN and ShuffleNet. 
This results indicates that the CNN-ResNet [37] has better 
classification accuracy than other models as it employs CNN and 
LSTM model to classify cardioviews and identify three cardio 
locations. The deep CNN features were extracted using pre-
trained networks, and the concatenation method was used to 
integrate the features. The next step was to use the ResNet 
classifier to locate and categorize each echo-clip into cardio-
views. This model saves time and costs for training and features 
extraction, providing a rapid cardio-views classification model. 

 

 

Figure 5. DL based Classification models for cardiac view identification 

V. CONCLUSION 

Echocardiography is a common screening modality for 
healthy, asymptomatic patients and diagnostic tool for complex 
CVD.  Several approaches have been offered in the literature by 
various researchers employing DL techniques to address the 
problem of erroneous diagnosis. In this paper, a comprehensive 
review on different DL methods for segmenting and classifying 
the cardiac views using echocardiograph according to their 
strengths, weaknesses and prediction efficiencies are provided. 
The discussed challenges and performances are key access for 
the researchers to develop fully functional models that could 
help in improving in CVD prediction and diagnosis and provides 
ultimately personalized treatments for heart disease patients. 
Therefore, in the future, researchers will concentrate on building 
more complex computational models for use in rapid mobile 
apps that can diagnose cardiac conditions and abnormalities 
utilizing electrographic data in real-time at the point of 
treatment. 
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