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Abstract: In a process, to ensure increased reliability and better availability, it is very important to detect any anomalies that refer to any abnormality 

observed in the behaviour of a standard process. The breakdown of service(s) eventually leads to production loss, and at the same time, a system 

that is unreliable brings lots of challenges to the operations team.  Anomaly detection plays a significant role to ensure that an application is 

reliable, secured and available for user requests. For the overall performance optimization of a cloud microservice based application without any 

disruption in service, and identification of possible security threat, it is much essential that the anomalies must be detected and responded to in 

time. In real life large microservice based production infrastructures environments, even though ample instance of normal activities is available, it 

is not possible to predict and create a dataset of anomalies. So these kind of data are not suitable for a supervised two-class classification. In this 

work, unsupervised one-class approaches such as Local Outlier Factor, Isolation Forest, and One Class SVM are used to find anomalies. On 

experimentation these models have obtained a high accuracy of 98% to 99%. On comparing the performance of the models, One-Class SVM is 

found to produce significantly higher number of False Positives in comparison to other two considered models. 
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I. INTRODUCTION 

In the last decade, a paradigm shift from monolithic to 
microservice architecture has been observed in the IT 
industry. In a microservice architecture, the application is built 
up of several loosely coupled discrete units of functionality 
called services, each offering a particular functionality. 
Application programming interfaces (APIs) are used over the 
network to establish an interaction between the services.  As 
the development, deployment, and scaling of services can be 
done independently, it offers much flexibility and contributes 
significantly to the implementation of continuous 
integration/continuous deployment (CI/CD). Despite its 
numerous benefits, microservice-based systems are quite 
complicated, and these complexities of this modern-day 
architecture have grown to such an extent that it is not feasible 
to detect any faults, like malfunction of a specific service or 
hardware or any possible threat through manual inspection 
[10]. Monitoring and detecting anomalies has become really 
challenging due to the distributive and dynamic nature of the 
micro-services.  

Detection of any pattern that is unusual or any behaviour 
that is abnormal within a cloud-based microservices 
architecture is referred to as anomaly detection on cloud 
microservices. Within a micro-service ecosystem, anomalies 
are raised when a deviation from the regular pattern is 
observed, indicating either a performance problem, any kind 
of security breach, or any other potential issues. In a cloud-
based microservice environment, data can be collected from 
several sources like network traffic, traces, metrics, system-
generated logs, etc., to find out the occurrence of any atypical 
or uncommon activities or behaviour exhibited by the system. 
If the DevOps team and the system administrators can be 
notified immediately regarding anomalous system behaviour, 
it will help them to mitigate potential risks and threats by 
taking appropriate and immediate action [13].  

Some of the types of anomalies those are commonly 
found in cloud microservices environments are discussed 
below to get an idea of the vast range of things that can go 
wrong. An exceptional drop or spike is noticed in disk, 
memory, CPU or network like resource consumption, 
degradation in handling service request in terms of high 
response time or latency are known as performance anomaly. 
Due to some misconfiguration or bugs in code, sometimes 
repetitive error patterns are logged, and 404, 500 like HTTP 
error codes are significantly increased, called error anomalies. 
Under security anomalies, mostly the indication of attacks or 
security breaches are lodged. For example, spike in network 
traffic, multiple failed login attempts, attempt to access 
sensitive data without authorisation, abnormal user behaviour 
with unauthorized API call, unexpected access attempts, etc. 
Indication of service interaction-related issues or introduction 
of a new dependency can lead to a change in the dependency 
graph; similarly, the number of requests between services can 
unusually change due to some missing dependency leading to 
dependency anomaly. Degradation in performance noticed 
due to changes made in the deployment pattern, configuration 
settings or sometimes due to any kind of misconfiguration in 
cloud services or microservices comes under configuration 
anomalies.  

Scalability anomalies are raised when the service seizes 
to perform under high load or when system efficiency is 
affected due to under-provisioning or over-provisioning of 
resources. Impact on User experience is observed due to 
unavailability of service caused by critical component failure 
leading to cascading failures across the system. This type of 
situation raises outage anomaly leading to unprecedented and 
prolonged service outages. Lastly a degradation in 
performance can also happen due to resource leak anomalies 
where there is an incessant resource consumption even when 
the microservice is not active [13].      

In the conventional model-based method for anomaly 
detection, one must have a clear understanding of all the 
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technicalities used in the entire process, which is very difficult 
to implement in case of the modern complicated technology 
and infrastructures. Data-driven techniques have emerged and 
gathered considerable attention recently to cope with the 
complexities of the current systems [6]. 

In this work, we have implemented three anomaly 
detection models based on unsupervised methods – local 
outlier factor, isolation forest and one class SVM respectively 
to detect anomalies from logs generated from microservices 
and made a comparative analysis of their performance.  The 
remaining of the paper is organized as follows: in section II, 
related work in the field of anomaly detection using 
unstructured log analysis are discussed. A brief insight on the 
Local Outlier Factor, Isolation Forest and One Class SVM 
model's working principle is discussed in section III. In section 
IV, our proposed model is discussed followed by the 
experimentation, results and comparative analysis in section 
V. The conclusion is stated in section VI with future scope of 
work. 

II. RELATED WORK 

In this section, the works related to anomaly detection 
mostly using unsupervised approach is discussed. 

Kun Lun Li [1] applied One Class SVM for the purpose of 
Intrusion Detection on the abstracted user audit logs, 1999 
DARPA.  As per their work, when clustering, KNN, Naïve 
Bias, SVM-light and One-Class SVM like algorithms were 
applied, One-Class SVM has shown the best result. Das et al., 
[9] proposed a distributed algorithm for detecting outliers in 
the data collected from various sites without moving them 
physically into a single location. This algorithm was first of its 
kind for anomaly detection for vertically partitioned data. 
They demonstrated the performance of their proposed 
methods experimenting on CMAPSS and NASA MODIS 
satellite image dataset respectively. They claim to identify 
99% of the outliers by only using 1% communication towards 
data centralization in comparison to centralized method.  

Jiang et al. [7] used One Class SVM for risk analysis and 
anomaly detection of equipment in Modern Supervisory 
Control and Data Acquisition (SCADA) systems by 
monitoring the performance of communication among them. 
Once trade-off parameters and slack variables were used to 
solve an optimal problem, most of the normal data were 
captured by One-Class SVM in a "small region" and a very 
small portion of data was flagged as anomalies. They created 
different classes to generate alarms at different levels by 
clustering these anomalies. Yin. S. et al. [6] proposed a 
modified version of One-Class SVM that they called robust 1-
class SVM to suppress the effect of outliers. After introducing 
appropriate distance metrics and respective threshold, robust 
1-class SVM was applied which the researchers have claimed 
to give satisfactory results. They stressed on the fact that if the 
training dataset has outliers, in that case robust 1-class SVM 
performs better for fault detection. Maglaras et al. [5] 
proposed an IT-OCSVM mechanism in a distributed SCADA 
network to provide accurate data regarding the time and origin 
of an intrusion as part of a distributed intrusion detection 
system. They embedded an aggregation procedure to decrease 
the overhead of IT-OCSVM so that it becomes suitable to be 
incorporated into a soft real-time system. They claim the 
proposed system detects all the induced attacks simulated 
while producing the minimum number of final alerts.  

Xiao et al. [4] proposed vnuOCSVM to deal with the 
outliers available in the training dataset. They used the UCI 
benchmark dataset for experimentation. In comparison to 
other similar methods, the researchers claim vnuOCSVM to 

obtain higher g-mean and AUC values and give a better 
description of the target class, hence achieving a higher fault 
detection rate with lower false alarms.  Khreich et al. [3] used 
one-class SVM with data extracted from system call traces 
combined with frequency. They obtained several n-grams of 
variable length by segmentation of the system call traces 
which were further mapped into sparse feature vectors of fixed 
size. To reduce the number of False Positives in class 
decomposed data while detecting anomalies, Haidar et al. [8] 
proposed an ensemble-based adaptive one-class and isolation 
forest framework with progressive artificial oversampling 
method.  

To detect anomalies for microservices Cao et al. [14] 
proposed Conditional Random Field (CRF) based method 
where they collected several system parameters such as 
bandwidth occupancy, memory and CPU utilization etc., as 
the characteristic values for the sequence of observations. 
They generated the microservice fault matrix by labelling the 
abnormal types of the sequences occurred for their 
corresponding feature values. Nguyen et al. [2] used log data 
extracted from Juniper router devices and to detect anomaly, 
they applied the One-Class SVM model with different kernels. 
An unsupervised anomaly detection system was proposed by 
Farzad et al. [11], where two deep Autoencoder networks 
were used for feature extraction and Isolation Forest was 
implemented for prediction of positive data. The researchers 
have used Thunderbird, Openstack and BGL datasets for 
experimentation. Nobre et al., [12] investigated the 
performance of Multi-Layer Perceptron (MLP) from detecting 
anomalies in a microservice environment both at the 
application and service level. 

III.     PREREQUISITES 

This section describes the background of our problem 
statement and working principles of the models used. 

A. Background 

In this work, we have proposed methods to detect any 

deviation if occurred in a real life production scenario where 

all activities are periodical in nature called scheduled cron 

jobs. Here activities are tracked by their foot prints. For 

instance, "Source 'A' makes SSH on PORT 80 on 

example.com" is an example of an activity that occurs once 

at 10 AM every day. If for any day this activity happens thrice 

at different times, it can be treated as an anomaly. So, an 

anomaly can be raised of the observed frequency deviates 

from the set threshold. If any event has occurred for the first 

time, as there is no past record of the same, it will also be 

marked as an anomaly.  

B. Local Outlier Factor(LOF) 

 
Local Outlier Factor is a score computed by the LOF 

algorithm indicating the degree of abnormality amongst the 
recorded observations [15]. Here, samples with significantly 
lower density than its neighbours is detected as anomalies for 
which, deviation from local density of the data points are 
measured with reference to their neighbours. First average 
local density for the k-nearest neighbors is calculated which is 
compared with the instance's own local density to find out the 
LOF score. In case of a 'normal' instance, both the densities 
should match whereas for 'anomalies', a much smaller local 
density is observed for the test instance. The number of 
neighbours chosen is based on two factors: 1) it must be more 
than the threshold of objects a cluster must contain 2) an 
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assumption of maximum objects that can be considered as 
potential local outliers. In general practice the number of 
neighbours is by default fixed at twenty as it is difficult to get 
an exact value for the above mentioned two factors. This 
algorithm is best suitable for cases where different samples 
have varying underlying densities, as instead of calculating the 
degree of isolation of the sample itself, the isolation factor is 
calculated with respect to the nearest neighbours. 

The following steps that can be adopted while applying an 
LOF model are [18]: 

1) The distance between the observation point P and all 
neighbouring points are calculated using Euclidean or 
Manhattan like distance function. 

2) Based on the value decided for k-nearest neighbour, the 
'k' closest points are found. 

3) Using the following equation (1) the local reachability 
density can be found. 

 
     (1) 

 
 

where, for calculation of reachable distance the following 
equation (2) can be used. 
                                                                                   
                                                                                       (2) 
 
where, 𝑁𝐾(𝑂) denotes the number of neighbours 
4) The LOF can be calculated as depicted in equation (3). 

 
  

                          (3) 

 

A sample anomaly detection based on LOF is shown in 
Fig. 1. 

 

 
Figure 1. Detection of Local Outliers based on density 

C. Isolation Forest (IF) 

Random Forest algorithm is considered one of the 
efficient ways to perform anomaly detection on high-
dimensional dataset. IF is a specific implementation [16] of 
Random forest that 'isolates' observations. IF selects a random 
split value within the minimum and maximum values of the 
randomly selected feature from the observation instance. As a 
tree-structure can be used to represent a recursive partitioning, 
the length of path from root to terminating node represents the 
number of splits needed for isolating a sample. The average 
path length of a forest constituting such random trees acts as 

the decision function and can be used as a measure of 
normality. In case of anomalies, the resultant paths after 
random partitioning, are considerably short. Thus, in a forest 
of random tree, if for particular samples shorter path lengths 
are produced, they can be considered as anomalies. 

 The following algorithm can be used to build an 
Isolation Forest [20].  

Let a set of d-dimensional points be represented as 𝑋 =
{𝑥1, … , 𝑥𝑛}    and 𝑋′ ⊂ 𝑋 . A data structure with following 
properties can be defined as an iTree (Isolation Tree). 

1) ‘T’ must be either an external leaf node or it can be 
any internal node with exact two children 𝑇𝑙 , 𝑇𝑟  and 
one “test”. 

2) The components of a “test” node are 𝑏  (attribute) 
and 𝑎 ( split value) where 𝑏 < 𝑎  determines path to 
either 𝑇𝑙 or 𝑇𝑟 . 

For building an iTree, 𝑋′ is recursively divided by a 
selected attribute 𝑏  and a split value 𝑎  until any of the 
following conditions occur: 

1) The node is remained with only one instance. 
2) Identical values occur for all data in the node. 
Fig. 2 shows anomaly detection using IF [19]. 
 

 
Figure 2. Anomaly detection using IF 

D. One Class SVM (OC-SVM) 

Support Vector Machines normally find outliers by 
tracing the presence of any additional data outside the different 
classes formed from the input data. In OC-SVM, all the input 
data belong to only a single class. Thus, for anomaly detection 
for the available data a decision boundary is decided based on 
Schölkopf's hyperplane method or Tax and Duin's 
hypersphere method. Any data that remains beyond the 
boundary is tagged as anomaly. The hypersphere method is 
also known as Support Vector Data Description (SVDD) [17]. 
For better capture of anomalies, SVDD forms a spherical 
boundary with a minimized volume in the feature space 'F' 
using the input data. (c, r) represent the hypersphere; 'c' 
denoting the center of the sphere and 'r' being the radius 
denoting the distance of support vector placed on the boundary 
and the center with a precondition as r>0. The volume 
minimization is done using the equation (4) using constraints 
stated in equation (5). All support vectors are combined 
linearly to form the center. Even though for any point '𝑎𝑖 ', its 
distance from the center must be less than 'r', 𝜉𝑖 is introduced 
as a slack variable (depicted in equation (6)) with the penalty 
parameter as C for creating a soft margin.    

 

  min
𝑟,𝑐

𝑟2 + 𝐶 ∑ 𝜉𝑖
𝑛
𝑖=1                                                             (4) 

𝑆𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 ∶ 

‖𝑎𝑖 − 𝑐‖2 ≤ 𝑟2 + 𝜉𝑖     ∀ 𝑖 = 1, … , 𝑛                                  (5) 

𝜉𝑖 ≥ 0 , ∀ 𝑖 = 1, … , 𝑛                                                        (6)                              
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Testing for the detection of outlier of a new data point,𝜒 can 

be done after equation (7) is introduced with Lagrange 

multipliers 𝛼𝑖. 

‖𝜒 − 𝐴‖2 = ∑ 𝛼𝑖𝑒𝑥𝑝 (
−‖𝜒−𝑎𝑖‖2

𝛿2 )𝑛
𝑖=1 ≥  − 𝑟2

2⁄ + 𝐶𝑟       (7) 

Here, 𝛿 ∈ 𝑅,  is a kernel parameter. 
 

Fig, 3. depicts the separation of data points using 
OC_SVM method [21]. 

 
Figure 3. Detection of anomalies using OC-SVM 

IV. PROPOSED METHODOLOGY 

The steps followed to create the dataset from real life 
loglines and the proposed models are discussed in this section. 

A. Dataset Preparation 

For dataset preparation, we have used the steps proposed 
by Behera et al. [22]. A summary of the steps is given below. 

Step 1: Initial data collection is done from a HIDS server 
to gather structured and tagged log data and an N-dimensional 
dataset is created. The logs generated are basically for any 
deflection that is found on the rule id defined by HIDS server.  

Step 2: Without compromising with the data quality, the 
created dataset is reduced to a 4-dimensional feature-set, 
source host, time slot, frequency and unique profile identifier 
using the following method. 

The first feature extracted is the source host (the source 
from which the event has generated). For handling the high 
volume data, a temporal division is made where the 24 hours 
logs are divided into smaller time buckets. For a specific user, 
the complete instance of the dataset is extracted for a single 
time bucket that acts as the second feature. Next a feature 
selection method is applied to get the most contributing 
features. A common format is created by taking the union of 
all unique components across rule ids. A set of all instances 
under a single rule ID is merged, and a new feature is added 
as frequency - the third feature. The footprint of a user starting 
from the log-in till the time he logs out is stored and 
represented as a profile identifier serving as the fourth feature. 

B. Models Used 

In an archetypal production infrastructure, plenty of 
instance can be found where all activities are done as per 
scheduled cron activities labelled under normal activities. But 
in order to train a system, instances of deviation from regular 
observed pattern must be made available in the dataset as 
abnormal activities; which is not only impossible to collect in 
many cases, it is very expensive as well. A simulated 

environment for faulty systems is not advisable as gathering 
all indications and causes leading to system's anomalous 
behaviour is not possible to forecast and anticipate; so it does 
not guarantee about the completeness of the dataset. Thus in 
this type of a situation, one class unsupervised approaches are 
highly suitable. In this regard, we propose to use one class 
algorithms - Local Outlier Factor, Isolation Forest, and One-
Class SVM for the detection of anomalies in a real-life 
microservice-based production environment.  

V. EXPERIMENTATIONS, RESULTS AND COMPARATIVE 

ANALYSIS 

A. Dataset Acquisition 

The experimentation was performed in a production 

environment where several microservices were deployed. 

Initially, the dataset was collected from the logs produced by 

the Open Source HIDS Security server (OSSEC). Next, the 

24 Hours of data were grouped into buckets of 15-minute 

duration. This 15 minutes will be fixed and serve as our 

bucket size. All the data collected are cron jobs i.e., periodical 

in nature. A test dataset that is a subset of the original dataset 

is prepared to test the different methods. The subset contains 

the data of a particular `bucket` and a particular `weekday` 

for the past 30 days. For evaluating purposes, each instance 

is assigned a value of ‘1’ as the label to identify them as non-

anomaly jobs. Any job which is scheduled to be in different 

buckets, if falls into another bucket, is marked as `Anomaly`. 

We set the threshold value as three to accommodate weekly 

occurrence of events in the classification process.  Hence, we 

selected a fraction of data belonging to different bucket and 

weekday and introduced them into our test dataset. These 

instances as given a value of ‘-1’ as the label.  

The required four features [‘agent_id,’ ‘profile_id,’ 

‘bucket_id,’ ‘frequency’] were derived and extracted from 

the test dataset, which will be used for the model training. 

B. Parameter Tuning 

For implementation and best results, the hyper-parameters 

were tuned as follows. 

The ‘Contamination’ Value for Isolation Forest and Local 

Outlier Factor and ‘nu’ for OCSVM was set to be 25/7000. 

For LOF, the value for ‘n_neighbour’ is set within the range 

of 3 to 15 with a step value of 1. For IF, the value for 

‘n_estimators’ was passed within the range of 100 to 1000 

with a step value of 50. For OCSVM, before fitting the data 

frame to the model, the gamma value varied within the 0.05 

to 1 range, and the step value was set at 0.01.  For the rest of 

the parameters, a Grid search was used to test all the 

combinations for all three models. 

C. Metrics Used 

The metrics used in this work for evaluation of the results 

are as follows. 

𝐶𝑙𝑎𝑠𝑠 𝑤𝑖𝑠𝑒 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 

𝐶𝑙𝑎𝑠𝑠 𝑤𝑖𝑠𝑒 𝑅𝑒𝑐𝑎𝑙𝑙 =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 

𝑤ℎ𝑒𝑟𝑒,   
𝑇𝑃 ∶ 𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒  
𝐹𝑃 ∶ 𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒  
𝑇𝑁 ∶ 𝑇𝑟𝑢𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒  
𝐹𝑁: 𝐹𝑎𝑙𝑠𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒  
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𝐶𝑙𝑎𝑠𝑠 𝑤𝑖𝑠𝑒 𝐹1 − 𝑆𝑐𝑜𝑟𝑒 =  
2 ∗ 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗ 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
 

𝑊𝑒𝑖𝑔ℎ𝑡𝑒𝑑 𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
∑ 𝑃𝑖 ∗ 𝑆𝑖

∑ 𝑆𝑖

  

𝑤ℎ𝑒𝑟𝑒  𝑃𝑖 𝑖𝑠 𝑡ℎ𝑒 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 𝑜𝑓 𝑐𝑙𝑎𝑠𝑠 𝑖  
𝑎𝑛𝑑 𝑆𝑖  𝑖𝑠 𝑡ℎ𝑒 𝑠𝑢𝑝𝑝𝑜𝑟𝑡 𝑜𝑓 𝑐𝑙𝑎𝑠𝑠 𝑖  
𝑖. 𝑒, 𝑡ℎ𝑒 𝑡𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑠𝑎𝑚𝑝𝑙𝑒𝑠  

𝑊𝑒𝑖𝑔ℎ𝑡𝑒𝑑 𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝑅𝑒𝑐𝑎𝑙𝑙 =  
∑ 𝑅𝑖 ∗ 𝑆𝑖

∑ 𝑆𝑖

  

𝑤ℎ𝑒𝑟𝑒  𝑅𝑖 𝑖𝑠 𝑡ℎ𝑒 𝑅𝑒𝑐𝑎𝑙𝑙 𝑜𝑓 𝑐𝑙𝑎𝑠𝑠 𝑖  
𝑎𝑛𝑑 𝑆𝑖  𝑖𝑠 𝑡ℎ𝑒 𝑠𝑢𝑝𝑝𝑜𝑟𝑡 𝑜𝑓 𝑐𝑙𝑎𝑠𝑠 𝑖  
𝑖. 𝑒, 𝑡ℎ𝑒 𝑡𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑠𝑎𝑚𝑝𝑙𝑒𝑠 

𝑊𝑒𝑖𝑔ℎ𝑡𝑒𝑑 𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝐹1 =  
∑ 𝐹1𝑖 ∗ 𝑆𝑖

∑ 𝑆𝑖

  

𝑤ℎ𝑒𝑟𝑒  𝐹1𝑖 𝑖𝑠 𝑡ℎ𝑒 𝐹1 𝑠𝑐𝑜𝑟𝑒 𝑜𝑓 𝑐𝑙𝑎𝑠𝑠 𝑖  
𝑎𝑛𝑑 𝑆𝑖  𝑖𝑠 𝑡ℎ𝑒 𝑠𝑢𝑝𝑝𝑜𝑟𝑡 𝑜𝑓 𝑐𝑙𝑎𝑠𝑠 𝑖  
𝑖. 𝑒, 𝑡ℎ𝑒 𝑡𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑠𝑎𝑚𝑝𝑙𝑒𝑠 

 

𝑀𝑎𝑐𝑟𝑜 𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
∑ 𝑃𝑖

𝑛
 

𝑤ℎ𝑒𝑟𝑒 𝑃𝑖 𝑖𝑠 𝑡ℎ𝑒 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 𝑜𝑓 𝑐𝑙𝑎𝑠𝑠 𝑖 
𝑎𝑛𝑑 𝑛 𝑖𝑠 𝑡ℎ𝑒 𝑡𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐𝑙𝑎𝑠𝑠𝑒𝑠 

𝑀𝑎𝑐𝑟𝑜 𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝑅𝑒𝑐𝑎𝑙𝑙 =  
∑ 𝑅𝑖

𝑛
 

𝑤ℎ𝑒𝑟𝑒 𝑅𝑖 𝑖𝑠 𝑡ℎ𝑒 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 𝑜𝑓 𝑐𝑙𝑎𝑠𝑠 𝑖 
𝑎𝑛𝑑 𝑛 𝑖𝑠 𝑡ℎ𝑒 𝑡𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐𝑙𝑎𝑠𝑠𝑒𝑠 

𝑀𝑎𝑐𝑟𝑜 𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝐹1 𝑆𝑐𝑜𝑟𝑒 =  
∑ 𝐹1𝑖

𝑛
 

𝑤ℎ𝑒𝑟𝑒 𝐹1𝑖 𝑖𝑠 𝑡ℎ𝑒 𝐹1 𝑆𝑐𝑜𝑟𝑒 𝑜𝑓 𝑐𝑙𝑎𝑠𝑠 𝑖 
𝑎𝑛𝑑 𝑛 𝑖𝑠 𝑡ℎ𝑒 𝑡𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐𝑙𝑎𝑠𝑠𝑒𝑠 

D. Results Obtained 

The obtained results after passing the dataset to each three 

models are depicted in Table I, and the obtained classification 

reports for all three models along with their calculated 

accuracy is shown in Table II respectively. 
A comparison of results obtained by all the three models, 

LOF, IF and OC-SVM are shown in Fig. 4.

  

Table I.  Results Obtained from the LOF, IF and OC-SVM Models 

 

LOF IF OC-SVM 

Predicted Predicted Predicted 

-1 1 -1 1 -1 1 

Actual 

-1 13 7 18 3 14 6 

1 5 7041 10 7036 104 6942 

 

Table II.  Model Wise Classification Report 

 LOF IF OC-SVM  

 Precision Recall F1-score Precision Recall F1-score Precision Recall F1-score Support 

-1 0.70 0.65 0.68 0.64 0.90 0.75 0.12 0.70 0.20 20 

1 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.99 1.00 7046 

Macro 

Average 
0.85 0.82 0.84 0.82 0.95 0.87 0.56 0.84 0.60 7066 

Weighted 

Average 
1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 7066 

Accuracy 0.99 0.99 0.98 7066 

 

Figure 4: A comparative results obtained from LOF, IF and OC-SVM 
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The obtained results clearly state that even though all the 

three models are obtaining a high accuracy, there is a significant 
difference between the precessions obtained because of high rate 
of ‘False Positives’ getting generated by the OC-SVM model. 
The LOF and IF models the number of ‘False Positives’ generate 
are quite less. At the same time, when a single instance is 
anomalous, OC-SVM is able to catch it due to its lower tolerance 
towards deviations. 

VI. CONCLUSION AND FUTURE WORK 

Due to the multi-variant and multi-dimensional data obtained 
from microservice based production infrastructures, it is yet to 
devise any standard method for anomaly detection. As in the real 
life scenarios obtaining sample instance for anomalies is not only 
costly but it may not be fitting all cases of fault observations, in 
this work, we have used unsupervised one class methods such as 
LOF, IF, and OC_SVM for detecting anomalies. With 
experimentations, the accuracies obtained by the models are 
99%, 99% and 98% respectively. The OC-SVM model is found 
to produce a notable amount of 'False positives' whereas it is 
negligible in case of other two model LOF and IF. But due to its 
higher intolerance towards anomalies, the OC-SVM is best 
suitable to catch an anomaly in its first instance itself in case 
there is a possibility of only a single instance of deviation leading 
to larger problems in course of time such as planting of malwares 
in server. In future, the models can be tested with customized 
datasets obtained from different types of servers for a generic 
conclusion. 
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