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Abstract: Distributed cloud computing handles a large number of tasks and provides many dynamic virtualized resources that aim to share as a 

service through the internet. While handling a large volume of tasks, task execution times, throughput, and makespan are the most significant 

metrics in practical scenarios.  So, the scheduling task is essential to achieve accuracy and correctness on task completion. A novel technique 

called Multivariate Piecewise Regressive African Buffalo Optimization-based Resource Aware Task Scheduling (MPRABO-RATS) is 

introduced for improving the task scheduling efficiency and minimizing time consumption.  First, the cloud user dynamically generates 

numerous heterogeneous tasks in the cloud environments. After receiving the tasks, the task scheduler in the cloud server finds the resource-

optimized virtual machine using the Multivariate Piecewise Regressive African Buffalo Optimization technique. The proposed optimization 

technique uses the Multivariate Piecewise Regression function for analyzing the different resources availablity such as CPU Time, Memory, 

Bandwidth, and Energy before the task scheduling. Initially, the population of the virtual machine is defined. After that, the fitness is measured 

using Multivariate Piecewise Regression. Based on the fitness estimation, the resource-efficient virtual machine is determined. Finally, the task 

scheduler assigns the tasks to the resource-optimized virtual machine with higher efficiency. Experimental evaluation is carried out in the 

CloudSim simulator on the factors such as task scheduling Efficiency, Throughput, Makespan, and Memory Consumption with respect to a 

number of tasks. The observed results indicate that the MPRABO-RATS technique offers an efficient solution in terms of achieving higher task 

scheduling Efficiency, Throughput, and Minimizing the Makespan as well as Memory Consumption than the conventional scheduling 

techniques.      
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1. INTRODUCTION 

 

Cloud computing is the rising technology in computer 

science where the different services are provided through 

the internet on-demand. Cloud computing is used for 

managing the huge number of tasks. In the cloud, task 

scheduling is a vital task. It is employed to handle the 

resources. In addition, the system permanence is improved. 

Some task scheduling methods are developed to enhance the 

load balancing performance and user’s service quality with 

lesser task completion time. 

An Enhanced Sunflower Optimization (ESFO) 

algorithm was designed in [1] for enhancing the 

performance of task scheduling with lesser makespan. 

However, the higher efficiency of task scheduling was not 

achieved. Task Schedule using Multi-Objective Grey Wolf 

Optimizer (TSMGWO) was introduced in [2] to determine 

near-optimal task scheduling solutions while handling a 

large number of tasks. However, it failed to focus on 

enhancing the task scheduling performance with lesser 

memory usage for peak loads of tasks. 

An efficient approach using the Map-Reduce and 

Genetic Algorithm based Whale Optimization Algorithm 

GA-WOA framework was developed in [3] for scheduling 

tasks in an optimal manner for efficient scheduling of 

multiple tasks.  The designed task scheduling failed to 

minimize the time taken for processing a specified task. 

A Resource Allocation Security with Efficient Task 

Scheduling using Hybrid Machine Learning (RATS-HM) 

technique was designed in [4] to minimize the make-span 

time and enhance the throughput. However, the large 

amount of data was not handled with a real cloud 

environment to enhance the effectiveness of the proposed 

model.   An Optimized Task Scheduling technique was 

designed in [5] for dynamic virtual machine allocation.  The 

designed technique failed to focus on developing an optimal 

workflow scheduling approach for virtual machine selection 

and placement in the cloud. 

Multi-objective Task Scheduling Optimization based on 

the Artificial Bee Colony Algorithm (ABC) was designed in 

[6] for reducing makespan and cost and to improve the 

throughput and average resource utilization. Task 

scheduling in a multi-cloud environment was challenging 

work using a Multi-objective task scheduling optimization 

algorithm. A modified Symbiotic Organism’s Search 

algorithm (G-SOS) was designed in [7] to decrease the task 

execution time and response time for obtaining the optimal 

solution. The energy-aware task scheduling was not 

performed. 

A fuzzy Self-Defense Algorithm was designed in [8] for 

multi-objective task scheduling optimization. However, the 

higher throughput of task scheduling optimization was not 

achieved. A Failure-Aware Task Scheduling approach was 
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developed in [9] to minimize the runtime. But, the 

performance of makespan was not minimized. 

Improving Data Locality using the Ant Colony 

Optimization (IDLACO) algorithm was designed in [10] to 

decrease the number of non-local executions and bandwidth 

consumption. The designed algorithm was not efficient to 

achieve higher efficiency. 

1.1 Major Contributions of the Paper  

 In order to overcome the existing issues, a novel 

MPRABO-RATS is developed with the following 

contribution. 

 In order to improve the efficiency of task 

scheduling in the cloud environment, the 

MPRABO-RATS scheduling technique is 

introduced by applying a Multivariate Piecewise 

Regressive African buffalo optimization technique.  

 To increase the throughput and minimize the 

makespan, the MPRABO-RATS technique finds 

the resource-optimized virtual machine based on 

the Multivariate Piecewise Regression. The 

regression function analyzes the different resource 

availability by setting the threshold. The best 

optimal virtual machine is used to improve the 

scheduling time and throughput.  

 An extensive and comparative simulation 

assessment is conducted to evaluate an in-depth 

analysis of the proposed MPRABO-RATS 

technique with existing methods via different 

metrics. 

The remainder of the paper is arranged as follows. 

Section 2 focuses on related studies that investigate task 

scheduling and resource allocation. Section 3 describes the 

architecture of the proposed MPRABO-RATS. Section 4 

focuses on evaluating the proposed MPRABO-RATS and 

the dataset description. Section 5 provides the results and 

discussion of the proposed MPRABO-RATS in comparison 

with the existing algorithms. Finally, concluding remarks 

are presented in Section “6”. 

 

2. RELATED WORKS 

 

A Hybrid Optimization Algorithm was designed in [11] 

for task scheduling and virtual machine allocation. But the 

designed algorithm failed to enhance the efficiency of the 

proposed algorithm. An Adaptive Load-Balanced Task 

Scheduling (ALTS) method was introduced in [12] for 

scheduling the tasks to the optimal VMs to reduce the 

makespan and resource consumption. But, the energy-aware 

task scheduling was not designed in the real cloud 

environment. QoS-based Resource Allocation and 

Scheduling techniques were designed in [13] based on 

swarm-based ant colony optimization. However, resource 

management was not concentrated to enhance the 

scheduling efficiency. 

A Performance and Energy Optimization Bi-Objective 

Algorithm were introduced in [14] for task scheduling. But 

the designed algorithm failed to evaluate the CPU-intensive, 

memory-intensive task scheduling in the cloud. A 

Distributed Grey Wolf Optimizer (DGWO) was developed 

in [15] for scheduling dependent tasks to VMs with 

minimum computation and data transmission costs. 

However, the designed algorithm failed to solve the 

scheduling problem for workflow applications using 

efficient optimization algorithms. 

A Hybrid of Particle Swarm Optimization and Gray 

Wolf Optimization (PSO-GWO) algorithm was introduced 

in [16] for workflow scheduling. But, the total energy 

consumption, and response time was not considered for the 

evaluation purpose.  An Improved Whale Optimization 

Algorithm was developed in [17] for minimizing the task 

scheduling time and large virtual machine load in cloud 

computing. But the designed algorithm failed to develop an 

efficient scheduling system suitable for various task 

workloads. 

A Hybrid Spider Monkey Optimization (HSMO) 

algorithm was designed in [18] to optimize the makespan 

and the cost. However, it failed to select the VMs deployed 

in different physical regions and considered data transfer 

costs between different data centers.  A new Hybrid 

Heuristic-based List Scheduling (HH-LiSch) algorithm was 

designed in [19] for solving task scheduling. But, it failed to 

apply a hybrid scheduling algorithm for power management 

of task scheduling in a cloud environment. 

A Novel Chemical Reaction Partial Swarm 

Optimization algorithm was introduced in [20] for assigning 

multiple independent tasks on the available virtual 

machines. However, the designed optimization algorithm 

failed to consider the parameters like energy and power 

consumption to enhance the performance of task scheduling. 

 

3. PROPOSED METHODOLOGY   

 

In the Internet era, cloud computing is progressed as a 

well-organized distributed platform. But the major issue in a 

cloud platform is task scheduling. Allocating multiple tasks 

to the Virtual Machine is a challenging task in cloud 

computing. Many algorithms have been introduced to 

enhance the scheduling process in the cloud environment. 

But the existing algorithms have their drawbacks to achieve 

higher scheduling efficiency. 

 

 
Figure 1: Block diagram of MPRABO-RATS Technique 

 

This paper has proposed the Multivariate Piecewise 

Regressive African Buffalo Optimization-based Resource 

aware Task scheduling technique to allocate the task to the 

Virtual Machine with the help of a scheduler. The 

MPRABO-RATS technique reduces the overload of the 

virtual machine by improving the throughput and 

minimizing the makespan. 
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Figure 1 illustrates the architecture diagram of the 

proposed MPRABO-RATS technique to provide efficient 

task scheduling in the cloud.  The cloud architecture 

comprises cloud users ‘𝑈 = {𝑢1, 𝑢2, … , 𝑢𝑚} who 

dynamically generates the multiple tasks 𝑇 = {𝑇1, 𝑇2, … , 𝑇𝑛} 

arrived in the queue. The architecture also contains the 

cloud server that includes a set of virtual machines ‘𝑉𝑚 =
{𝑉𝑚1, 𝑉𝑚2, … , 𝑉𝑚𝑏} for assigning the incoming tasks based 

on resource optimization. The proposed technique considers 

the major resources such as CPU, memory, bandwidth, and 

energy. These processes of the proposed MPRABO-RATS 

technique are explained in the following subsections. 

 

3.1 Multivariate Piecewise Regressive African Buffalo 

Optimization-based Scheduling in Cloud  

Task scheduling is a significant and most popular 

computing model in the cloud.  Scheduling is the process of 

handling many tasks in the cloud computing environment. 

During the scheduling process, resources optimization plays 

a major impact in enhancing efficiency and minimizing the 

task execution time. Therefore, the proposed MPRABO-

RATS technique is to improve the efficiency of task 

scheduling by applying a Multivariate Piecewise Regressive 

African buffalo optimization technique in this paper. 

A Multivariate Regressed African Buffalo Optimization 

is a Metaheuristic Optimization Algorithm inspired by the 

movement of African Buffalos from one position to another 

across the vast African forests, and deserts in search of food. 

In contrast to optimization algorithm, proposed Multivariate 

Regressed African buffalo optimization is an easy to use, 

and vigorous. Also, it is used for efficient exploitation and 

exploration of the search space. Few learning parameters 

outcome are employed to ensure the quick convergence rate. 

The multivariate functions are handled by using proposed 

optimization technique. Multivariate optimization includes 

the several objective functions such as energy, bandwidth, 

CPU, and memory. 

In this work, the solution to the task scheduling problem 

is symbolized as an array of tasks 𝑇 = {𝑇1, 𝑇2, … , 𝑇𝑛} that 

are scheduled to virtual machines 𝑉𝑚1, 𝑉𝑚2, … , 𝑉𝑚𝑏 using 

Multivariate Regressed African buffalo optimization as 

shown in Figure 2. The proposed optimization technique 

helps for task scheduling based on resources allocation. 

 

 
     Figure 2: Diagram of Task Scheduling 
 

Figure 2 illustrates the diagram of Task scheduling. First, 

the proposed MPRABO-RATS technique starts to initialize 

the populations of African buffalos in the search space. 

Here, the Buffalo is related to the virtual machines in the 

cloud server. Therefore, the initialization process of the 

proposed MPRABO-RATS technique is given in equation 

(1).  

 

𝑉𝑚 = {𝑉𝑚1, 𝑉𝑚2, … , 𝑉𝑚𝑏}                    (1) 

 

Where 𝑉𝑚 denotes virtual machines. After the 

initialization of the virtual machine in search space, the 

optimal virtual machine is identified based on the CPU, 

memory, bandwidth, and energy. 

First, CPU usage defines the amount of time 

consumed by the virtual machine to execute a certain task.  

The available resource of CPU is defined as in equation 

(2). 

𝐶𝑃𝑈𝐴𝑉𝐿 = (𝐶𝑃𝑈𝑇 − 𝐶𝑃𝑈𝑐𝑑)                     (2) 

 

Where 𝐶𝑃𝑈 availability of the virtual machine 

‘𝐶𝑃𝑈𝐴𝑉𝐿’ is measured based on the difference between total 

𝐶𝑃𝑈 time ‘𝐶𝑃𝑈𝑇’ and consumed time of  𝑉𝑚 ‘𝐶𝑃𝑈𝑐𝑑’ to 

complete a certain task. 

Second, the memory is another important task used 

for storage of the server in the cloud, which is calculated as 

in equation (3). 

𝑀𝑎𝑣𝑙 = (𝑀𝑇  − 𝑀𝑢𝑡 )                         (3) 

From (3), the memory availability of the virtual 

machine ‘𝑀𝑎𝑣𝑙’ is measured as the difference between the 

total memory of a virtual machine ‘𝑀𝑇 ‘and utilization of 

storage space of a virtual machine ‘𝑀𝑢𝑡’. 

Thirdly, bandwidth is defined as the volume of data 

transmitted at a given time. It is measured in bits per second 

and the bandwidth availability of the ‘ 𝑉𝑚’ is defined as in 

equation (4).  

𝐵𝑎𝑣𝑙 = (𝐵𝑇 − 𝐵𝑢𝑡)                                 (4) 

 From (4) available bandwidth of  𝑉𝑚 ‘𝐵𝑎𝑣𝑙’ is 

defined as the difference between the total bandwidth ‘𝐵𝑇’ 

and utilization of bandwidth ‘𝐵𝑢𝑡’.  

 At last, the energy availability of the virtual 

machine is estimated based on the difference between the 

total energy of the virtual machine as in equation (5).  

 

𝐸𝐴𝑉𝐿 = (𝐸𝑇 − 𝐸𝐶)                     (5) 

From (6), 𝐸𝐴𝑉𝐿  indicates residual energy of the virtual 

machine, 𝐸𝑇 indicates total energy,  𝐸𝐶  denotes consumed 

energy. 

The multivariate piecewise regression is applied to an 

optimization technique to analyze the estimated resources 

such as CPU, memory, bandwidth, and energy in the fitness 

estimation. Multivariate piecewise regression is a machine 

learning technique used to analyze the given estimated 

resource availability with the threshold value beyond or 

below which desired effects occur. The threshold value is 

used for decision making i.e. finding the resource optimized 

virtual machine.  Therefore, the fitness of the virtual 

machine based on the piecewise regression is formulated as 

given in equation (6). 

 

𝐹 =  {
(𝐶𝑃𝑈𝐴𝑉𝐿 > 𝑡1)𝑎𝑛𝑑 (𝑀𝑎𝑣𝑙 > 𝑡2) 𝑎𝑛𝑑 (𝐵𝑎𝑣𝑙 > 𝑡3)𝑎𝑛𝑑 (𝐸𝐴𝑉𝐿 > 𝑡4) ; 𝑂𝑝𝑡𝑖𝑚𝑎𝑙 𝑉𝑚 

𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒  ; 𝑛𝑜𝑛 − 𝑜𝑝𝑡𝑖𝑚𝑎𝑙 𝑉𝑚
 

Where, 𝐹 indicates a fitness function, 𝑡1 denotes a 

threshold for CPU availability ‘𝐶𝑃𝑈𝐴𝑉𝐿’, 𝑡2 denotes a 

threshold for memory availability ‘𝑀𝑎𝑣𝑙’, 𝑡3 indicates a 
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threshold for bandwidth availability, 𝑡4 denotes a threshold 

for energy availability. 

 

 
Figure 3: Multivariate Piecewise Regression-based Fitness Estimation 

 

Figure 3 depicts the multivariate piecewise regression for 

fitness estimation to find the resource optimal virtual 

machine.  Based on the fitness value, the two processes such 

as exploration and exploitation are performed. First, 

exploitation is the process of updating solutions from the 

existing ones based on the fitness function. Exploration is 

the process of discovering new solutions and searching for 

the best solution as  in equation (7). 

 
𝑄𝑏 (𝑡 + 1) = 𝑄𝑏 + 𝑘1 [𝑄𝑏(𝐹) − 𝑒𝑥𝑏] + 𝑘2 [𝑄𝑖𝑏  − 𝑒𝑥𝑏]          (7) 

 

Where, 𝑄𝑏 (𝑡 + 1) indicates an updated solution using 

exploitation of the ‘𝑏’ th buffalo, 𝑄𝑏  denotes a current 

solution of the 𝑏’ th buffalo, 𝑒𝑥𝑏  designates an exploration 

of the 𝑏 𝑡ℎ buffalos’, 𝑘1 and 𝑘2 are the learning parameters 

and set the values from 0.1 to 0.6, 𝑄𝑏(𝐹) specifies the best 

fitness of buffalo, 𝑄𝑖𝑏  denotes an individual buffalo’s best 

location.  Followed by, the exploration of buffalos is 

updated as given in equation (8). 

 

𝑒𝑥𝑏(𝑡 + 1) =
[𝑒𝑥𝑏+𝑄𝑏]

𝛽 
     (8) 

 

Where,  𝑒𝑥𝑏(𝑡 + 1) indicates an updated exploration of 

buffalos, 𝛽 indicates a parameter value set as ±0.5.  The 

above-said process gets repeated until the convergence is 

not met, otherwise stop the process.  The flow chart of the 

proposed optimization process is given below, 

 

 
 

Figure 4: Flow Chart of Resource aware MPR-ABO Scheduling 
 

Figure 4 illustrates the Resource aware Multivariate 

Piecewise Regressed African buffalo optimization 

scheduling for selecting the best optimum virtual machine to 

assign the incoming tasks in the cloud. The algorithmic 

process of the proposed Resource aware Multivariate 

Piecewise Regressed African buffalo optimization 

scheduling algorithm is described as follows, 

 

// Algorithm 1 Multivariate Piecewise Regressive African 

Buffalo Optimization-based Resource Aware Task 

Scheduling 

Input: users ‘𝑈 = {𝑢1, 𝑢2, … , 𝑢𝑚} tasks 𝑇 = {𝑇1, 𝑇2, … , 𝑇𝑛}’, 

virtual machines ‘𝑉𝑀 = {𝑉𝑚1, 𝑉𝑚2, … , 𝑉𝑚𝑏}’,   task 

scheduler ‘𝑇𝑆 ‘, number of iterations ‘T’  

Output:  Enhance the scheduling efficiency 

Begin  

1.  Collect the tasks ‘𝑇 = {𝑇1 , 𝑇2, … , 𝑇𝑛}   from users 

‘𝑈’ 

2.  For each incoming task ‘𝑇’ 

3.  𝑇𝑆 Initialize the population of 𝑉𝑚1, 𝑉𝑚2, … , 𝑉𝑚𝑏 

4.     For each virtual machine 𝑉𝑚𝑖 

5.   Compute   𝐶𝑃𝑈𝐴𝑉𝐿 , 𝑀𝑎𝑣𝑙 , 𝐵𝑎𝑣𝑙 , 𝐸𝐴𝑉𝐿  
6.     Measure the fitness  ‘𝐹’ 
7.     While (T < Max_IT ) 

8.   if  (𝐹(𝑉𝑚𝑖) >  𝐹(𝑉𝑚𝑗)) then  

9.   Update buffalos’ exploitation using (7) 

10. Update the location of buffalos  using (8) 
11.    End if 
12. T= T+1 
13.   end while              
14.    Obtain the resource optimized virtual machine  
15. 𝑇𝑆 assigns the tasks to resource optimized virtual 

machine 
16.  end for 
17.   End 
 

Algorithm 1 given above describes the different 

processes of multivariate piecewise regressive African 

buffalo optimization-based resource-aware task scheduling 

to improve efficiency. The task scheduler initializes the 

population of the virtual machine in the search space. After 

that, the multivariate function is measured for each virtual 

machine in the population. Then the Piecewise regression 

function is applied to analyze the resource availability and 

find the best solution for the population.  After the analysis, 

the optimal virtual machine is selected.  If the fitness of one 

virtual machine is greater than the other, then the position of 

the ‘buffalo gets updated.  This process gets iterated until it 

reaches the maximum iteration. Finally, the task scheduler 

assigns the task to the resource-aware effective virtual 

machine. In this way, efficient scheduling of many tasks is 

performed with minimum time. 

 

4. PERFORMANCE METRICS AND RESULTS 

ANALYSIS 

 

In this section, the experimental evaluation of the 

MPRABO-RATS technique and two existing methods 

namely ESFO [1] and TSMGWO [2] are discussed with 

respect to various performance metrics such as task 

scheduling Efficiency, Throughput, Makespan, and Memory 

Consumption. 

Task scheduling efficiency: It is defined as the ratio of 

the number of user-requested tasks that are correctly 
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scheduled to the resource optimal virtual machines. The 

formula for calculating the task scheduling efficiency is 

given in equation (9). 

 

𝑇𝑆𝐸 = [
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑡𝑎𝑠𝑘𝑠 𝑎𝑟𝑒 𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑙𝑦 𝑠𝑐ℎ𝑒𝑑𝑢𝑙𝑒𝑑

𝑛
] ∗ 100   (9) 

 

From (9),  𝑇𝑆𝐸  indicates a task scheduling efficiency,   

‘𝑛’ represents a total number of user-requested tasks.  The 

task scheduling efficiency is measured in percentage (%). 

Throughput: It is defined as the number of cloud tasks 

executed per unit time. The formula for calculating the 

Throughput is calculated as given in equation (10). 

𝑇 =
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑡𝑎𝑠𝑘𝑠 𝑒𝑥𝑒𝑐𝑢𝑡𝑒𝑑  

𝑡 (𝑠𝑒𝑐𝑜𝑛𝑑𝑠)
  (10) 

Where ‘𝑇’ indicates a throughput, 𝑡 denotes a time. The 

throughput is measured in terms of tasks per second.  A 

higher value of the throughput metric is desired for a better 

performing task scheduling method. 

Makespan: It is defined as the time difference between 

starting and finishing a sequence of tasks allocated to the 

optimal virtual machine (equation (11). 

𝑀𝑠 = 𝑇𝑠𝑡 − 𝑇𝐹𝑠  (11) 

Where, 𝑀𝑠 denotes a makespan, 𝑇𝑠𝑡  indicates a starting 

time of tasks allocated to an optimal virtual machine, 𝑇𝐹𝑠 

denotes finishing tasks allocated to the optimal virtual 

machine. It is measured in terms of milliseconds (ms). 

Memory consumption: It is defined as the amount of 

storage space consumed by the algorithm to store numerous 

tasks. The overall memory consumption is formulated as 

given in equation (12). 

𝑀𝐶 = [𝑛] ∗ 𝑀 [𝑆𝑆𝑇]    (12) 

From (12), 𝑀𝐶 indicates memory consumption,  𝑛 

symbolizes the number of tasks and 𝑀 symbolizes memory 

consumption, 𝑆𝑆𝑇 denotes scheduling the tasks. The 

memory consumption is measured in megabytes (MB) 

 

Table I:  Task Scheduling Efficiency 

Number of 

User-

Requested 

Tasks 

Task Scheduling Efficiency (%) 

MPRABO-

RATS 

ESFO TSMGWO 

5000 92 90 86 

10000 93 90 87 

15000 91 89 86 

20000 92 88 86 

25000 93 90 85 

30000 91 88 84 

35000 92 86 83 

40000 92 88 84 

45000 93 90 88 

50000 92 89 85 

 

 
                 Figure 5: Comparative Analysis of Task Scheduling Efficiency 

 

Figure 5 given above illustrates the graphical 

illustration of Task Scheduling Efficiency with respect to 

50000 user-requested tasks. As shown in (Figure 5) 

graphical results, the Task Scheduling Efficiency is 

measured using three different methods namely the 

MPRABO-RATS technique and two existing methods 

namely ESFO [1] and TSMGWO [2].  The above graphical 

outcomes indicate that the task scheduling efficiency of the 

MPRABO-RATS technique increases the efficiency of 

scheduling multiple tasks to the cloud server.  Let us 

consider 5000 tasks generated by the cloud user, 4625 user 

tasks are correctly scheduled to the resource-efficient virtual 

machine and the efficiency of the MPRABO-RATS 

technique is 92%. By applying ESFO [1] and TSMGWO 

[2], 4498 and 4321 tasks are correctly scheduled and the 

efficiency is 90% and 86% respectively.  For each method, 

different results are observed with respect to a number of 

tasks. The overall results indicate that the Task scheduling 

efficiency of MPRABO-RATS is considerably improved by 

4% when compared to ESFO [1] and 9% when compared to 

TSMGWO [2] respectively. This is due to the application of 

the MRP-ABO technique. The MPRABO-RATS technique 

uses the Multivariate Piecewise Regression function in the 

optimization process for analyzing the resources such as 

CPU time, memory, bandwidth, and energy. Based on the 

analysis, the optimal virtual machine is identified. The task 

scheduler assigns the incoming tasks to the resource-

optimized virtual machine with higher efficiency. 
 

Table II:  Throughput 

Number of 

User-  

Requested 

Tasks 

Throughput  (Tasks/s) 

MPRABO-

RATS 

ESFO TSMGWO 

5000 565 410 370 

10000 780 652 595 

15000 875 765 690 

20000 990 865 782 

25000 1150 980 865 

30000 1240 1150 980 

35000 1398 1280 1050 

40000 1580 1410 1280 

45000 1655 1510 1405 

50000 1780 1620 1520 
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Figure 6: Comparative Analysis of Throughput 

 

Figure 6 indicates the performance analysis of 

throughput versus a number of tasks between 5000 and 

50000. In order to conduct the analysis of our results in 

terms of throughput, the performance of the MPRABO-

RATS technique is compared to existing ESFO [1] and 

TSMGWO [2] respectively. Based on our analysis, the 

performance of throughput gets increased using the 

MPRABO-RATS technique than the existing methods. For 

each method, different results are observed. The final results 

of throughput results are compared to existing methods. The 

comparison results indicate that the proposed MPRABO-

RATS technique is improved by 15% and 29% when 

compared to the existing [1] [2] respectively. The reason for 

this improvement was owing to the selection of optimal 

virtual machines using resource estimation. The task 

scheduler allocates the incoming tasks to the resource-

optimized virtual machine. The optimal virtual machine 

executes multiple tasks resulting in improves throughput. 
 

Table III:  Makespan 

Number of 

User-

Requested 

Tasks 

Makespan  (ms) 

MPRABO-

RATS 

ESFO TSMGWO 

5000 36 42 48 

10000 43 50 55 

15000 53 58 64 

20000 62 70 82 

25000 74 81 93 

30000 83 88 98 

35000 91 97 106 

40000 105 112 120 

45000 110 116 135 

50000 122 128 140 

 

 
Figure 7: Comparative Analysis of Makespan 

 

Figure 7 illustrates the performance results of makespan 

with respect to 5000 to 50000 user requests using three 

methods MPRABO-RATS technique is compared to 

existing ESFO [1] and TSMGWO [2]. The result of 10 

different runs proves that the performance of makespan is 

considerably minimized than the conventional scheduling 

technique. Let us consider the number of user requests was 

5000, MPRABO-RATS technique consumes 36ms whereas 

the ESFO [1] and TSMGWO [2] consume 42ms and 48ms 

respectively. Therefore, the average makespan time using 

the proposed MPRABO-RATS technique is lower as 

compared to other existing methods. In addition, by 

increasing the number of user requests, the makespan also 

gets increased. The overall ten comparison results indicate 

that the performance of makespan is comparatively 

minimized by 8% and 18% than the existing [1] [2] 

respectively.   This is because finding a resource-efficient 

virtual machine also reduces the scheduling time of a large 

number of tasks. 
 

Table IV:  Memory Consumption 

Number 

of User-

Requested 

Tasks 

Memory Consumption (MB) 

MPRABO-

RATS 

ESFO TSMGWO 

5000 37 43 45 

10000 45 48 51 

15000 48 54 57 

20000 54 58 62 

25000 60 65 68 

30000 66 69 72 

35000 70 74 77 

40000 76 80 84 

45000 81 84 90 

50000 85 88 93 
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Figure 8: Comparative Analysis of Memory Consumption 

 

Table IV and Figure 8 represent the performance results 

of memory consumption for scheduling multiple tasks by 

means of three different techniques MPRABO-RATS 

technique, ESFO [1], and TSMGWO [2].  The performance 

of memory consumption gets increased for all the methods 

by increasing the number of user-requested tasks. Among 

the three different scheduling techniques, the MPRABO-

RATS technique provides superior performance than the 

other two conventional methods. However, the experiment 

is conducted with 5000 tasks in the first iteration. The 

proposed MPRABO-RATS technique utilizes 37𝑀𝐵 for 

scheduling the multiple tasks, 43𝑀𝐵 using [1] and 45𝑀𝐵 

using [2] respectively. The memory consumed for optimal 

resource allocation using the MPRABO-RATS technique 

was found to be comparatively smaller than [1] and [2]. 

Hence, the reason behind the efficient optimization-based 

task scheduling algorithm is observed. By applying this 

algorithm, the optimal virtual machine is correctly identified 

with minimum time to allocate the user requested task. 

Hence, the storage capacity of the MPRABO-RATS 

technique minimizes the memory consumption by 7% 

compared to [1] and 12% compared to [2] respectively. 

 

5. CONCLUSION  

 

Scheduling multiple user-submitted tasks to the virtual 

machines is considered the most challenging task in cloud 

computing. The main aim of scheduling is used to achieve 

different objectives like maximizing Throughput, 

minimizing makespan, and maximizing resource efficiency, 

among virtual machines in a cloud data center. Therefore, a 

novel MPRABO-RATS technique is developed for 

achieving the above-said objectives in cloud computing.  

The proposed scheduling technique provides the input as 

user-requested tasks to the task scheduler. After processing, 

a Multivariate Piecewise Regressive African buffalo 

optimization is designed for resource-aware task scheduling 

in cloud-based on multiple resources such as CPU time, 

memory, bandwidth, and energy. A series of experiments 

are conducted to test the performance of the MPRABO-

RATS technique with different performance metrics with 

higher efficiency, throughput, and minimum makespan, as 

well as memory consumption when compared with the state-

of-the-art methods. 
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