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Abstract: Applying traditional clustering techniques to big data on the cloud while preserving the privacy of the data is a challenge due to the 
required division and exponential operations in each iteration, which complicate its implementation on encrypted data. Several existing 
approaches are based on approximating the formulas of centers, weights, and memberships as three polynomial functions according to the 
multivariate Taylor formula. However, they usually suffer an increase in complexity and a slight drop in accuracy. In this paper, a novel Privacy-
Preserving semi-fuzzy clustering algorithm based on the possibilistic paradigm, termed PPS-FPCM, is presented. Its main feature is that it avoids 

exponentiation and division operations, at each iteration, without losing accuracy. By restricting the typicality to an ordered set of discrete values 
between zero and one decided by the data owner (DO), the computation is simplified. The second key idea is the use of this soft typicality to 
detect outliers and compute the corresponding semi-fuzzy memberships, which is used to increase the in-between cluster distance. However, the 
initial typicality requires a magnitude relation comparison, which is still difficult to do over encrypted data. In this research study, we show how 
the existing incomplete re-encryption method can be used to tackle this problem.  In each iteration, centers and distances to the new centers are 
computed on a calculator cloud server (CaCS) which is responsible for storing the cipher texts of the (DO)’s data and processing them. Then, 
CaCS sends the incompletely re-encrypted difference between these distances and iteratively updated bin values that correspond to the discrete 
possibilistic memberships that are initially decided by the (DO) to the comparator cloud server (CoCS). CoCS decrypts the difference and returns 

the results of comparisons. When CaCS receives the results of comparison from CoCS, it decides on an appropriate soft typical ity or resends the 
difference of the same distance to another bin value. The required number of comparisons is O(log the number of bins). CaCS iteratively 
computes the corresponding semi-fuzzy memberships, computes the refined memberships, and updates the centers. In the end, CaCS sends the 
final soft memberships and centers to the (DO).  The proposed algorithm is applicable to normal data and homomorphically encrypted data, is 
more effective than several related algorithms, and can produce accurate results using large enough (16 or more) discrete values with a high 
reduction on runtime as the number of comparisons is much less complex than exponential and division operations with added communication 
cost between CaCS and CoCS. 

 

Keywords: possibilistic clustering, fuzzy clustering, comparison protocol, homomorphic encryption,  Incomplete re-encryption 

1. INTRODUCTION 

 

The advancement of the Internet of Things, mobile devices, and sensing techniques has resulted in new applications in smart 

cities, intelligent transportation, and industrial manufacturing [1-3].  The application layer of the IoT is responsible for collecting 

and analyzing the data collected from the physical layer of the IoT (sensors, RFID, and two-dimensional codes).   Machine 

learning techniques play an important role in the IoT. They help the application layer of the IoT to analyze collected data and 

provide predictive services and intelligent decisions [4-6]. Clustering is an unsupervised learning technique that is used to group a 

set of similar objects such that an object is much more similar to objects in its group than to objects in other groups. The 

correlation between data attributes and the globally distributed data model can be discovered using clustering analysis. The 

clustering methods can be roughly categorized into five categories: partitioning methods such as K-means [7], fuzzy c-means 

(FCM) algorithm [8], possibilistic c-means(PCM) [9, 10],  mode-based methods such as competitive learning [11], self-organizing 

map (SOM) [12], grid-based methods [13], density-based methods [14] and hierarchical methods [15]. Partitioning clustering 

algorithms are the most popular and widely used on the cloud due to their efficiency and simplicity. Compared to FCM, PCM is 

more robust since it gives low membership to outliers in all clusters.  

 However,due to its high computational complexity, PCM is not suitable for big data clustering with a large number of objects 

efficiently. Furthermore, PCM must load all objects into memory, which is constrained on local computing devices. Also, PCM is 

very sensitive to initialization and may generate coincident clusters. 

Reducing the membership of core points to other clusters [16] and the adaptive determination of the penalty parameters [17] can 

greatly help in reducing the sensitivity to initialization, removing obsolete clusters  and avoiding coincident clusters.  

 Cloud computing offers a scalable and cost-efficient solution for big data clustering by providing tremendous memory space and 

high processing power [18].  Although, some improved PCM algorithms have been proposed for big data clustering, such as 

weighted kernel possibilistic c‐means [19], incremental WPCM   [20, 21], distributed weighted possibilistic c-means [22] and 

secure weighted possibilistic c-means for privacy-preserving big data clustering on the cloud [23].   

 These algorithms suffer from several problems, they are based on approximating the required calculations using Taylor's 

expansion and always produce lower clustering accuracy than their corresponding conventional algorithms. Also, uploading the 

raw data to the cloud directly, as in [22], poses a serious threat to data security.  
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To tackle the above problems, this paper has two contributions, first, a semi-fuzzy (soft) possibilistic clustering is proposed, and 

second, a secure implementation for it based on a judicious integration of the principles of semi-fuzzy [24] and secure multiparty 

computation (SMC) [25]. Early implementation for semi-fuzzy clustering is found in [24], where three mathematical models for 

semi-fuzzy clustering with their corresponding algorithms are introduced. The first algorithm limits the fuzziness to a smaller 

subset of the available clusters, while the other two algorithms allow a pattern to be associated with the proper number of clusters 

based on a threshold distance or membership value. In [13], a rough-fuzzy c-medoids algorithm is based on the principles of rough 

sets and fuzzy sets [15]. The concept of soft clustering is applied to fuzzy CLARANS [26] in [27]. Also, in [28], a soft 

biclustering algorithm is introduced in which the memberships of rows and columns are changed between a set of fixed values as 

an alternative to hard biclustering. 

Secure multiparty computation (SMC) in which mutually doubting users collaborate to compute a function of their private data 

without revealing any additional information about their data to  other users [25] is a good solution for preserving security while 

doing clustering on the cloud.  Several applications require SMC  [29]. The algorithms that are based on approximating the used 

formulas using Taylor expansion not only avoid division and exponentiation but also the comparison of magnitudes, which is 

difficult to execute over encrypted data.      

  In the proposed security scheme, two cloud servers are involved, including a calculator (CaCS) and a comparator (CoCS). The 

calculator stores the encrypted data and is responsible for computing distances to current centers using basic homomorphic 

operations on the encrypted data. The comparator is in charge of calculating soft memberships based on previously computed bins 

representing the range of distances corresponding to each discrete value of the memberships. In this way, users can outsource the 

whole data processing to the cloud servers with minimal participation in communication and computation, which decreases the 

burden imposed on them. Incomplete re-encryption can be used for secure comparison. In contrast to the general re-encryption, 

the plaintext decrypted after re-encrypted is different from the original plaintext, but it can maintain the magnitude relation of the 

original plaintext. However, a secure distributed implementation of the proposed algorithm is out of the scope of this paper.  

This paper describes the proposed algorithm and evaluates its performance relative to the traditional algorithm and presents the 

pseudo-code of the proposed security scheme along with a complexity analysis. 

The main contributions of this paper can be summarized as follows: 

 By restricting the memberships to a set of discrete values between zero and one that differs by a small step, the proposed 

algorithm avoids the required exponential and division operations in each iteration. The required multiplications in computing 

the penalty parameters are reduced to O (c r) where r is the number of discretization levels and c is the number of clusters. 

Also, computing the typicality costs O(n log r ) comparisons.  

 The proposed algorithm generalizes the idea in [30] and shows how variations of the PCM algorithm can be securely 

applied on the cloud. 

 Unlike FPCM, the proposed algorithm identifies core objects from their fuzzy memberships while outliers are identified 

from their typicality. The final memberships of both core and outlier objects are not computed directly as a linear combination 

of their typicality and fuzzy memberships as in FPCM.   

 The proposed protocol is secure without the cloud server’s collusion and with minimal participation from data owner 

(DO).  The DO only receives the encrypted penalty parameters in each iteration and applies simple functions on them and 

returns the results. 

The effectiveness of the proposed algorithm is evaluated on several standard datasets and synthetic datasets by comparing PPS-

FPCM with hard c-means (HCM), fuzzy c-means (FCM), possibilistic c-means (PCM), possibilistic fuzzy c-means (PFCM), semi-

possibilistic c-means SPCM, and the weighted possibilistic c-means (WPCM). The results show that PPS-FPCM is more effective 

than related fuzzy algorithms and its effectiveness compares favorably to SWPCM.  The proposed algorithm is expected to 

achieve good scalability on the cloud for big data clustering compared to SWPCM, however, the distributed implementation of the 

proposed algorithm is out of the scope of this paper.  

The paper is organized as follows. The possibilistic c-means algorithm along with its related algorithms are reviewed in Section 2 

and the proposed algorithm is presented in Section 3. The experimental results are shown in Section 4 and the paper is concluded 

in Section 5.  

 

2. RELATED WORK 

 

Before describing the proposed algorithm and other related algorithms in the following sections, commonly used abbreviations 

and symbols in these sections are listed in Table 1. 
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Table 1 Abbreviations and symbols used in the text 
Abbreviation Description 

HCM Hard c-means algorithm 

PCM  possibilistic c-means algorithm 

SWPCM secure weighted possibilistic c-means algorithm 

FPCM                         fuzzy possibilistic c-means algorithm 

SPCM Efficient semi-possibilistic c-means clustering algorithm 

PPS-FPCM                         The proposed Privacy-Preserving semi-fuzzy possibilistic c-means algorithm 

X The input dataset consists of n objects x1,x2,……….xneach having  d attribute values 

uij The membership (typicality) of object xj in cluster i 

m The fuzzification factor 

c Input parameter represent the required number of clusters 

V A set of k centers v1, v2,…vkeach of size 1×d 

maxiter Maximum number of iterations 

ε Input threshold used in the termination condition 

α The winning prototype is the prototype having the maximum membership and its membership is higher than α 

ƞi The Coefficient of the penalty term of the objective function of the possibilistic approach. It is a fixed user-defined parameter 

in PCM while it is estimated in SPCM. 

W Weight matrix of size n × k used only in WPCM  

U membership matrix of size n × k 

r if a fixed step is required then the range of soft memberships is 0..r and the corresponding discrete values will be 

0,1/r,2/r,……,1 and it is an optional parameter  

µ If an unfixed step is required, S is given as an input parameter as a set of r+1 discrete membership values between 0 and 1. Ex. 

{0,0.1,0.25,0.5,0.7,0.9,1} 

µm Are the values in µ raised to power m 

Bi A set of r-1 bin values for cluster i corresponds to µ - {0,1}.   

a,b Two parameters represent the weights given to FCM and PCM in PFCM algorithm 

C(x) Cypher text of x 

 

a. Possibilistic Clustering Paradigm 

The possibilistic approach to clustering [9, 10] assumes that the membership function of a data point in a fuzzyset (or cluster) is 

absolute, i.e. it is an evaluation of a degree of typicality not depending on the membership values of the same point in other 

clusters. 

Let X={x1, x2 ….., xn} be a set of unlabeled data points, V= {v1, v2 …… , vc} a set of cluster centers (or prototypes) and U= [uij] 

the fuzzy membership matrix. In the Possibilistic C-Means (PCM) algorithm, the constraints on the elements of Uare relaxed to: 

uij Є [0,1]                    for i=1,2,..c  and j=1,2,..n  

0 < ∑ 𝑢𝑖𝑗 < 𝑛     𝑓𝑜𝑟 𝑖
𝑛
𝑗=1` = 1,2, . . 𝑐  

∨𝑖 𝑢𝑖𝑗 > 0                  𝑓𝑜𝑟 𝑗 = 1,2, . . . 𝑛  

These requirements simply imply that a cluster cannot be empty and each pattern must be assigned to at least one cluster. This 

turns a standard fuzzy clustering procedure into a mode-seeking algorithm [9, 10]. The objective function contains two terms; the 

first one is the objective function of the fuzzy c-means [8], while the second is a penalty term considering the entropy of clusters 

as well as their overall membership values: 

𝐽𝑚(𝑈, 𝑌) = ∑ ∑ 𝑢𝑖𝑗
𝑚𝑛

𝑗=1
𝑐
𝑖=1 ‖𝑥𝑗  - v𝑖‖

2
+∑ 𝜂𝑖

𝑐
𝑖=1 ∑ (1 − 𝑢𝑖𝑗)

𝑚𝑛
𝑗=1  (1) 

where m is a fuzzifier  [1, ∞) given as input and c is the input parameter representing the number of clusters. The parameters 

ƞifori=1 to c should be estimated before the clustering procedure starts depending on the average size of the i-th cluster. The 

solution that is obtained by minimizing the above objective function will be highly dependent on the parameter ƞi. Note that if 

𝜂𝑖  → ∞   for i = 1,2,…c  (i.e., the second term ofJm(U,Y) is omitted), then a trivial solution is obtained by the minimization of the 

remaining cost function (i.e., uij=0 for i=1,2,..c and j=1,2,..n, as no probabilistic constraint is assumed). The pair (U; Y) minimizes 

Jm, under the above constraints only if : 

𝒖𝒊𝒋 = 
𝟏

𝟏+(𝒅𝒊𝒋
𝟐 𝜼𝒊⁄ )

𝟏/(𝒎−𝟏)    for i=1,2,...c and  j=1,2,…n(2) 

and  

𝑣𝑖 =
∑ 𝑥𝑗 𝑢𝑖𝑗  

𝑚𝑛
𝑗=1

∑  𝑢𝑖𝑗  
𝑚𝑛

𝑗=1
      𝑓𝑜𝑟 𝑖 = 1,2,… 𝑐   (3) 

Equations (2) and (3) can be used as formulas for recalculating the membership functions and the cluster centers.  
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The membership uijis the fuzzy membership of xj in cluster iand can be defined heuristically in several ways  

Algorithm 1 shows the pseudo-code for traditional possibilistic c-means (PCM).   

 

Algorithm 1: Traditional PCM algorithm.  

Input: X,c, m, maxiter 

Output: U , V 

Initialize  viand ηi for i=1,2,…,c 

repeat 

     compute memberships U using Eq. (2) 

     V`=V 

     compute new centers V using Eq. (3) 

until (||V`-V||<ε) 

return U, V  

b.  possibilistic-fuzzy c-means (PFCM) 

PCM computes possibilistic partitions independently. When the initializations of the corresponding rows are not distinct enough 

from each other, it is very possible that two or more cluster centers will be moved to the same point if the point is the single 

optimal point for a cluster center leading to coincident cluster centers. Accordingly, Sensitivity to initializations and coincident 

clusters are the main drawbacks of PCM. The possibilistic-fuzzy c-means (PFCM) clustering algorithm <Pal, 2005 #17> is an 

outstanding possibilistic-fuzzy mixture clustering model to avoid the drawbacks of PCM. The objective function of the PFCM is 

as follows: 

 

𝐽𝑃𝐹𝐶𝑀 = ∑ ∑ (𝑎𝑢𝑖𝑗
𝑚 + 𝑏𝑡𝑖𝑗

𝑝𝑛
𝑗=1

𝑐
𝑖=1 )𝑑𝑖𝑗

2 (𝑥𝑗 , 𝑣𝑖) + ∑ 𝜂𝑖 ∑ (1 − 𝑡𝑖𝑗)
𝑝𝑛

𝑗=1
𝑐
𝑖=1  (4)  

Constrained by ∑𝑐𝑖=1 𝑢𝑖𝑗 = 1 , 0 < ∑ 𝑡𝑖𝑗 < 𝑛 
𝑛
𝑗=1   ,  0≤uij≤ 1, 0 ≤ tij≤ 1, 1 ≤i≤ c 

Parameters a and b determine the intensity of the possibilistic and probabilistic term, respectively. The other parameters m, p, ƞ 

act the same function as that in the PCM and FCM. Moreover, the membership values uij are updated by Eq. (5) while the 

typicality tij are updated using Eq. (6) as follows: 

𝒖𝒊𝒋 =  (∑  ((𝒄
𝒌=𝟏 𝒅 (𝑥𝑗 , 𝑣𝑖)  𝑑(𝑥𝑗 , 𝑣𝑘))

𝟐/(𝒎−𝟏)⁄ )
−1

           for i=1,2,...c and  j=1,2,…n  (5) 

𝒕𝒊𝒋 = 
𝟏

𝟏+(𝒅𝒊𝒋
𝟐  (𝑥𝑗,𝑣𝑖) 𝜼𝒊⁄ )

𝟏/(𝒑−𝟏)           for i=1,2,...c and  j=1,2,…n  (6) 

The cluster center is updated by the following formula: 

 

𝑣𝑖 =
∑ 𝑥𝑗 (𝑎𝑢𝑖𝑗  

𝑚 + 𝑏 𝑡𝑖𝑗   
𝑝
)𝑛

𝑗=1

∑  (𝑎𝑢𝑖𝑗  
𝑚 + 𝑏 𝑡

𝑖𝑗   
𝑝
)𝑛

𝑗=1
      𝑓𝑜𝑟 𝑖 = 1,2,… 𝑐   (7) 

Algorithm 2:  possibilisticfuzzy c-means (PFCM) 

Input : X, c, a, b, m , maxiter 

Output : U , V 

Initialize viand ηi fori=1,2,…,c 

repeat 

     compute membership uij for i=1,2,…,c and j= 1,2,..n using Eq. (5) 

     compute typicality tijfori=1,2,…,c and j= 1,2,..n using Eq. (6) 

     V`=V 

     compute new centers V using Eq. (7) 

until (||V`-V||<ε) 

return U, V   
 

c. Secure Weighted Possibilistic c-means (SWPCM) 

In PCM each object is assigned the same weight, however, the importance of objects differs. Furthermore, PCM cannot yield the 

desirable clustering results for the datasets including noisy objects or outliers. To tackle this problem, Schneider presented a 

weighted possibilistic c-means algorithm (WPCM) by assigning a weight value to each object, which leads to an objective 

function of WPCM [16] : 
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𝐽𝑚(𝑈, 𝑌) = ∑ ∑ 𝑢𝑖𝑗
𝑚𝑛

𝑗=1
𝑐
𝑖=1 ||𝑥𝑗 − 𝑣𝑖  ||

2 + ∑
1

𝛽𝑖

𝑐
𝑖=1 ∑ (𝑤𝑗 − 𝑢𝑖𝑗)

𝑛
𝑗=1  (8) 

The weights can be calculated using the following formula: 

𝑤𝑗 = ∑ 𝑒−𝛼||𝑥𝑗−𝑣𝑖||
2𝑐

𝑖=1   (9) 

The memberships are computed as follows: 

𝑢𝑖𝑗 =
𝑤𝑗

(1+||𝑥𝑗−𝑣𝑖||
2/𝜂𝑖)

1/(𝑚−1)                             (10) 

While the centers are computed as in Eq. (3). 

In [23], a secure weighted possibilistic c-means algorithm based on a full homomorphic encryption scheme (BGV) [1] is 

introduced for secure data clustering on the cloud.  The BGV scheme allows only addition and multiplication on encrypted data.  

The key idea of SWPCM is to remove the division and exponential operations from the formulas for calculating the centers, 

weights, and memberships and approximating them as three polynomial functions according to the multivariate Taylor formula. 

The approximated formulas are used to obtain the correct clustering result on the encrypted data as shown in algorithm 3. It is 

clear from Algorithm 3 that the computational complexity of WPCM is dominated by the step for computing the membership 

matrix which has a computational complexity of O (cn), resulting in a total computational complexity of O(lcn) where l denotes 

the number of the iterations. As shown in algorithm 3, SWPCM has to complete all the maxiter steps because the centers are 

encrypted and cannot be compared with the previous iteration. Also, as their experimental results show, in most cases, SWPCM 

was slightly less accurate than WPCM since the approximation of the functions for calculating the weight values and updating the 

membership matrix and the clustering centers resulted in the drop of the clustering accuracy. 

Algorithm 3: Secure weighted possibilistic c-means scheme (SWPCM)  

Initially: both the data objectsX and initialized parameters are encrypted and uploaded from the client to the cloud  

output: immediate and final U and V can be downloaded from the cloud to the client to decrypt 

for iteration = 1 , 2 , . . . , maxiterdo  

Use BGV to encrypt the membership matrix and the clustering centers;  

Upload encrypted membership matrix and centers on the cloud;  

On cloud:  

Use approximated formula for calculating C(V)  

Use approximated formula for calculating C(W)  

Use approximated formula for calculating C(U)  

Send the encrypted membership matrix and centers to the client 

On the client: ; 

          Decrypt the immediate results to update Uand V  

endfor 

3. METHODOLOGY   

 

a. Computing the Bin values from the input set of memberships 

By limiting the memberships to a set of discrete values between zero and one, the squared distance corresponding to these 

memberships can be calculated using the original membership calculation formula. Using Eq. (2) of the standard PCM, the 

squared distance can be expressed as a function of the corresponding membership as follows: 

(𝑑𝑖𝑗
2 𝜂𝑖⁄ )

1

𝑝−1 = (
1

𝑡𝑖𝑗
− 1) 

Raising the two sides of the equation to the power (p-1) > 0 

(𝑑𝑖𝑗
2 𝜂𝑖⁄ ) = (

1

𝑡𝑖𝑗
− 1)

𝑝−1

 

Then 

𝑑𝑖𝑗
2 = 𝜂𝑖 (

1

𝑡𝑖𝑗
− 1)

𝑝−1

  (11) 

Using Eq. (11), by substituting tij by one of the discrete membership values that are initially given as input parameter µ, the 

corresponding bin value for each membership in µ is computed.  

 

According to Eq. (11), the discretization bins at iteration t is computed from ƞi ,for i=1,2,..,c,   and the set of memberships µ as 

follows:   

𝐵𝑖(𝑡) = C(η𝑖(𝑡))(
1

𝜇
− 1)𝑝−1   (12) 

The discretization bins of cluster i at an iteration t +1 is updated using the new value of ƞi  as follows: 
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𝑩𝒊(𝒕 + 𝟏) = 𝐂(𝜼𝒊(𝒕 + 𝟏))(
𝟏

𝝁
− 𝟏)𝒑−𝟏             for i=1, 2, …, c     (13) 

b. Computing initial penalty parameters 

After selecting randomly initial c cluster centers V from encrypted data X, the encrypted distances D are computed from the 

encrypted data X and the initial centers V.  In order to check if cluster viisthe nearest cluster center for an object xj for j=1..n, the 

CaCS sends the re-encrypted value Dkj to CoCS. Where Dkj is computed as follows:- 

Dkj=𝐶(𝑑𝑘𝑗) − 𝐶(𝑑𝑖𝑗)        where k ≠ i  (14)  

Algorithm 4 secure calculation for initializing the penalty paramters η 

for i=1 to c 

szi = 0 

𝐶(𝑡𝑑𝑖) = 𝐶(0) 
    for j=1 to n 

        if  (cls(j) is null) 

          for k=i+1 to c 

            CaCS: compute  C(Dkj) =(𝐶(𝑑𝑘𝑗) − 𝐶(𝑑𝑖𝑗) 
            CoCS: receive re-encrypted C(Dkj) and return the magnitude relation F to CaCS 

            CaCS: if (F > 0)  or (F=0 and i=c) then 

szi = szi + 1 

𝐶(𝑡𝑑𝑖) =  𝐶(𝑡𝑑𝑖) + 𝐶(𝑑𝑖𝑗) 
cls(j) = i 

                        endif    

          end 

        endif    

     end 

𝐶(𝜂𝑖) =   𝐶(𝑡𝑑𝑖) × (
1

𝑠𝑧𝑖
) 

end  

 

Then, CoCS incompletely decrypts re-encrypted (Dkj) and send the magnitude relation F to CaCS to compute not encrypted hard 

membership. If the value of Dkj is positive or zero for all k this means the center  vi  is the nearest center and no need to check next 

cluster vk where k>i and the size of the cluster vi is incremented and the total distances to it is updated . 

c. Computing Soft Typicality using the bin vectors  

To compute the typicality t of an object in a certain cluster, its distance to the cluster center is compared to the values stored in the 

bin vector associated with this cluster. Searching for the proper bin given the squared distance costs O (log r) comparisons. Each 

cluster i has a bin vector Bi whereBi is a set of r-1 bin values for cluster i corresponds to  µ-{0,1}.  An object xq having a squared 

distance d2 to vi  is assigned a typicality t as follows: 

𝑡    =   

{
  
 

  
 

0 𝑑2 > 𝑏1
1/𝑟 𝑏1 ≥ 𝑑

2 > 𝑏2

2/𝑟
⋮

(𝑟 − 1)/𝑟
1

𝑏2 ≥ 𝑑
2 > 𝑏3
⋮

𝑏𝑟−2 ≥ 𝑑
2 > 𝑏𝑟−1

𝑑2 ≤ 𝑏𝑟−1

 (16) 

Another approach is to use Trapezoidal membership for categories 0 and 1 and Triangular membership for the other categories as 

shown in Table 2.  In this approach, division is needed to compute the approximated membership from the squared distance d2 as 

shown in Eq. (9). 

𝑡 =

0 d
2
>2b1-b2

( 2b1-b2-d
2
)/(b2- b1)r b1<d

2
≤2b1-b2

[2(b1-d
2
)+(d

2
-b2)]/(b2- b1)r

⋮

br-1[r(br-1-d
2
)+(r-1)(d

2
- 

br-1

2
)]/2r

1

b1≥d
2
>b2

⋮

br-1≥d
2
>br-1/2

d
2
≤br-1/2

 (17) 

Algorithm 5 Calculating the typicality from the discretization bins   



Mohamed A. Mahfouz et al, International Journal of Advanced Research in Computer Science, 14 (3), May-June 2023,150-163 

© 2020-2023, IJARCS All Rights Reserved      156 

Input cipher of a distance C(dij)andbins vector Bi for cluster i 

l = 1; h = r - 1 

while l<h do 

CaCS: m= l+(h-l)/2 

CaCS: compute g= C(dij) – C(Bim)   and send re-encrypted(g) to CoCS 

CoCS: incompletely decrypt g and return F as the magnitude relation to CaCS 

CaCS: if (F=0)     return m    end if 

               if (F<0) 

l = m  

                else 

h= m   

                end if 

                if ((h-l)<=1)  return  l  end if   

 end while 

d. Computing fuzzy membership of an object in a cluster given its Typicality in all clusters 

From Eq. (11) 

 

𝑑𝑖𝑗 = √𝜂𝑖 (
1

𝑡𝑖𝑗
− 1)

𝑝−1

2
   

 

(
𝑑𝑖𝑗
𝑑𝑘𝑗

)
2

𝑚−1 = (
𝜂𝑖
𝜂𝑘
)

1

𝑚−1((
1

tij
− 1) /(

1

tkj
− 1) )p−1/(𝑚−1) 

Let   

𝑧𝑖𝑘𝑗 = ((
1

tij
− 1) /(

1

tkj
− 1) )p−1/(𝑚−1)   (17) 

𝛽𝑖𝑘  =  (
𝜂𝑖

𝜂𝑘
)

1

𝑚−1    (18) 

From equation (5) and (11), the fuzzy membership can be calculated using soft typicality as follows: 

𝑢𝑖𝑗 =     1/∑𝛽𝑖𝑘𝑧𝑖𝑘𝑗

𝑐

𝑘=1

 

 for i=1,2,...c and  j=1,2,…n(19) 

By keeping a matrix Z of size r×r  such that for each pair of values in µ the value zikj is precomputed knowing the index of tij and 

tkj in µ denoted sijand skj such that zikj = Z[sij,skj] 

Also, at each iteration, the encrypted values of η are sent to the client to return an unencrypted matrix β such that  𝛽[𝑖, 𝑘]  =

 (
𝜂𝑖

𝜂𝑘
)

1

𝑚−1 

𝑢𝑖𝑗 =     1/∑ 𝛽[𝑖, 𝑘] 𝑍[𝑠𝑖𝑗, 𝑠𝑘𝑗]

𝑐

𝑘=1

 

for i=1,2,...c and  j=1,2,…n (20) 

e. Updating the penalty parameters 

 

From previous sections, we can compute unencrypted values of the typicality. If we store in the typicality matrix the index of each 

typicality value tij in µ, sij. Also, the values of µ raised to power m are stored in a vector φ = µm. As we can see from Eq. (15), the 

exponentiation are avoided also the number of multiplications are reduced to r instead of n by computing the sum of C(dij) and the 

count of  xj where the soft typicality index sij = k as follows:- 

𝑪(𝜼𝒊) =  ∑ 𝝋 𝒌[𝒔𝒊𝒋]∑𝒔𝒊𝒋 =𝒌  𝑪(𝒅𝒊𝒋 )/∑ 𝝋 𝒌[𝒔𝒊𝒋]∑ [𝒔𝒊𝒋 = 𝒌]
𝒏
𝒋=𝟏

𝒓
𝒌=𝟏

𝒓
𝒌=𝟏     (15) 
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f. Computing the final memberships at each iteration  

In order to overcome the PCM’s coincident clustering problem, core objects need to be identified. In the proposed algorithm, the 

computed fuzzy memberships are used for identifying core objects and introducing the between-class relationships, and for 

computing the final membership. From the fuzzy memberships of an object in all clusters, the winner prototype is identified as the 

prototype having the maximum membership which is higher than a threshold. The between-class relationships are introduced by 

increasing the difference in the membership of the winner prototype and the membership of non-winner prototypes as in the cutset 

algorithm that is introduced in [16]. Unlike the procedure used in [17], in the proposed algorithm, the between-class relationships 

are introduced by setting the non-winner fuzzy membership to 0 and the fuzzy membership of the winner to 1 then the final 

membership tij`= a×tij + b×uij,thus, the parameters a and b will play an important role in deciding how much the increase in the 

difference of the membership of the winner prototype and the membership of non-winner prototypes. Such modifications do not 

affect the typicality of outliers since PCM by its nature gives small typicality values to outliers. In contrast to traditional FPCM, 

only the membership of objects that are neither core nor outliers are preserved, and their final membership is a×tij + b×uij where a 

and b are input parameters. 

 

Table (c) in Fig. 2 shows the typicality tij of object j in cluster i , tijis computed from the discretized distances to centres.  The last 

two objects in this example have very low typicality in all clusters and they can be easily identified as the objects having hj less 

than the average of hjwhereℎ𝑗 = ∑ 𝑡𝑖𝑗
𝑐
𝑖=1 by three standard deviations. The fuzzy memberships in Table (a) are computed using Eq. 

(20). Table (b) shows the refined fuzzy memberships, fuzzy memberships of candidate outliers are set to 0 while identified core 

objects their memberships are set to 1 in the winner class and to zeros in the other classes. The fuzzy membership of any normal 

object (neither an outlier nor a core) is kept as is. The final memberships at any iteration are computed from the refined fuzzy 

memberships and typicality. In this example, the parameters a and b are set to 0.5. Table (d) in Fig. 2 shows the final memberships 

where the between-class relationship is increased and the membership for outliers is decreased.

 

 

 
fig. 1 memberships vs. soft memberships 
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fig. 2   flow of memberships in the proposed algorithm 

 
Figure 3 

 

 

g. Computing cluster centers 

The cluster centers are updated using the formula in Eq. (21). The values of the typicality t are selected as one of the values stored 

unencrypted in a vector φ = µm based on the magnitude relation returned by CoCS, where µ stores the set of the input set of 

discrete values for memberships.  The fuzzy memberships uij are computed unencrypted from typicality, as shown in section 3.5 

above. The only encrypted data in the following equation are the owner's encrypted data; thus, no exponentiations or divisions on 

the encrypted data are required. 

 

𝑣𝑖 =
∑ 𝑥𝑗 (𝑎𝑢𝑖𝑗  

𝑚 + 𝑏 𝑡𝑖𝑗   
𝑝
)𝑛

𝑗=1

∑  (𝑎𝑢𝑖𝑗  
𝑚 + 𝑏 𝑡

𝑖𝑗   
𝑝
)𝑛

𝑗=1
      𝑓𝑜𝑟 𝑖 = 1,2,… 𝑐   (21) 

h. The proposed Privacy-Preserving semi-fuzzy possibilistic c-means (PPS-FPCM) 

  In this section, we will describe an algorithm termed PPS-FPCM. The proposed PPS-FPCM is based on secure multiparty 

computation (SMC) in which mutually doubting users collaborate to compute a function of their private data without revealing 

any additional information about their private data to the other users [25].    

Incomplete re-encryption is a concept based on proxy re-encryption introduced in [29]. Proxy re-encryption is a well-known 

technology in cryptography [31], [32], and [33]. It enables two entities to share the same content via encryption without revealing 

the secret key to each other.It allows a semi trusted proxy, given a re-encryption key pka→ b, to transform a ciphertext under the 

public key pka to a new ciphertext under another public key pkb. Different from proxy re-encryption, the protocol that is proposed 

in [29] allows decrypting the result can reflect the magnitude relation of the data without leaking the data. It is similar to general 

re-encryption, but it outputs plaintext different from the original input, they call it incomplete re-encryption.  
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The protocol described in [29]   is able to get the magnitude relation between the ciphertexts that have even been subjected to 

multiple homomorphic operations in the ciphertext domain in a cloud computing environment. Following their protocol, a 

calculator cloud server (CaCS) and a comparator cloud server (CoCS) are involved in our proposed scheme. At first, the client 

needs to encrypt its data before uploading it to CaCS along with the required parameters, also, it sends an incomplete re-

encryption public key to CaCS and an incomplete re-encryption secret key to CoCS. Fig. 3 shows the communications between 

the components of the system model.   

 

In each iteration, CaCS computes new centers, and then the distances D to the centers are computed using some basic 

homomorphic operations on encrypted data and centers. The discretization bins BPCM are computed by CaCS using current values 

of ƞ. The re-encrypted difference between D and B is sent to CoCS. A maximum of a log r comparison is required for each 

squared distance value to be assigned a soft membership from the available r memberships. The magnitude relation of the squared 

distance and a bin value is returned by CoCS to CaCS. CaCS will check each received value from CoCS to see if it can assign a 

soft membership to its corresponding object and exclude it from the next comparison iteration (O (log r) comparisons). After 

computing the typicality of each object, the fuzzy memberships are computed at CaCS from the computed topicalities and the 

penalty parameter at this step using Eq. (14). At the end of each iteration, CaCS does a refinement step to compute the final 

memberships using the assigned soft PCM and FCM memberships. The cluster centers are computed using the refined 

memberships. The purpose of the refinement step is to reduce the effect of candidate outliers and increase the in-between cluster 

distances.   

 

Algorithm 6: secure Privacy-Preserving possibilistic c-means (PPS-FPCM)) 

DO:  

      Generate (pkDO ,skDO) KeyGen(σ)       // public/secret key pair generated using security parameter σ 

      Generate (pkCa ,skCo) ReKeyGen(skDO, pkDO)    // an incomplete re-encryption public/secret key pair 

      Send pkCa to CaCs         // an incomplete re-encryption public key send to CaCS 

      Send skCo  toCoCS       // an incomplete re-encryption secret key 

      {C} SH.Enc(X, pkDO)    // ciphertext of X 

      send {C} to CaCS 

send  c, m, α , r to CaCS 
      CaCS: Select encrypted initial centers V from encrypted data X      

      CaCS: Compute encrypted distances D from encrypted data X and encrypted centers V 

      CaCS: Compute initial hard memberships and initial penalty parametrs η  using algorithm 4    

Repeat: 

CaCS:  Send encrypted η  to the DO  to decrypt  and return β as in Eq. (13) and Eq. (18)  

CaCS:  Compute encrypted new centers as in Eq. (21)        

      CaCS:  Compute encrypted distances from encrypted data andencrypted centers   

      CaCS:  Compute decrypted new bins using Eq. (13) 

      CaCS: Compute not encrypted soft typicality as described in algorithm 5  

CaCS: Compute semi-fuzzy memberships  from not encrypted soft typicalities and  β   using Eq. (20)  

CaCS: Compute final memberships from semi-fuzzy memberships and soft typicalities   as in section 3.6 

CaCS: Compute encrypted centers  from not encrypted final memberships and encrypted data  as in Eq. (21)   

CaCS: Compute encrypted η  from not encrypted memberships and  encrypted distances  Eq. (15) 
CaCS: Send encrypted centers and memberships to DO to update U, V   

Until (maximum number of iterations is reached or very small change in cluster centers in two successive iterations) 

 

After computing initial soft memberships, these memberships are unencrypted and we can easily identify core points and update 

the membership according to section 3.4. Also, in each iteration, the objects having the highest memberships for each cluster are 

identified and the average distance is computed using their not-encrypted soft memberships and their already computed encrypted 

distance to these centers to update the penalty parameters ƞ. Given the values ƞ, the bin values are updated using Eq. (7) to be used 

in the next iteration. Finally, CaCS will send the results to the client.  

i. Security Analysis 

As stated in [29], DO’s data is confidential, if the key is long enough, the attacker cannot obtain the plaintexts in polynomial time. 

Besides, CoCS has no additional information about DO’s data. The leakage of the difference will not disclose any privacy of DO. 

Also, the magnitude relation that is given as additional information to CaCS is expressed as symbols representing the magnitude 

relation instead of the accurate difference values that make the protocol still secure. The only possible threat is that CaCS may 

conclude with CoCS.In this section, we will show how much the proposed scheme prevents the original data, intermediate results, 

or final results from being leaked. 

The first threat issue, CaCS holds the ciphertexts of DO’s original data, DO’s data is not confidential:ciphertexts of SHE is a key-

dependent message thus it is secure under the decisional composite residuality assumption [34] i.e., if the key is long enough, the 

attacker cannot obtain the plaintexts in polynomial time [35]. Thus, DO’s data is confidential. 
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The second threat issue is that, because CoCS holds the incomplete re-encryption secret key, it may decrypt any ciphertexts it got 

to obtain DO’s private information: only the re-encrypted difference (RD) that represents the difference between the distance and 

the selected value in the Bin vector is sent to CoCS. It is the ciphertext of the two data’s differences. Through numerical analysis, 

CoCS can eliminate the xδ−1 and get the exact value of the difference. However, it is hard to recover DO’s original data. Assuming 

CoCS gets the exact difference d, it can recover two data in the t-length plaintext space with a probability of 1 /(t−d). The 

probability decreases as the difference decreases. Besides, CoCS has no additional information about DO’s data. Thus, the leakage 

of the difference will not help CoCS disclose any privacy of DO.  

The third threat issue, CaCS will get additional information from the returns of CoCS that may help it access DO’s data:  the 

returns from CoCS are only symbols representing the magnitude relation instead of the accurate difference values. They can only 

be used to help CaCS to assign the appropriate soft memberships. Besides, the bin vector is not related to the data and the distance 

is a function of the data and centers. Furthermore, because SHE is not an order-preserving encryption, the corresponding plaintext 

information will not be leaked. Thus, the proposed scheme is still secure. 

The fourth threat issue, CaCS may conclude with CoCS: cloud servers are required not to conclude with each other. The proposed 

scheme is secure without cloud server collusion. If CaCS and CoCS conclude with each other, i.e., if CaCS sends the ciphertexts 

of DO’s data directly to CoCS then it can decrypt the re-encrypted ciphertexts with the incomplete decryption key [29]. It can 

obtain all DO’s data amplified with xδ−1 times. The security of the proposed scheme in the case of cloud servers colluding with 

each other is out of the scope of this paper. 

j. BGV Parameters 

For the integer parts of the plaintext vectors that are encrypted in the BGV, the plaintext modulus p establishes an upper bound. 

For example, setting the plaintext modulus to p = 255 means that computing the product of an encrypted 16 and an encrypted 16 

will overflow and produce the result 256 − 255 = 1. The primary functional parameter that controls the scheme's ability to perform 

encrypted computations is the ciphertext modulus q. A ciphertext in the BGV scheme is composed of an array of 2h numbers 

between 0 and q -1. More operations can be carried out on encrypted data by increasing the parameter q. The security level of the 
scheme is determined for a given value of q by the ciphertext dimension h, with a bigger h indicating more security. The size of 

the plaintext vector that is encoded into each ciphertext is also influenced by the ciphertext dimension h at the same time. The 

plaintext vector's size is typically, but not always, equal to h.  for example, to get any kind of security with q=65537 we need at 

least h=512 and H = ceil((2h+1) log q).  It is recommended to choose value of h = 8192 to support q moduli of size b up to 218 

bits.  

 

k. Computation and communication cost Analysis 

In this section, the complexity of the presented Privacy-Preserving semi-fuzzy possibilistic c-means algorithm will be analyzed in 

terms of computation cost and communication cost.  The computation cost is estimated using the BGV parameters stated above in 

terms of ADD, MUL and MOD to denote the computation cost of one addition operation, one multiplication operation and one 

modulus operation on Ring R , respectively. As shown in algorithm 6, the client encrypts the raw objects only once before 

uploading the encrypted data to CaCS. The client encrypts the dataset with O(nd(h + 1) H (ADD + MUL)) where n is the number 

of objects and d is the number of attributes of each object. During each iteration, the CaCS calculates the distances to centers on 

the encrypted data. Also, CaCS compute the difference between distance matrix and the bin vector which costs  

nc(log r) (MUL+ADD) where r is the number of discretization levels and re-encrypts the difference and c is the number of 

clusters. The re-encryption costs O ([nc(log r)(h + 1) H(ADD + MUL)]). CaCS sends the results to CoCS. Also, each time CoCS 

receives the re-encrypted differences it decrypts the re-encrypted differences and return the results to CaCS.The decryption costs 

[nc(log r)(h + 1) MUL+ nchADD + 2 nc MOD]. Moreover, the CaCS performs (h + 1)(4 n(c + 1)(2 H + h ) + 8 H + 1) MUL, (h + 

2)(2 n (c + 1) + 4 n + 1) H ADD and (h + 1)(((6 n (c + 1) + c)(h + 2)) + 4 h ) MODfor calculating the distances. While CoCS 

performs hnc(log r)MOD for computing the magnitude relation in each iteration.  The computation of the centers costs (n-1) ADD 

+ n MUL since the dominator is not encrypted the division will be one multiplication with cypher texts.  Computing the typicality 

and fuzzy memberships is done on not encrypted data. Computing the initial penalty parameters costs 2nc2 (ADD+MUL).   

 

Communication cost. At the beginning, the client uploads ndmessages with nd(h + 1) b bits to cloud. During each iteration, the 

client exchanges 2c(d+n) messages with 2c(d+n)(h + 1) b bits with the cloud to decrypt and encrypt the intermediate results of the 

cluster centers. Also, in each iteration, the CaCS exchanges 2nc (log r) messages with 2nc (log r) (h + 1) b bits.  

 

Comparing the complexity of the proposed algorithm to the SWPCM algorithm, we found that calculating the memberships and 

the centers are much less complex in the proposed algorithm with the added cost of re-encryption and decryption and the 

communication cost between CaCS and CoCS. Also, the CoCS can be a service that run on the same hardware of the CaCS. 
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4. EXPERIMENTAL RESULTS 

The adopted datasets[36] are described in  the first and second columns of Table 2. We used the Iris data in our work's 

investigation. One of the first and most popular data sets in data mining is iris data. There are 150 samples from three different Iris 

flower types included in the Iris data set. Four characteristics, including the length and width of the sepal and the length and width 

of the petal, are present in every sample of iris flowers.  The 5800 samples in the shuttle dataset each include 9 properties, all of 

which are numerical, and they all fall into one of five classifications. A digitized image of a fine needle aspirate (FNA) of a breast 

mass has 569 samples and 9 numerical features that define properties of the cell nuclei present. These samples make up the Breast 

dataset. Features in the Wine dataset include the amounts of 13 constituents (including alcohol, malic acid, and others) identified 

through chemical analysis of 178 samples of wines produced in the same Italian region but coming from three distinct cultivars.  

For each of the 17 pulses of the Goose Bay system, the 34 characteristics of the Ionosphere dataset correspond to 17 complex 

values that show the autocorrelation between a pulse's timing and pulse number.  There are no missing data and numerical 

attributes in any of the datasets we used in our experiments. As a metric for sample dissimilarity, Euclidean distance is employed. 

For any dataset with more than 10 attributes, the Principal Component Analysis algorithm provided in[37] is utilized to limit the 

dimension to 10. 

 

Table 2 presents the performance indices and runtime of the proposed PPS-FPCM algorithm compared to another six related 

methods on five standard datasets [38].As shown in Table 2, SPCM outperforms all algorithms on both Wine and Ionosphere 

datasets in terms of VMI, AMI, and ARI. FCM is the best algorithm on the Breast dataset and PPS-FPCM is the second best. On 

the Iris dataset, the results of the six algorithms are close to each other, PPS-FPCM is the best in terms of VMI while PFCM in 

terms of AMI and ARI.  The runtime of SPCM is slightly higher than HCM and less than the runtime of any of the other 

algorithms. Table 3 shows the iteration time, number of iterations, total runtime, silhouette index, maxdist, mindist, and sumdist 

for five local minima computed using different random initialization on the Iris dataset. The maxdist, mindist, and sumdist 

correspond to the square root of the maximum, minimum and sum of gi over i in Eq. (22) where 𝑣𝑖
∗denotes the actual center for 

cluster i. The results show that the proposed algorithm requires a higher number of iterations than WPCM and the cost of a single 

iteration is about 67% of the cost of a WPCM iteration. PPS-FPCM is the best in terms of silhouette index, AMI and ARI and 

slightly lower than the best in terms of other indices. 

𝑔𝑖 = ‖𝑣𝑖
∗  − 𝑣𝑖‖

2          (22)   

 

Table 2 Performance of PPS-FPCM compared to five related clustering algorithms on five standard datasets 

Dataset 

Samples/ 

Features/ 

Classes 

         Metric 

Algorithms 

HCM PCM FCM PFCM WPCM SPCM 
PPS-FPCM 

Wine 178/13/3 

VMI 0.79 0.736 0.424 0.475 0.834 0.842 0.851 

AMI 0.79 0.734 0.417 0.468 0.833 0.840 0.847 

ARI 0.81 0.747 0.380 0.373 0.854 0.881 0.883 

Avg. Runtime (sec) 0.015 0.156 0.156 0.131 0.265 0.091 0.244 

Iris 150/4/3 

VMI 0.65 0.671 0.645 0.691 0.643 0.673 0.698 

AMI 0.65 0.668 0.640 0.687 0.639 0.668 0.693 

ARI 0.62 0.649 0.607 0.664 0.621 0.658 0.668 

Avg. Runtime (sec) 0.015 0.140 0.124 0.125 0.374 0.082 0.198 

Ionosphere 351/34/2 

VMI 0.56 0.581 0.478 0.564 0.609 0.611 0.605 

AMI 0.56 0.581 0.477 0.564 0.608 0.617 0.601 

ARI 0.68 0.670 0.594 0.684 0.669 0.701 0.709 

Avg. Runtime (sec) 0.031 0.203 0.156 0.141 0.296 0.136 0.251 

`Breast 683/9/2 

VMI 0.56 0.609 0.639 0.558 0.485 0.560 0.626 

AMI 0.56 0.608 0.639 0.558 0.484 0.571 0.611 

ARI 0.68 0.670 0.750 0.677 0.568 0.687 0.698 

Avg. Runtime (sec) 0.031 0.281 0.203 0.149 0.359 0.125 0.233 

Shuttle 58000/9/5 

VMI 0.32 0.274 0.105 0.194 0.312 0.291 0.234 

AMI 0.32 0.274 0.104 0.194 0.312 0.290 0.229 

ARI 0.25 0.217 0.064 0.125 0.147 0.235 0.244 

Avg. Runtime (sec) 5 208 277 218 233 143 455 
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Table 3: Detailed Performance on Iris Dataset 

algorithm 

Runtime per 

iteration(ms) 

total  

runtime 

(ms) 

iteration 

count 

no. 

local  

min. VMI AMI ARI 

Silhouette 

index maxdist mindist sumdist 

PCM 44.501  2492.078 56 5 0.643 0.639 0.621 0.454 0.766 0.707 2.121 

FCM 31.138 3176.032 102 5 0.684 0.680 0.653 0.454 0.523 0.379 1.138 

SPCM 35.650  1568.614 44 5 0.673 0.668 0.659 0.459 0.791 0.703 2.108 

PFCM 48.428 1791.819 37 5 0.607 0.687 0.664 0.451 0.708 0.560 1.681 

WPCM 120.981  2419.626 20 5 0.641 0.636 0.611 0.457 0.939 0.787 2.359 

HCM 1.1330  19275.234 17009 5 0.673 0.669 0.641 0.448 0.596 0.423 1.168 

PPS-FPCM 81.220 1698.512 48 5 0.628 0.693 0.668 0.462 0.843 0.761 2.121 

5. CONCLUSION 

In this paper, a Privacy-Preserving semi-fuzzy possibilistic c-means algorithm is presented for data clustering. The main idea is to 

avoid the need for exponentiation and division in each iteration without sacrificing accuracy by limiting the memberships to a set 

of discrete values between zero and one differ by a small fixed step that simplifies the computation of centers and memberships, 

deals with noise, and adapts the algorithm parameters during execution. Also, the paper describes a procedure for securely 

implementing the proposed algorithm on encrypted data using the incomplete reencryption scheme. Experimental results and 

complexity analysis of the proposed soft possibilistic c-means algorithm (PPS-FPCM) demonstrate the following points: 

 

 Restricting the memberships to a set of discrete values reduces the complexity of PPS-FPCM. 

 The algorithm can be securely implemented on the cloud using the existing incomplete re-encryption method which has 

the advantage that the data owner (DO) does not have to pre-process the data. Only the cipher texts of the data and the 

incomplete re-encryption key pair are involved.  

 However, this protocol is not secure with cloud server’s collusion.   

 

In future work, Micro-service implementation will be investigated to implement the PPS-FPCM algorithm on the cloud without 

the disclosure of private data. 
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