
DOI: http://dx.doi.org/10.26483/ijarcs.v14i6.7036

Volume 14, No. 6, November - December 2023

International Journal of Advanced Research in Computer Science

RESEARCH PAPER

Available Online at www.ijarcs.info

© 2020-2023, IJARCS All Rights Reserved 54

ISSN No. 0976-5697

A COMPARATIVE ANALYSIS OF ANOMALY DETECTION FROM

MICROSERVICE GENERATED UNSTRUCTURED LOGS

Anukampa Behera, Chhabi Rani Panigrahi
Department Computer Science

Rama Devi Women’s University

Bhubaneswar, Odisha, India

Rohit Patel
Department of Computer Science and Information

Technology, ITER, SOA Deemed to be University

Bhubaneswar, Odisha, India

Abstract: In a process, to ensure increased reliability and better availability, it is very important to detect any anomalies that refer to any abnormality

observed in the behaviour of a standard process. The breakdown of service(s) eventually leads to production loss, and at the same time, a system

that is unreliable brings lots of challenges to the operations team. Anomaly detection plays a significant role to ensure that an application is

reliable, secured and available for user requests. For the overall performance optimization of a cloud microservice based application without any

disruption in service, and identification of possible security threat, it is much essential that the anomalies must be detected and responded to in

time. In real life large microservice based production infrastructures environments, even though ample instance of normal activities is available, it

is not possible to predict and create a dataset of anomalies. So these kind of data are not suitable for a supervised two-class classification. In this

work, unsupervised one-class approaches such as Local Outlier Factor, Isolation Forest, and One Class SVM are used to find anomalies. On

experimentation these models have obtained a high accuracy of 98% to 99%. On comparing the performance of the models, One-Class SVM is

found to produce significantly higher number of False Positives in comparison to other two considered models.

Keywords: Anomaly detection; One class algorithm; Local Outlier Factor; Isolation Forest; One Class SVM; Unstructured log analysis

I. INTRODUCTION

In the last decade, a paradigm shift from monolithic to
microservice architecture has been observed in the IT
industry. In a microservice architecture, the application is built
up of several loosely coupled discrete units of functionality
called services, each offering a particular functionality.
Application programming interfaces (APIs) are used over the
network to establish an interaction between the services. As
the development, deployment, and scaling of services can be
done independently, it offers much flexibility and contributes
significantly to the implementation of continuous
integration/continuous deployment (CI/CD). Despite its
numerous benefits, microservice-based systems are quite
complicated, and these complexities of this modern-day
architecture have grown to such an extent that it is not feasible
to detect any faults, like malfunction of a specific service or
hardware or any possible threat through manual inspection
[10]. Monitoring and detecting anomalies has become really
challenging due to the distributive and dynamic nature of the
micro-services.

Detection of any pattern that is unusual or any behaviour
that is abnormal within a cloud-based microservices
architecture is referred to as anomaly detection on cloud
microservices. Within a micro-service ecosystem, anomalies
are raised when a deviation from the regular pattern is
observed, indicating either a performance problem, any kind
of security breach, or any other potential issues. In a cloud-
based microservice environment, data can be collected from
several sources like network traffic, traces, metrics, system-
generated logs, etc., to find out the occurrence of any atypical
or uncommon activities or behaviour exhibited by the system.
If the DevOps team and the system administrators can be
notified immediately regarding anomalous system behaviour,
it will help them to mitigate potential risks and threats by
taking appropriate and immediate action [13].

Some of the types of anomalies those are commonly
found in cloud microservices environments are discussed
below to get an idea of the vast range of things that can go
wrong. An exceptional drop or spike is noticed in disk,
memory, CPU or network like resource consumption,
degradation in handling service request in terms of high
response time or latency are known as performance anomaly.
Due to some misconfiguration or bugs in code, sometimes
repetitive error patterns are logged, and 404, 500 like HTTP
error codes are significantly increased, called error anomalies.
Under security anomalies, mostly the indication of attacks or
security breaches are lodged. For example, spike in network
traffic, multiple failed login attempts, attempt to access
sensitive data without authorisation, abnormal user behaviour
with unauthorized API call, unexpected access attempts, etc.
Indication of service interaction-related issues or introduction
of a new dependency can lead to a change in the dependency
graph; similarly, the number of requests between services can
unusually change due to some missing dependency leading to
dependency anomaly. Degradation in performance noticed
due to changes made in the deployment pattern, configuration
settings or sometimes due to any kind of misconfiguration in
cloud services or microservices comes under configuration
anomalies.

Scalability anomalies are raised when the service seizes
to perform under high load or when system efficiency is
affected due to under-provisioning or over-provisioning of
resources. Impact on User experience is observed due to
unavailability of service caused by critical component failure
leading to cascading failures across the system. This type of
situation raises outage anomaly leading to unprecedented and
prolonged service outages. Lastly a degradation in
performance can also happen due to resource leak anomalies
where there is an incessant resource consumption even when
the microservice is not active [13].

In the conventional model-based method for anomaly
detection, one must have a clear understanding of all the

Anukampa Behera et al, International Journal of Advanced Research in Computer Science, 14 (6), November-December 2023, 54-59

© 2020-2023, IJARCS All Rights Reserved 55

technicalities used in the entire process, which is very difficult
to implement in case of the modern complicated technology
and infrastructures. Data-driven techniques have emerged and
gathered considerable attention recently to cope with the
complexities of the current systems [6].

In this work, we have implemented three anomaly
detection models based on unsupervised methods – local
outlier factor, isolation forest and one class SVM respectively
to detect anomalies from logs generated from microservices
and made a comparative analysis of their performance. The
remaining of the paper is organized as follows: in section II,
related work in the field of anomaly detection using
unstructured log analysis are discussed. A brief insight on the
Local Outlier Factor, Isolation Forest and One Class SVM
model's working principle is discussed in section III. In section
IV, our proposed model is discussed followed by the
experimentation, results and comparative analysis in section
V. The conclusion is stated in section VI with future scope of
work.

II. RELATED WORK

In this section, the works related to anomaly detection
mostly using unsupervised approach is discussed.

Kun Lun Li [1] applied One Class SVM for the purpose of
Intrusion Detection on the abstracted user audit logs, 1999
DARPA. As per their work, when clustering, KNN, Naïve
Bias, SVM-light and One-Class SVM like algorithms were
applied, One-Class SVM has shown the best result. Das et al.,
[9] proposed a distributed algorithm for detecting outliers in
the data collected from various sites without moving them
physically into a single location. This algorithm was first of its
kind for anomaly detection for vertically partitioned data.
They demonstrated the performance of their proposed
methods experimenting on CMAPSS and NASA MODIS
satellite image dataset respectively. They claim to identify
99% of the outliers by only using 1% communication towards
data centralization in comparison to centralized method.

Jiang et al. [7] used One Class SVM for risk analysis and
anomaly detection of equipment in Modern Supervisory
Control and Data Acquisition (SCADA) systems by
monitoring the performance of communication among them.
Once trade-off parameters and slack variables were used to
solve an optimal problem, most of the normal data were
captured by One-Class SVM in a "small region" and a very
small portion of data was flagged as anomalies. They created
different classes to generate alarms at different levels by
clustering these anomalies. Yin. S. et al. [6] proposed a
modified version of One-Class SVM that they called robust 1-
class SVM to suppress the effect of outliers. After introducing
appropriate distance metrics and respective threshold, robust
1-class SVM was applied which the researchers have claimed
to give satisfactory results. They stressed on the fact that if the
training dataset has outliers, in that case robust 1-class SVM
performs better for fault detection. Maglaras et al. [5]
proposed an IT-OCSVM mechanism in a distributed SCADA
network to provide accurate data regarding the time and origin
of an intrusion as part of a distributed intrusion detection
system. They embedded an aggregation procedure to decrease
the overhead of IT-OCSVM so that it becomes suitable to be
incorporated into a soft real-time system. They claim the
proposed system detects all the induced attacks simulated
while producing the minimum number of final alerts.

Xiao et al. [4] proposed vnuOCSVM to deal with the
outliers available in the training dataset. They used the UCI
benchmark dataset for experimentation. In comparison to
other similar methods, the researchers claim vnuOCSVM to

obtain higher g-mean and AUC values and give a better
description of the target class, hence achieving a higher fault
detection rate with lower false alarms. Khreich et al. [3] used
one-class SVM with data extracted from system call traces
combined with frequency. They obtained several n-grams of
variable length by segmentation of the system call traces
which were further mapped into sparse feature vectors of fixed
size. To reduce the number of False Positives in class
decomposed data while detecting anomalies, Haidar et al. [8]
proposed an ensemble-based adaptive one-class and isolation
forest framework with progressive artificial oversampling
method.

To detect anomalies for microservices Cao et al. [14]
proposed Conditional Random Field (CRF) based method
where they collected several system parameters such as
bandwidth occupancy, memory and CPU utilization etc., as
the characteristic values for the sequence of observations.
They generated the microservice fault matrix by labelling the
abnormal types of the sequences occurred for their
corresponding feature values. Nguyen et al. [2] used log data
extracted from Juniper router devices and to detect anomaly,
they applied the One-Class SVM model with different kernels.
An unsupervised anomaly detection system was proposed by
Farzad et al. [11], where two deep Autoencoder networks
were used for feature extraction and Isolation Forest was
implemented for prediction of positive data. The researchers
have used Thunderbird, Openstack and BGL datasets for
experimentation. Nobre et al., [12] investigated the
performance of Multi-Layer Perceptron (MLP) from detecting
anomalies in a microservice environment both at the
application and service level.

III. PREREQUISITES

This section describes the background of our problem
statement and working principles of the models used.

A. Background

In this work, we have proposed methods to detect any

deviation if occurred in a real life production scenario where

all activities are periodical in nature called scheduled cron

jobs. Here activities are tracked by their foot prints. For

instance, "Source 'A' makes SSH on PORT 80 on

example.com" is an example of an activity that occurs once

at 10 AM every day. If for any day this activity happens thrice

at different times, it can be treated as an anomaly. So, an

anomaly can be raised of the observed frequency deviates

from the set threshold. If any event has occurred for the first

time, as there is no past record of the same, it will also be

marked as an anomaly.

B. Local Outlier Factor(LOF)

Local Outlier Factor is a score computed by the LOF

algorithm indicating the degree of abnormality amongst the
recorded observations [15]. Here, samples with significantly
lower density than its neighbours is detected as anomalies for
which, deviation from local density of the data points are
measured with reference to their neighbours. First average
local density for the k-nearest neighbors is calculated which is
compared with the instance's own local density to find out the
LOF score. In case of a 'normal' instance, both the densities
should match whereas for 'anomalies', a much smaller local
density is observed for the test instance. The number of
neighbours chosen is based on two factors: 1) it must be more
than the threshold of objects a cluster must contain 2) an

Anukampa Behera et al, International Journal of Advanced Research in Computer Science, 14 (6), November-December 2023, 54-59

© 2020-2023, IJARCS All Rights Reserved 56

assumption of maximum objects that can be considered as
potential local outliers. In general practice the number of
neighbours is by default fixed at twenty as it is difficult to get
an exact value for the above mentioned two factors. This
algorithm is best suitable for cases where different samples
have varying underlying densities, as instead of calculating the
degree of isolation of the sample itself, the isolation factor is
calculated with respect to the nearest neighbours.

The following steps that can be adopted while applying an
LOF model are [18]:

1) The distance between the observation point P and all
neighbouring points are calculated using Euclidean or
Manhattan like distance function.

2) Based on the value decided for k-nearest neighbour, the
'k' closest points are found.

3) Using the following equation (1) the local reachability
density can be found.

 (1)

where, for calculation of reachable distance the following
equation (2) can be used.

 (2)

where, 𝑁𝐾(𝑂) denotes the number of neighbours
4) The LOF can be calculated as depicted in equation (3).

 (3)

A sample anomaly detection based on LOF is shown in
Fig. 1.

Figure 1. Detection of Local Outliers based on density

C. Isolation Forest (IF)

Random Forest algorithm is considered one of the
efficient ways to perform anomaly detection on high-
dimensional dataset. IF is a specific implementation [16] of
Random forest that 'isolates' observations. IF selects a random
split value within the minimum and maximum values of the
randomly selected feature from the observation instance. As a
tree-structure can be used to represent a recursive partitioning,
the length of path from root to terminating node represents the
number of splits needed for isolating a sample. The average
path length of a forest constituting such random trees acts as

the decision function and can be used as a measure of
normality. In case of anomalies, the resultant paths after
random partitioning, are considerably short. Thus, in a forest
of random tree, if for particular samples shorter path lengths
are produced, they can be considered as anomalies.

 The following algorithm can be used to build an
Isolation Forest [20].

Let a set of d-dimensional points be represented as 𝑋 =
{𝑥1, … , 𝑥𝑛} and 𝑋′ ⊂ 𝑋 . A data structure with following
properties can be defined as an iTree (Isolation Tree).

1) ‘T’ must be either an external leaf node or it can be
any internal node with exact two children 𝑇𝑙 , 𝑇𝑟 and
one “test”.

2) The components of a “test” node are 𝑏 (attribute)
and 𝑎 (split value) where 𝑏 < 𝑎 determines path to
either 𝑇𝑙 or 𝑇𝑟 .

For building an iTree, 𝑋′ is recursively divided by a
selected attribute 𝑏 and a split value 𝑎 until any of the
following conditions occur:

1) The node is remained with only one instance.
2) Identical values occur for all data in the node.
Fig. 2 shows anomaly detection using IF [19].

Figure 2. Anomaly detection using IF

D. One Class SVM (OC-SVM)

Support Vector Machines normally find outliers by
tracing the presence of any additional data outside the different
classes formed from the input data. In OC-SVM, all the input
data belong to only a single class. Thus, for anomaly detection
for the available data a decision boundary is decided based on
Schölkopf's hyperplane method or Tax and Duin's
hypersphere method. Any data that remains beyond the
boundary is tagged as anomaly. The hypersphere method is
also known as Support Vector Data Description (SVDD) [17].
For better capture of anomalies, SVDD forms a spherical
boundary with a minimized volume in the feature space 'F'
using the input data. (c, r) represent the hypersphere; 'c'
denoting the center of the sphere and 'r' being the radius
denoting the distance of support vector placed on the boundary
and the center with a precondition as r>0. The volume
minimization is done using the equation (4) using constraints
stated in equation (5). All support vectors are combined
linearly to form the center. Even though for any point '𝑎𝑖 ', its
distance from the center must be less than 'r', 𝜉𝑖 is introduced
as a slack variable (depicted in equation (6)) with the penalty
parameter as C for creating a soft margin.

 min
𝑟,𝑐

𝑟2 + 𝐶 ∑ 𝜉𝑖
𝑛
𝑖=1 (4)

𝑆𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 ∶

‖𝑎𝑖 − 𝑐‖2 ≤ 𝑟2 + 𝜉𝑖 ∀ 𝑖 = 1, … , 𝑛 (5)

𝜉𝑖 ≥ 0 , ∀ 𝑖 = 1, … , 𝑛 (6)

Anukampa Behera et al, International Journal of Advanced Research in Computer Science, 14 (6), November-December 2023, 54-59

© 2020-2023, IJARCS All Rights Reserved 57

Testing for the detection of outlier of a new data point,𝜒 can

be done after equation (7) is introduced with Lagrange

multipliers 𝛼𝑖.

‖𝜒 − 𝐴‖2 = ∑ 𝛼𝑖𝑒𝑥𝑝 (
−‖𝜒−𝑎𝑖‖2

𝛿2)𝑛
𝑖=1 ≥ − 𝑟2

2⁄ + 𝐶𝑟 (7)

Here, 𝛿 ∈ 𝑅, is a kernel parameter.

Fig, 3. depicts the separation of data points using
OC_SVM method [21].

Figure 3. Detection of anomalies using OC-SVM

IV. PROPOSED METHODOLOGY

The steps followed to create the dataset from real life
loglines and the proposed models are discussed in this section.

A. Dataset Preparation

For dataset preparation, we have used the steps proposed
by Behera et al. [22]. A summary of the steps is given below.

Step 1: Initial data collection is done from a HIDS server
to gather structured and tagged log data and an N-dimensional
dataset is created. The logs generated are basically for any
deflection that is found on the rule id defined by HIDS server.

Step 2: Without compromising with the data quality, the
created dataset is reduced to a 4-dimensional feature-set,
source host, time slot, frequency and unique profile identifier
using the following method.

The first feature extracted is the source host (the source
from which the event has generated). For handling the high
volume data, a temporal division is made where the 24 hours
logs are divided into smaller time buckets. For a specific user,
the complete instance of the dataset is extracted for a single
time bucket that acts as the second feature. Next a feature
selection method is applied to get the most contributing
features. A common format is created by taking the union of
all unique components across rule ids. A set of all instances
under a single rule ID is merged, and a new feature is added
as frequency - the third feature. The footprint of a user starting
from the log-in till the time he logs out is stored and
represented as a profile identifier serving as the fourth feature.

B. Models Used

In an archetypal production infrastructure, plenty of
instance can be found where all activities are done as per
scheduled cron activities labelled under normal activities. But
in order to train a system, instances of deviation from regular
observed pattern must be made available in the dataset as
abnormal activities; which is not only impossible to collect in
many cases, it is very expensive as well. A simulated

environment for faulty systems is not advisable as gathering
all indications and causes leading to system's anomalous
behaviour is not possible to forecast and anticipate; so it does
not guarantee about the completeness of the dataset. Thus in
this type of a situation, one class unsupervised approaches are
highly suitable. In this regard, we propose to use one class
algorithms - Local Outlier Factor, Isolation Forest, and One-
Class SVM for the detection of anomalies in a real-life
microservice-based production environment.

V. EXPERIMENTATIONS, RESULTS AND COMPARATIVE

ANALYSIS

A. Dataset Acquisition

The experimentation was performed in a production

environment where several microservices were deployed.

Initially, the dataset was collected from the logs produced by

the Open Source HIDS Security server (OSSEC). Next, the

24 Hours of data were grouped into buckets of 15-minute

duration. This 15 minutes will be fixed and serve as our

bucket size. All the data collected are cron jobs i.e., periodical

in nature. A test dataset that is a subset of the original dataset

is prepared to test the different methods. The subset contains

the data of a particular `bucket` and a particular `weekday`

for the past 30 days. For evaluating purposes, each instance

is assigned a value of ‘1’ as the label to identify them as non-

anomaly jobs. Any job which is scheduled to be in different

buckets, if falls into another bucket, is marked as `Anomaly`.

We set the threshold value as three to accommodate weekly

occurrence of events in the classification process. Hence, we

selected a fraction of data belonging to different bucket and

weekday and introduced them into our test dataset. These

instances as given a value of ‘-1’ as the label.

The required four features [‘agent_id,’ ‘profile_id,’

‘bucket_id,’ ‘frequency’] were derived and extracted from

the test dataset, which will be used for the model training.

B. Parameter Tuning

For implementation and best results, the hyper-parameters

were tuned as follows.

The ‘Contamination’ Value for Isolation Forest and Local

Outlier Factor and ‘nu’ for OCSVM was set to be 25/7000.

For LOF, the value for ‘n_neighbour’ is set within the range

of 3 to 15 with a step value of 1. For IF, the value for

‘n_estimators’ was passed within the range of 100 to 1000

with a step value of 50. For OCSVM, before fitting the data

frame to the model, the gamma value varied within the 0.05

to 1 range, and the step value was set at 0.01. For the rest of

the parameters, a Grid search was used to test all the

combinations for all three models.

C. Metrics Used

The metrics used in this work for evaluation of the results

are as follows.

𝐶𝑙𝑎𝑠𝑠 𝑤𝑖𝑠𝑒 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃

𝐶𝑙𝑎𝑠𝑠 𝑤𝑖𝑠𝑒 𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁

𝑤ℎ𝑒𝑟𝑒,
𝑇𝑃 ∶ 𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒
𝐹𝑃 ∶ 𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒
𝑇𝑁 ∶ 𝑇𝑟𝑢𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒
𝐹𝑁: 𝐹𝑎𝑙𝑠𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒

Anukampa Behera et al, International Journal of Advanced Research in Computer Science, 14 (6), November-December 2023, 54-59

© 2020-2023, IJARCS All Rights Reserved 58

𝐶𝑙𝑎𝑠𝑠 𝑤𝑖𝑠𝑒 𝐹1 − 𝑆𝑐𝑜𝑟𝑒 =
2 ∗ 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗ 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙

𝑊𝑒𝑖𝑔ℎ𝑡𝑒𝑑 𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
∑ 𝑃𝑖 ∗ 𝑆𝑖

∑ 𝑆𝑖

𝑤ℎ𝑒𝑟𝑒 𝑃𝑖 𝑖𝑠 𝑡ℎ𝑒 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 𝑜𝑓 𝑐𝑙𝑎𝑠𝑠 𝑖
𝑎𝑛𝑑 𝑆𝑖 𝑖𝑠 𝑡ℎ𝑒 𝑠𝑢𝑝𝑝𝑜𝑟𝑡 𝑜𝑓 𝑐𝑙𝑎𝑠𝑠 𝑖
𝑖. 𝑒, 𝑡ℎ𝑒 𝑡𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑠𝑎𝑚𝑝𝑙𝑒𝑠

𝑊𝑒𝑖𝑔ℎ𝑡𝑒𝑑 𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝑅𝑒𝑐𝑎𝑙𝑙 =
∑ 𝑅𝑖 ∗ 𝑆𝑖

∑ 𝑆𝑖

𝑤ℎ𝑒𝑟𝑒 𝑅𝑖 𝑖𝑠 𝑡ℎ𝑒 𝑅𝑒𝑐𝑎𝑙𝑙 𝑜𝑓 𝑐𝑙𝑎𝑠𝑠 𝑖
𝑎𝑛𝑑 𝑆𝑖 𝑖𝑠 𝑡ℎ𝑒 𝑠𝑢𝑝𝑝𝑜𝑟𝑡 𝑜𝑓 𝑐𝑙𝑎𝑠𝑠 𝑖
𝑖. 𝑒, 𝑡ℎ𝑒 𝑡𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑠𝑎𝑚𝑝𝑙𝑒𝑠

𝑊𝑒𝑖𝑔ℎ𝑡𝑒𝑑 𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝐹1 =
∑ 𝐹1𝑖 ∗ 𝑆𝑖

∑ 𝑆𝑖

𝑤ℎ𝑒𝑟𝑒 𝐹1𝑖 𝑖𝑠 𝑡ℎ𝑒 𝐹1 𝑠𝑐𝑜𝑟𝑒 𝑜𝑓 𝑐𝑙𝑎𝑠𝑠 𝑖
𝑎𝑛𝑑 𝑆𝑖 𝑖𝑠 𝑡ℎ𝑒 𝑠𝑢𝑝𝑝𝑜𝑟𝑡 𝑜𝑓 𝑐𝑙𝑎𝑠𝑠 𝑖
𝑖. 𝑒, 𝑡ℎ𝑒 𝑡𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑠𝑎𝑚𝑝𝑙𝑒𝑠

𝑀𝑎𝑐𝑟𝑜 𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
∑ 𝑃𝑖

𝑛

𝑤ℎ𝑒𝑟𝑒 𝑃𝑖 𝑖𝑠 𝑡ℎ𝑒 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 𝑜𝑓 𝑐𝑙𝑎𝑠𝑠 𝑖
𝑎𝑛𝑑 𝑛 𝑖𝑠 𝑡ℎ𝑒 𝑡𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐𝑙𝑎𝑠𝑠𝑒𝑠

𝑀𝑎𝑐𝑟𝑜 𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝑅𝑒𝑐𝑎𝑙𝑙 =
∑ 𝑅𝑖

𝑛

𝑤ℎ𝑒𝑟𝑒 𝑅𝑖 𝑖𝑠 𝑡ℎ𝑒 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 𝑜𝑓 𝑐𝑙𝑎𝑠𝑠 𝑖
𝑎𝑛𝑑 𝑛 𝑖𝑠 𝑡ℎ𝑒 𝑡𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐𝑙𝑎𝑠𝑠𝑒𝑠

𝑀𝑎𝑐𝑟𝑜 𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝐹1 𝑆𝑐𝑜𝑟𝑒 =
∑ 𝐹1𝑖

𝑛

𝑤ℎ𝑒𝑟𝑒 𝐹1𝑖 𝑖𝑠 𝑡ℎ𝑒 𝐹1 𝑆𝑐𝑜𝑟𝑒 𝑜𝑓 𝑐𝑙𝑎𝑠𝑠 𝑖
𝑎𝑛𝑑 𝑛 𝑖𝑠 𝑡ℎ𝑒 𝑡𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐𝑙𝑎𝑠𝑠𝑒𝑠

D. Results Obtained

The obtained results after passing the dataset to each three

models are depicted in Table I, and the obtained classification

reports for all three models along with their calculated

accuracy is shown in Table II respectively.
A comparison of results obtained by all the three models,

LOF, IF and OC-SVM are shown in Fig. 4.

Table I. Results Obtained from the LOF, IF and OC-SVM Models

LOF IF OC-SVM

Predicted Predicted Predicted

-1 1 -1 1 -1 1

Actual

-1 13 7 18 3 14 6

1 5 7041 10 7036 104 6942

Table II. Model Wise Classification Report

 LOF IF OC-SVM

 Precision Recall F1-score Precision Recall F1-score Precision Recall F1-score Support

-1 0.70 0.65 0.68 0.64 0.90 0.75 0.12 0.70 0.20 20

1 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.99 1.00 7046

Macro

Average
0.85 0.82 0.84 0.82 0.95 0.87 0.56 0.84 0.60 7066

Weighted

Average
1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 7066

Accuracy 0.99 0.99 0.98 7066

Figure 4: A comparative results obtained from LOF, IF and OC-SVM

Anukampa Behera et al, International Journal of Advanced Research in Computer Science, 14 (6), November-December 2023, 54-59

© 2020-2023, IJARCS All Rights Reserved 59

The obtained results clearly state that even though all the

three models are obtaining a high accuracy, there is a significant
difference between the precessions obtained because of high rate
of ‘False Positives’ getting generated by the OC-SVM model.
The LOF and IF models the number of ‘False Positives’ generate
are quite less. At the same time, when a single instance is
anomalous, OC-SVM is able to catch it due to its lower tolerance
towards deviations.

VI. CONCLUSION AND FUTURE WORK

Due to the multi-variant and multi-dimensional data obtained
from microservice based production infrastructures, it is yet to
devise any standard method for anomaly detection. As in the real
life scenarios obtaining sample instance for anomalies is not only
costly but it may not be fitting all cases of fault observations, in
this work, we have used unsupervised one class methods such as
LOF, IF, and OC_SVM for detecting anomalies. With
experimentations, the accuracies obtained by the models are
99%, 99% and 98% respectively. The OC-SVM model is found
to produce a notable amount of 'False positives' whereas it is
negligible in case of other two model LOF and IF. But due to its
higher intolerance towards anomalies, the OC-SVM is best
suitable to catch an anomaly in its first instance itself in case
there is a possibility of only a single instance of deviation leading
to larger problems in course of time such as planting of malwares
in server. In future, the models can be tested with customized
datasets obtained from different types of servers for a generic
conclusion.

VII. REFERENCES

[1] Kun-Lun Li, Hou-Kuan Huang, Sheng-Feng Tian and Wei Xu,
"Improving one-class SVM for anomaly detection," Proceedings
of the 2003 International Conference on Machine Learning and
Cybernetics (IEEE Cat. No.03EX693), Xi'an, 2003, pp. 3077-
3081 Vol.5, doi: 10.1109/ICMLC.2003.1260106.

[2] Nguyen, TBT., Liao, TL., Vu, TA. (2019). "Anomaly Detection
Using One-Class SVM for Logs of Juniper Router Devices." In:
Duong, T., Vo, NS., Nguyen, L., Vien, QT., Nguyen, VD. (eds)
Industrial Networks and Intelligent Systems. INISCOM 2019.
Lecture Notes of the Institute for Computer Sciences, Social
Informatics and Telecommunications Engineering, vol 293.
Springer, Cham. https://doi.org/10.1007/978-3-030-30149-1_24.

[3] Wael Khreich, Babak Khosravifar, Abdelwahab Hamou-Lhadj,
Chamseddine Talhi, "An anomaly detection system based on
variable N-gram features and one-class SVM", Information and
Software Technology, Volume 91, 2017, Pages 186-197, ISSN
0950-5849, doi: 10.1016/j.infsof.2017.07.009..

[4] Yingchao Xiao, Huangang Wang, Wenli Xu, Junwu
Zhou,"Robust one-class SVM for fault detection", Chemometrics
and Intelligent Laboratory Systems, Volume 151, 2016, Pages 15-
25, ISSN 0169-7439, doi: 10.1016/j.chemolab.2015.11.010.

[5] Leandros A. Maglaras, Jianmin Jiang, Tiago J. Cruz,"Combining
ensemble methods and social network metrics for improving
accuracy of OCSVM on intrusion detection in SCADA systems",
Journal of Information Security and Applications,Volume 30,
2016, Pages 15-26, doi: 10.1016/j.jisa.2016.04.002.

[6] Shen Yin, Xiangping Zhu, Chen Jing, "Fault detection based on a
robust one class support vector machine", Neurocomputing,
Volume 145, 2014, Pages 263-268, doi:
10.1016/j.neucom.2014.05.035.

[7] J. Jiang and L. Yasakethu, "Anomaly Detection via One Class
SVM for Protection of SCADA Systems," 2013 International
Conference on Cyber-Enabled Distributed Computing and
Knowledge Discovery, Beijing, China, 2013, pp. 82-88, doi:
10.1109/CyberC.2013.22.

[8] D. Haidar and M. M. Gaber, "Adaptive One-Class Ensemble-
based Anomaly Detection: An Application to Insider Threats,"
2018 International Joint Conference on Neural Networks
(IJCNN), Rio de Janeiro, Brazil, 2018, pp. 1-9, doi:
10.1109/IJCNN.2018.8489107.

[9] Das, K., Bhaduri, K., & Votava, P. "Distributed anomaly
detection using 1-class SVM for vertically partitioned data".
Statistical Analysis and Data Mining, 2011, 4(4), 393–406.
doi:10.1002/sam.10125

[10] Bursic, S., Cuculo, V., D’Amelio, A. (2020). Anomaly Detection
from Log Files Using Unsupervised Deep Learning. In:
Sekerinski, E., et al. Formal Methods. FM 2019 International
Workshops. FM 2019. Lecture Notes in Computer Science(), vol
12232. Springer, Cham. doi: 10.1007/978-3-030-54994-7_15

[11] Farzad A., T. Aaron Gulliver,"Unsupervised log message
anomaly detection", ICT Express,Volume 6, Issue 3,2020,Pages
229-237, doi:10.1016/j.icte.2020.06.003.

[12] Nobre, João, E. J. Solteiro Pires, and Arsénio Reis. 2023.
"Anomaly Detection in Microservice-Based Systems" Applied
Sciences 13, no. 13: 7891, doi: 10.3390/app13137891

[13] [Online] Available at: https://www.linkedin.com/pulse/1-
microservices-anomaly-detection-pushkar-pushp/

[14] Cao, W., Cao, Z., & Zhang, X. Research on Microservice
Anomaly Detection Technology Based on Conditional Random
Field. Journal of Physics: Conference Series, 1213., 2019

[15] [Online] Available at: https://scikit-
learn.org/stable/modules/outlier_detection.html#local-outlier-
factor

[16] [Online] Available at:https://scikit-
learn.org/stable/modules/outlier_detection.html#isolation-forest

[17] [Online] Available at:https://www.baeldung.com/cs/one-class-
svm

[18] [Online] Available at:
https://www.sciencedirect.com/topics/computer-science/local-
outlier-factor

[19] [Online] Available at: https://wiki.datrics.ai/isolation-forest-
model

[20] [Online] Available at:
https://en.wikipedia.org/wiki/Isolation_forest

[21] [Online] Available at:
https://www.datatechnotes.com/2020/04/anomaly-detection-
with-one-class-svm.html

[22] Behera A, Behera S, Panigrahi C R & Weng Tien-Hsiung, Using
unstructured logs generated in complex large scale micro-service-
based architecture for data analysis, Int. J. of Business
Intelligence and Data Mining, Vol 1(1) , 248-263. 2022 doi:
10.1504/ijbidm.2022.10043252

