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Abstract: The application of the traditional k-nearest neighbours in regression analysis suffers from several difficulties when only a limited 
number of samples are available.  In this paper, two decision models based on density are proposed. In order to reduce testing time, a k-nearest 

neighbours table (kNN-Table) is maintained to keep the neighbours of each object x along with their weighted Manhattan distance to x and a 
binary vector representing the increase or the decrease in each dimension compared to x’s values. In the first decision model, if the unseen 
sample having a distance to one of its neighbours x less than the farthest neighbour of x’s neighbour then its label is estimated using linear 
interpolation otherwise linear extrapolation is used. In the second decision model, for each neighbour x of the unseen sample, the distance of the 
unseen sample to x and the binary vector are computed. Also, the set S of nearest neighbours of x are identified from the kNN-Table. For each 
sample in S, a normalized distance to the unseen sample is computed using the information stored in the kNN-Table and it is used to compute the 
weight of each neighbor of the neighbors of the unseen object. In the two models, a weighted average of the computed label for each neighbour 
is assigned to the unseen object. The diversity between the two proposed decision models and the traditional kNN regressor motivates us to 

develop an ensemble of the two proposed models along with traditional kNN regressor. The ensemble is evaluated and the results showed that 
the ensemble achieves significant increase in the performance compared to its base regressors and several related algorithms.  
 
Keywords: Small Data, Ensemble Algorithms, Nearest Neighbors Regression, Neighborhood Component Analysis 

 

1. INTRODUCTION 

 

An estimation of a real-valued continuous response (output) 

based on the values of one or more input variables is referred 

to as a regression issue in machine learning. A regression 

approach find the relationships between output and input 

factors to predict a target value numerically. Various 

regression techniques have been proposed in the literature.  

Due to its ease of use and robustness,  its ability to learn non-

linear decision boundaries, its ability to evolve with new data 

since no explicit training phase, has only a single hyper 

parameter to be tuned and can be applied using several 
distance metrics,  k-nearest neighbour regression (kNNR) [1] 

and  [2] has emerged as one of the most popular regression 

approaches [3]. This approach is a modified version of the k-

nearest neighbour (kNN) model, which is first proposed as a 

solution to classification issues in [4]. For finding the k nearest 

neighbors, the distance between the unseen sample and all 

training samples should be calculated. Thus, when kNN 

applied to very large dataset it suffers high computational 

complexity. In {Mahfouz, 2018 #46}, rough and fuzzy sets 

concepts are applied to distinguish between core and border 

objects. The author partitions data into several clusters, and 
then, for each unseen sample, the nearest neighbors would be 

searched in one core cluster and some border clusters 

according to its membership in the clusters.  In {Saadatfar, 

2020 #47},  other factors are considered such as different 

cluster shapes and densities which may have influences on 

choosing the proper cluster. On the other side, when kNN is 

applied to small dataset, it may overfit, combining several 

diverse decision models  may be a solution for this problem 

{Mahfouz, 2021 #48}.    

In  kNNR, the output value for a specific test sample is 

computed by averaging the results of the samples closest to the 

test sample  [5]. Even though the KNN approach has several 

noteworthy benefits above, it has some inherent flaws, such as 

the fact that it treats all nearest neighbors equally in the 

classification process (even though some of them are 

extremely far from the test sample). To enhance the model and 

resolve such problems, [6] proposed the concept of using the 

kNN method's degree of membership to suggest a fuzzy 

version of the algorithm known as the fuzzy k-nearest  
 

neighbors (FKNN) classifier. The FKNN model has shown 

promise for classification challenges due to its ability to 

address data uncertainty issues [7, 8] compared to the classical 

kNN method. Although the FKNN classifier has garnered a lot 

of interest in the classification context, regression has received 

less attention. This motivates the authors of [9] to propose the 

fuzzy k-nearest neighbor regression (FKNNreg) model by 

modifying the original FKNN rule. 

One of the key elements of distance-based classifiers, such the 

kNN and FKNN techniques, is often the distance metric [10]. 
Although the Euclidean distance is the most popular distance 

metric employed in such methods to determine how similar 

two data samples are, it is sometimes not the best option for all 

problem domains [11]. With a more diverse selection of 

distance metrics, better outcomes have been reported in 

several studies   [12] and [13]. The Euclidean distance also has 

several drawbacks. For instance, in the case of missing data, 

two data sample pairs may have a shorter distance than other 

sample pairs with the same feature values if they share no 

feature values [14].  Using Minkowski distance in the FKNN 

rule in the regression setting for low- and high-dimensional 

datasets showed a better results than using Euclidian [9]. 
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The kNNR model has the capacity to effectively address both 

linear and non-linear issues [15] It functions admirably in a 

high-dimensional space in particular. As a result, the kNNR 

approach is becoming more and more common in a variety of 

industries, including renewable energy [16], physics research 

[17], biological studies [18], transportation [15], robotics [19], 

and telecommunication [20]. In several instances, the kNNR 
model has also been combined with other methodologies to 

create powerful hybrid models for particular applications. For 

instance,  [21]  proposed an integrated framework for stock 

market prediction using support vector machines (SVM) and 

kNNR[22] introduced a brand-new hybrid solution for 

classification issues that combines a genetic algorithm (GA), 

the kNNR technique, and an artificial neural network (ANN).  

[23]  utilized the same idea as the kNNR to introduce a novel 

approach for missing value imputations. Furthermore, the 

simplicity and strength of the kNNR algorithm have 

encouraged researchers to develop different enhanced variants, 

for examples,  [3];  [24];  [11];   and to construct mathematical 
estimations  [25]. In order for a distance measure to be ideal, it 

must be able to accurately identify similarities between two 

samples while also enabling researchers to compare, 

categorize, or cluster those samples. As a result, these 

indicators have a great chance of influencing the results of the 

models being employed  [26]. Thus, some recent studies 

concentrated only on which similarity metric best suited the 

specific circumstance  [27] and [28].  Makowski distances 

have an exception for Euclidean distances. The fuzzy theories 

idea was initially presented by  [29], can function under 

uncertainty and has developed greatly across a wide range of 
applications   [30]. The FKNN classifier  [6] was created using 

fuzzy theory, and it has shown to be one of the best methods 

for supervised machine learning tasks.  [31]  applied the 

FKNN classifier to a regression application without modifying 

its original algorithm explicitly (i.e., it as operated as a 

classification task). Also, [9] attempts to utilize the FKNN 

model in the regression setting. Thus, the effectiveness of 

kNNR for machine learning applications requires further 

investigation. 

The main goal of this study is to introduce density based 

regressors related to the traditional kNN regressor. This led us 
to develop the Minkowski density-based fuzzy k-nearest 

neighbor regression (MDFI-kNNR) algorithm based on 

interpolation and another density based regressor MDFNN-

kNNR as a weighted average of the label of the neighbors of 

neighbors using a normalized distance that is a combination of 

Minkowski distance metric and hamming distance. A diversity 

between the proposed models and the traditional kNNR is 

expected, thus, this motivates us to create an ensemble of the 

two proposed method along with the traditional kNNR termed 

EMDF-kNNR.  Also, the use of fuzzy weights increases the 

robustness of the proposed algorithms and the utilization of the 
Minkowski distance along with hamming distance allows 

additional freedom to find nearby, more pertinent samples that 

are close to the unseen sample. 

The majority of existing regression models, such as least 

absolute shrinkage and selection operator (LASSO) regression 

and multiple linear regression (MLR), intuitively rely on 

presumptions about the distribution of the data. However, it is 

rarely proven that these presumptions apply to issues in the 

real world. In light of this, it's interesting to note that the 

kNNR and its related methods make no explicit assumptions 

about the underlying data [18] or model's elements and just 

utilize training data to generate forecasts. Another benefit is 

that they can potentially be used for non-linear situations 

because to their generally simple implementation and 

interpretation [5]. One of the most popular methods for non-

linear regression challenges is support vector regression 

(SVR). However, its usage is restricted in some areas due to 

the difficulty in selecting acceptable model parameters. [32].  
In summary, few studies have been conducted to capture the 

increase in density when an unseen sample is added. 

Sometimes the unseen sample is far from one of its neighbors 

however it is closer to it than several of its neighbors. Also, 

how much the difference between the distance between unseen 

sample and an object x which is one of  its neighbor compared 

to the distance of an object y that is also a neighbor of x. When 

this difference is very small it is better to consider the label of 

y than the label of x. This motivates the work described in this 

paper. To the best of our knowledge, we are the first to 

propose the relative normalized distance and use it to capture 

the increase in density by the unseen object to be tested.   
For non-linear regression problems, the suggested ensemble 

EMDF-kNNR consists of the two proposed density-based 

regressors and the conventional kNNR is found to be 

significant, and outperform its base models. We conducted 

several experiments to evaluate the performance of the 

suggested models using real-world data from various 

applications. When compared to multiple linear regression, 

KNNreg, Lasso, and SVR models, the proposed variant's 

performance in terms of regression was examined. 

Additionally, the outcomes of the methods of Manhattan 

distance-based fuzzy k-nearest neighbor regression (Man-
FKNNreg) and Euclidean distance-based fuzzy k-nearest 

neighbor regression (Euc-FKNNreg) were compared. The 

effectiveness of the regression was evaluated using the 

coefficient of determination (R2) and root mean square error 

(RMSE) measures. 

The main contributions of this research study: 

1) Two new regression models based on density are 

proposed. 

2) A normalized distance that combines both Minkowski 

and hamming distance is introduced and is used in the 

second model to compute the weights for each 
neighbor of the neighbors of the unseen object. 

3) The effectiveness of the suggested regression models 

is explained on real data from many fields that is both 

low-dimensional and high-dimensional.  

4) The results of the proposed ensemble are compared to 

the results of several well-known, cutting-edge 

regression methods. 

The rest of this paper is structured as follows. In section 2, the 

notation, data, similarity and performance metrics along with 

some background materials are introduced. In section 3, the 

proposed EMDF-kNNR along with its base models is 

explained. The experimental setup and the empirical findings 

achieved using the suggested methods are shown and 

discussed in Section 4. The main conclusions are outlined in 

Section 5 along with some last thoughts. 
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2. PRELIMINARIES 

2.1. Notation   

 

This section provides supporting material to help the reader 

better understand the remaining sections. Commonly used 

abbreviations and symbols are listed in Table 1. 

Table 1 Abbreviations and symbols used in the text 
Abbreviation Description 

kNNR traditional k-nearest neighbors regressor 

EMDF-kNNR The proposed ensemble 

MDFNN-kNNR The proposed decision model based on normalized 

distance to neighbors of neighbors 

MDFI-kNNR The proposed decision model based on interpolation 

NCA Neighborhood Component Analysis 

X dataset comprising n samples × d features 

n total number of samples 

xij jthfeature value of the ithsample in the dataset X 

KNN-table A table of size n×kcells, contains K nearest neighbors 

and their distances for each sample 

k number of nearest neighbors that are kept in the KNN-

table  

 

2.2. Datasets 

In our experiment, We used the same eight real-world 

datasetsthat are used in [9] and freely available at the UCI 

Machine Learningrepository [33] and at theKnowledge 

Extraction based on Evolutionary Learning(KEEL) repository 

[34]. Table 2 shows the number of instances, features and the 

domain of these datasets. 

 

Table 2 Summary of the datasets used in the experiment 

 

Data set Repository Instances Features Domain 

Stock KEEL 950 9 Business 

Airfoil UCI 1503 5 Physics 

AutoMPG KEEL 392 6 Engineering 

Baseball KEEL 337 16 Sociology 

Servo UCI 167 4 IT 

Laser KEEL 993 4 Physics 

Qsar Fish UCI 908 6 Biology 

Parkinson UCI 5875 26 Medicine 

2.3. Performance Evaluation Metrics 

The effectiveness of EMDF-kNNR and its base models have 

been evaluated using  R2. R2 is a statistical measure that shows 

how closely the data points in the response variable fit to the 

values of the regression model. It is measured as the 

proportion of the variation in the response variable, which is 

“explained’’ by the regression model compared to the mean 

[35]. 

𝑅2 = (1 −
∑ (𝑦𝑖−𝑦̂𝑖)2𝑛

𝑖=1

∑ (𝑦𝑖−𝑦𝑖̅̅̅)2𝑛
𝑖=1

) × 100%             (1) (1) 

where n is the number of samples in the test data,  𝑦̂̂
𝑖
 and yiare 

the predicted value and the true value of the ith test sample, 

respectively, and  𝑦̂𝑖̅  is the average of the true values. As 

shown in Eq. (1), the percentage values of R2 are considered.  

The higher the value of R the better the regression model is. 

 

2.4. Feature Selection for Regression using Neighborhood 

Component Analysis(NCA) 

NCA is a non-parametric method for selecting and 

weighting features with the goal of minimizing regression loss 

and classification accuracy over the training data [38], [39], 

also, NCA used in unsupervised learning [40]. NCA 

implementation is available in both Python and MATLAB.  

For Regression [41], the algorithm computes feature weights 

such that the average leave-one-out regression accuracy over 

the whole training data is maximized by minimizing an 

objective function with regularization term. The objective 

function of NCA is derived for regression as is derived in for 

classification using kNN  as follows:-  

Given a dataset S=(X,y) where X is the feature matrix of size n 

samples × d features and  y is the label vector and its elements 

are real numbers, the aim is to predict the response of unseen 

sample x given the training set (X, y). 

The distance between two samples  xi, and  xj using Manhattan 

distance is computed as follows:- 

𝑑𝑤 = ∑ |𝑥𝑖𝑟 − 𝑥𝑗𝑟|𝑑
𝑟=1    (2) 

The distance between two samples  xi, and  xj is computed as a 

weighted Manhattan distance as follows:- 

𝑑𝑤 = ∑ 𝑤𝑟
2 |𝑥𝑖𝑟 − 𝑥𝑗𝑟|𝑑

𝑟=1   (3) 

wr are the feature weights  

Consider a randomized regression model that Randomly picks 

a point (Ref(x)) from S as the ‘reference point’ for x such that 

P(Ref(x)= xj∣S) ∝k(dw(x,xj)), and  sets the response value 

at x equal to the response value of the reference point Ref(x).  

The probability P(Ref(x)= xj∣S) that point xj is picked 

from S as the reference point for x   

𝑃( Ref(𝑥 ) =  𝑥𝑗 ∣∣ 𝑆 ) =
𝑘(𝑑𝑤(𝑥 ,𝑥𝑗))

∑ 𝑘(𝑑𝑤(𝑥 ,𝑥𝑗))𝑛
𝑗=1

 (4) 

Now consider the leave-one-out application of this randomized 

regression model, that is, predicting the response for xi using 

the data in S−i, the training set S excluding the point (xi,yi). 

The probability that point xj is picked as the reference point 

for xi is 

𝑝𝑖𝑗 = 𝑃( Ref(𝑥𝑖) =  𝑥𝑗 ∣∣ 𝑆 ) =
𝑘(𝑑𝑤(𝑥𝑖,𝑥𝑗))

∑ 𝑘(𝑑𝑤(𝑥𝑖,𝑥𝑗))𝑛
𝑗=1

 (5) 

Where  k is some kernel function that results large values 

when dw(x,xj) is small. as recommended in [38]:- 

 𝑘(𝑧) =  𝑒
−𝑧

𝜎   (6) 

Let 𝑦̂𝑖̂be the response value the randomized regression model 

predicts and yi be the actual response for xi. Using Mean 

absolute deviation as the loss function that measures the 

disagreement between 𝑦̂𝑖̂  and yi, the average loss li in 

predicting  yi is   

𝑙𝑖 = 𝐸(𝑙(𝑦̂𝑖 , 𝑦̂̂𝑖)|𝑆 − {𝑠𝑖}) =  ∑ 𝑝𝑖𝑗  𝑙(𝑦̂𝑖 , 𝑦̂𝑗)𝑛
𝑗=1,𝑖≠𝑗 =

 ∑ 𝑝𝑖𝑗   |𝑦̂𝑖 −  𝑦̂𝑗|𝑛
𝑗=1,𝑖≠𝑗  (7) 

The objective function to be minimized is 
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𝑓(𝑤) =
1

𝑛
∑ 𝑙𝑖

𝑛
𝑖=1 + 𝜆 ∑ 𝑤𝑟

2𝑑
𝑟=1  (8) 

 
3. METHODOLOGY 

 

3.1.  First Model: Density-based k-nearest Neighbors 

Regressor using interpolation (MDFI-kNNR) 

 

In the first model, as shown in fig. 1, a weighted Manhattan 

distance between the unseen samplexuand all the samples are 

computed, then, the k-nearest  neighbors of the unseen sample 

are identified as 1-NN(xu)…… k-NN(xu)then the kNN-Table is 

used to identify the neighbours of each i-NN(u ) for i=1,2..k.  

Let i-NN(u ) be  xi and   d(xu,xi) between 𝑑(𝑁𝑗(𝑥𝑖), 𝑥𝑖) and 

𝑑(𝑁𝑗−1(𝑥𝑖), 𝑥𝑖). 

The label of xu is computed from the labels of 𝑁𝑗(𝑥𝑖)  and 

𝑁𝑗−1(𝑥𝑖) as follows:- 

𝑦̂𝑖 =  𝑙(𝑁𝑗(𝑥𝑖)) +
𝑑(𝑥𝑢 , 𝑥𝑖) − 𝑑(𝑁𝑗(𝑥𝑖), 𝑥𝑖)

𝑑(𝑁𝑗(𝑥𝑖), 𝑥𝑖) − 𝑑(𝑁𝑗−1(𝑥𝑖), 𝑥𝑖)
 (𝑙(𝑁𝑗(𝑥𝑖))

− 𝑙(𝑁𝑗−1(𝑥𝑖))) 

To be noted that for a certain 𝑑(𝑥𝑢 , 𝑥𝑖)  the triangular 

inequality implies an upper bound on  𝑑(𝑁𝑗(𝑥𝑖), 𝑥𝑢)  that 

depends on 𝑑(𝑁𝑗(𝑥𝑖), 𝑥𝑖)   ,so, from Eq. (4), the 

probability P(Ref(xu)= 𝑁𝑗(𝑥𝑖)  ∣S) that point 𝑁𝑗(𝑥𝑖)  is picked 

from S as the reference point for xu  in randomized regression 

model is inversely proportional to 𝑑(𝑁𝑗(𝑥𝑖), 𝑥𝑖) .  

If feature weighting using NCA is used the distance between 

two samples  is computed using Eq. (3), otherwise, The 

distance between two samples  xi, and  xj is computed as a 

Manhattan distance as in Eq. (2). 

 

 

 

 

 

Fig. 1 The distance duis used in MDFI-kNNR to predict a label 

for the unseen object x  using linear interpolatio 

 

 

Algorithm 1: MDFI-kNNR 

Let Nj(xi) is the jthneighbour of  xi , j = 1,2,…k 

for each xi ϵ N(xu) do 

          if (d(xi , Nk(xi)) > d(xu , xi)) 

j = the smallest h such that d(xu , xi) ≤ d(xi , Nh(xi))  

            else 

                   j = k 

𝑦̂𝑖 =  𝑙(𝑁𝑗(𝑥𝑖)) +
𝑑(𝑥𝑢 , 𝑥𝑖) − 𝑑(𝑁𝑗(𝑥𝑖), 𝑥𝑖)

𝑑(𝑁𝑗(𝑥𝑖), 𝑥𝑖) − 𝑑(𝑁𝑗−1(𝑥𝑖), 𝑥𝑖)
 (𝑙(𝑁𝑗(𝑥𝑖))

− 𝑙(𝑁𝑗−1(𝑥𝑖))) 

𝑤𝑖 =  
1

(1/𝑑(𝑋𝑢,𝑁𝑖(𝑋𝑢))2/(𝑞−1)          // fuzzifier q >1 

 end 

//estimate 𝑦̂̂𝑢  by taking the weighted average as 

follows: 

𝑦̂̂𝑢 =  
∑ 𝑤𝑖

𝑘
𝑖=1 𝑦̂𝑖

∑ 𝑤𝑖
𝑘
𝑖=1

 

n 

3.2. Fuzzy density based kNN regressor using normalized 

distance to neighbors of neighbors MDFNN-kNNR 

In the second model, as shown in fig. 2, if z is a neighbor of 

unseen object x and y is a neighbor of z, the distance between x 

and y is measured as a weighted average of the normalized 

Minkowskidistance between x and y and the hamming distance 

between two binary vectors representing the increase or the 

decrease in each dimension compared to z as follows: - 

d(𝑥, 𝑦̂)  =  ∝ (∑ (
|𝑥𝑖−𝑦𝑖|

𝑟𝑖

𝑑
𝑖=1 )𝑞) 1/𝑞 + (1− ∝) ∑ (((𝑥𝑖  ≥𝑑

𝑖=1

𝑧𝑖) 𝑎𝑛𝑑 (𝑦̂𝑖 < 𝑧𝑖)) 𝑜𝑟 ((𝑥𝑖 < 𝑧𝑖) 𝑎𝑛𝑑 (𝑦̂𝑖 ≥ 𝑧𝑖)))   (9) 

Where riis the range of the ith feature and ∝ is a number 

between 0 and 1.  

  

Algorithm 2: MDFNN-kNNR 

for each z ϵ N(x) do 

 for each y ϵ N(z) 

              compute the normalized distance d(x,y) 

between x and y as in Eq. (1)  

𝑤𝑦 =  
1

(1+𝑑 (𝑥,𝑦))2/(𝑞−1)          // fuzzifier q >1 

𝑙𝑧(𝑥) =  
∑ 𝑤𝑦𝑦𝜖𝑁(𝑧) 𝑙(𝑦̂)

∑ 𝑤𝑦𝑦𝜖𝑁(𝑧)

 

𝑤
𝑧

=  
1

(1+𝑑 (𝑥,𝑧))2/(𝑞−1)          // fuzzifier q >1 

end 

//estimate 𝑦̂̂𝑢  by taking the weighted average as 

follows:  

 𝑙 (𝑥) =  
∑ 𝑤𝑧𝑧𝜖𝑁(𝑥) 𝑙𝑧(𝑥)

∑ 𝑤𝑧𝑧𝜖𝑁(𝑥)
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Fig. 2 The normalized distance d1,d2and d3is used in MDFNN-

kNNRto predict a label for the unseen object x 

 

4. EXPERIMENTAL RESULTS AND ANALYSIS 

 

4.1. Performance of the  proposed algorithm  on standard 

datasets  

Table 2 summarizes the classification results of proposed 

ensemble and compares its accuracy with each of its base 

models. As shown in Table 2, EMDF-kNNR outperforms all 

its base classifiers on all datasets.  The proposed ensemble 

outperform all related works on two datasets namely 

AutoMPG and Servo.  

 

 

 

Table 2 comparison with related works on several standard datasets 

Data set MDFI-

kNNR 

MDFNN-

kNNR 

EMDF-

kNNR 

Md- 

FKNNreg 

Man- 

FKNNreg 

Euc- 

FKNNreg 

kNNR 

[25] 

SVR 

[42] 

LASSO 

[43] 

MLR 

[44] 

 

Stock 0.0286 0.0291 0.0334 0:0294 0:0294 0.0302 0.0311 0.0406 0.0762 0.0407 

Airfoil 0.1007 0.1076 0:1042 0:0963 0.0966 0.1002 0.1036 0.0986 0.1342 0.1182 

AutoMPG 0.0811 0.0779 0.0831 0:0687 0:0687 0.0719 0.0728 0.0707 0.0824 0.0725 

Baseball 0.1006 0.1101 0.1421 0:1184 0:1184 0.1239 0.1316 0.1448 0.1329 0.1350 

Servo 0.1314 0.1323 0.1617 0:1120 0:1120 0.1231 0.1167 0.1577 0.1602 0.1197 

Qsar Fish 0.0903 0.0915 0.1002 0:0902 0.0905 0.0917 0.0942 0.0943 0.0976 0.0973 

Parkinson 0.0578 0.0712 0.0798 0:0566 0:0566 0.0608 0.0666 0.0786 0.1915 0.1844 

Overall 0.0677 0.0849 0.0913 0.0769 0.0770 0.0807 0.0837 0.0917 0.1217 0.1023 

 

 

4.2 Runtime of the proposed models on Laser data  

It is clear from table 3 that the testing time of the proposed 

models are much higher than  the other related work.  The 

testing time kan be further improved using KDD tree to reduce 

both training and testing time of the proposed algorithm. 

 

Table 3 Runtime comparison on Laser data 

Algorithm Fit Time Score Time R2 

SVR 0.036749 2.10E-05 0.752904 

RFR 0.197916 4.72E-05 0.721418 

DTR 0.005209 9.33E-06 0.94019 

MLR 2.017367 9.33E-06 0.968873 

Lasso 0.004151 9.33E-06 0.758507 

kNNR 0 9.33E-06 0.944207 

MDFI-kNNR 0.004205 9.33E-06 0.924207 

MDFNN-kNNR 0.006166  0.000929 0.939836 

EMDF-kNNR 0.011403 0.000527  0.961322 

 

5. CONCLUSIONS 

 
 This research study proposed two novel density based 

decision models for regression using kNN. Unlike the 

traditional kNNR, the proposed algorithm incorporates the 

increase in density in predicting a label for unseen sample. 

From our experimental study the following can be concluded: 

1) An ensemble of two density-based regressors along 

with the traditional kNNR is proposed. 

2) The proposed ensemble is more effective than 

traditional kNNR and outperforms it on all the 

datasets that are considered in this study. 

3) The results of the proposed ensemble are compared to 

the results of several regression methods on real data 

from two fields. 

The analysis of the scheme proposed in this paper suggests 

several directions for future work: 

1) Applying feature weighting using 
neighbourhood component analysis. 

2) Learning distance Functions that are appropriate for 

the proposed regressors.   

3) Using interpolation methods other than the linear 

interpolation which is used in the paper. 
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