
DOI: http://dx.doi.org/10.26483/ijarcs.v13i2.6810

Volume 13, No. 2, March-April 2022

International Journal of Advanced Research in Computer Science

RESEARCH PAPER

Available Online at www.ijarcs.info

© 2020-2022, IJARCS All Rights Reserved 1

ISSN No. 0976-5697

SERVICE WORKERS (SW): FACILITATING OFFLINE ACCESSIBILITY IN WEB

APPLICATIONS

S. A. Idowu
Software Engineering Department

Babcock University

Ogun State, Nigeria

A. O. Adebayo
Information Technology Department

Babcock University

Ogun State, Nigeria

C. Ajaegbu
Information Technology Department

Babcock University

Ogun State, Nigeria

O. O. Adetunji
Software Engineering Department

Babcock University

Ogun State, Nigeria

Abstract: Consistent access to web application contents is of paramount importance to its end users. Irrespective of a user’s location and the

internet condition, there is the desire to interact with web applications, particularly through the use of mobile devices. Attempts have been made

by previous researchers to introduce the Hypertext Transfer Protocol (HTTP) caching otherwise known as the browser cache which is

automatically enabled by the browser and the Application Cache (AppCache) as an attempt to foster offline accessibility. While these

approaches have helped, there still exists the problem of poor memory management and content validity.

A systematic Literature Review (SLR) was done on existing techniques, after which an overview of Service Workers (SW) and the identification

of various SW caching strategies were proposed. Any of the proposed SW strategies can be adopted by web application developers based on the

network condition and the contents of the application as this will help in reducing the loading time of the application, promote efficient mobile

memory management, and increase the number of active users.

Keywords: Service Worker, AppCache, Caching, Web Applications, Offline Accessibility

I. INTRODUCTION

With the increase in the number of mobile devices,
accessibility to web application contents and resources has
become a great deal. According to (Statista, 2021) the world
has 4.6 billion active Internet users out of which 4.3 billion
access the Internet via mobile devices. Also, (Mayuran
Sivakumaran & Iacopino, 2019; Taylor & Silver, 2019) showed
that there are more than 5 billion people who possess at least a
mobile device of which 57% of these devices are smartphones.
It has therefore become a necessity to satisfy the need of the
increasing smartphone users by developing necessary
applications. The swift movement of humans from one place to
another either on land, sea, or air can guarantee 100% access to
mobile networks which can therefore lead to a sudden
disconnect from the internet and cause a web application to go
into an offline state thereby disrupting a user’s flow of work.

Web application developers have tried to overcome these
challenges faced by users through the rendering of pre-stored
contents and assets which might become obsolete over time
(Akeem & Sun, 2018) to users in an offline state. while this
appears as a breakthrough for some developers, such web
applications battle with the problem of poor memory
management as it uses up limited storage within mobile devices
(Al-Hunaiyyan et al., 2017; Eka et al., 2019; Oyelere et al.,
2016) thereby bringing about poor memory management. Other
developers have tried to harness the benefits offered by cache
memories in a web browser. While caching might seem to be a
preferred solution by keeping web contents for a specific

period, it does not support the background synchronization of
contents with the database (Chen, 2020). This research work,
therefore, aims at proposing the integration of service workers
in providing accessibility of web content to its users.

II. LITERATURE REVIEW

Caching is a mechanism that helps software applications
reduce the number of hits to the database server which in turn
improves the overall system performance (Meysam, 2018).
Caching strategies in software applications have been
developed because of the constant increase in application users
requests (Zulfa et al., 2020), these strategies can be
implemented in different locations (client, proxy, or server).
The Hypertext Transfer Protocol (HTTP) caching otherwise
known as the browser cache which is automatically enabled by
the browser stores related resources (assets) the first time a
browser loads a web page and subsequently presents such
assets to the users in the future as long as the life of such
resources has not expired. While HTTP caching still plays an
important role in web applications, it is not reliable when the
network is unstable or down (Chen, 2020). To overcome the
limitation of the browser cache, the Application Cache
(AppCache) was introduced to provide offline browsing to
users as well as increase the speed and resilience of application
software (Bidelman, 2013). In the AppCache, once a file is
cached the browser shows the cached version even if there has
been a change in the file on the server except if a change is
made to the manifest file which will cause the entire files to be
downloaded again (James, 2012), also an AppCache cannot be

S. A. Idowu et al, International Journal of Advanced Research in Computer Science, 13 (2), March-April 2022,1-8

© 2020-2022, IJARCS All Rights Reserved 2

partially updated which has led to security and terrible usability
issues (Firtman, 2016), currently there are plans remove
support for AppCache by Chrome and other Chromium-based
browsers (Posnick, 2021).

These limitations associated with the AppCache have led to
the introduction of Service Worker (SW) which is a script that
executes in a separate thread from the browser user interface in
the background. It makes it possible for web applications to
function offline (Chris, 2021; Firtman, 2016). The cache logic
of the service worker does not need to be consistent with the
HTTP caching expiry logic. SW which is a major component in
the emerging Progressive Web Applications (PWA) mobile
development approach, is a set of Application Programming
Interfaces (APIs) that allows applications to work offline by
intercepting network requests to deliver programmatically
cached responses and preloaded assets, it also manages push
notification, synchronizes background data even when the
application is not in use and allows users to install the
application to the home screen of their mobile devices
irrespective of the form factor (Lee et al., 2018).

Based on the review, it is evident that existing mechanisms
that attempted to provide offline access to web applications
have not proved efficient. An attempt is therefore made to

propose the use of service workers along with some caching
strategies to effectively offer offline access to web application
users.

III. SERVICE WORKERS

A. Overview of Service Workers

This is a technological component that facilitates the major
functionalities of the Progressive Web Applications (PWAs). It
is the key to unlocking the powers of PWAs because PWAs
cannot work correctly without the implementation of service
workers (Hume, 2018). It is an event-driven script that runs in
the background on a separate browser thread to offer technical
features such as background synchronization which defers
actions until the user has stable connectivity, and push
notifications that engage the users while the application is not
opened (Gambhir & Raj, 2018; Parbat, 2018). As of today,
when users attempt to view a website or web application with a
flaky network connection, or lost network connection in the
process, they are shown a response as depicted in figure 1.

Figure 1: A Mobile and Desktop View of a Web Application in an Offline State

Figure 1 implies that the current offline state of websites

cannot provide any iota of useful information to its users. This
is where the service worker comes in to turn the error as seen in
figure 2.10 into something that can gracefully be handled.
Invariably, the service worker acts as a proxy between the
browser and the network that can run even when the browser is
closed. According to (Mishra, 2016), SW is a programmable
proxy where programmers can handle the network requests as
shown in figure 2.

(a) Regular Web Applications

(b) Web Applications with Service Worker

Figure 2: Service Worker as a Network Proxy
(Researcher’s Image)

While figure 2(a) shows how a regular web connects to the

Internet to retrieve a user’s request, figure 2.11(b) shows how
the SW resides between the application and the network which
then decides when to retrieve contents from the cache and
when to retrieve them from the network.

Every registered service worker runs on a separate thread
different from the browser’s main thread which runs
persistently in the background even when the associated
application is closed (Lee et al., 2018). (Malavolta et al., 2017)
researched to confirm if there is a negative impact of the
service worker on the energy efficiency of PWA. The result
showed there was no significant impact on energy
consumption. SW does not have direct access to the Document
Object Model (DOM) because it is a JS worker, this is handled
such that the SW communicates with pages on which it is
applied by responding to messages sent through the

S. A. Idowu et al, International Journal of Advanced Research in Computer Science, 13 (2), March-April 2022,1-8

© 2020-2022, IJARCS All Rights Reserved 3

PostMessage() which in turn will modify the DOM (Gambhir
& Raj, 2018). Because the SW can intercept network requests
and can in one way or the other modify the content or even
replace it with new ones, it is therefore imperative that SW are
served over HTTPS (Parbat, 2018). HTTPS registers an SW on
a browser and binds it t a website origin as defined by the
HTTPS protocol, port, and domain. The essence of this is to
secure the applications and prevent users from security attacks
such as man-in-the-middle attack (Lee et al., 2018; Parbat,
2018).

Service workers are quite different from the standard JS
files, though they are both written in JavaScript, the differences
are highlighted as follows:

• SW runs its global script context.

• SW is not tied to a particular web page.

• SW cannot modify elements on the web page because
it has no DOM access.

• SW can be only be served on the HTTPS protocol.

SW is designed to be completely asynchronous thereby

making it impossible to access synchronous components such
as the local storage.

B. Service Worker (SW) Life Cycle and Events

The SW is a short-life span event-driven script that is
downloaded in the background whenever the user visits the
pages (Gambhir & Raj, 2018; Parbat, 2018). Developers having
good control over the cached resources is imperative in
developing offline applications which can work optimally on a
poor network. A service worker goes through different stages
otherwise known as the service worker life cycle. Figure 3
shows the SW lifecycle that will take place when a user visits a
webpage.

Figure 3: Lifecycle of a Service Worker (Researcher’s Image)

S. A. Idowu et al, International Journal of Advanced Research in Computer Science, 13 (2), March-April 2022,1-8

© 2020-2022, IJARCS All Rights Reserved 4

As depicted in figure 3 when a user accesses a webpage for
the first time, the register() function is called during which the
browser will download, parse, and execute the SW. Also,
before a successful registration, there will be a check to see if
the browser supports SW. Listing 1 shows sample codes used
to register a service worker.

Once the SW has been successfully registered, the install
event is activated to install the SW and initially cache the
important assets of the websites. Listing 2 shows the install
events and the caching assets. Once the installation of the SW
is successful, the activate event is fired once and the SW is now
in control of things within the scope in which it was defined.
Listing 3 shows the activate event. Once activated, the SW
begins to receive fetch and synchronization events which are
triggered multiple times (based on each HTTPS request) as the
user navigates from one page to another as shown in Listing 4.

1) Register Event: This event is used to register the

presence of the service worker in the CB-MLMS and also to

specify the location of the SW. Listing 4.2 shows the codes

used in registering the service worker.

1. let swURL = `path-to-serviceWorker/sw.js`;

2. if ("serviceWorker" in navigator) {

3. navigator.serviceWorker

4. .register(swURL)

5. .then((res) => console.log("Service Worker

Registered", res))

6. .catch((err) => console.log("Service Worker not

registered", err));

7. }

Listing 1: Sample code for the Register Event

From the above listing,

• Line 1: Specifies the path to the service worker script.

• Line 2: Checks to see if the student’s browser supports
SW before proceeding with the registration.

•

• Line 3-4: Registers the service worker found in the
specified location.

• Line 5: Logs a statement to the console to the console
if the registration is successful.

• Line 6: Logs a statement to the console to the console
if the registration is not successful.

2) Register Event: After a successful registration, this

install event is fired to install the specified SW, while this

process is ongoing, the constant assets of the CB-MLMS are

pushed into a static cache memory.

1. self.addEventListener("install", (evt) => {

2. evt.waitUntil(

3. caches.open(staticCacheName).then((cache) => {

4. cache.addAll(assets); //addding all assets

5. console.log("Caching all assets");

6. })

7.);

8. });

Listing 2: Sample Codes to Install and Cache Assets

From the above Listing,

• Line 1: This fires the install event (self – refers to the

service worker).

• Line 2: While the event is being fired, this line puts

the install event on hold

• Line 3-4: While the event is on hold, the static cache

is opened and loaded with the static assets of the CB-

MLMS.

• Line 5: Logs a statement to the console to show the

caching of all assets.

3) Activate Event: A successful installation of the service

worker does not connote the activeness of a service worker.

The service worker only becomes activated after the activate

event is fired. Upon activation, the old cache memory is

expunged for the service worker.

1. self.addEventListener("activate", (evt) => {

2. evt.waitUntil(

3. caches.keys().then((keys) => {

4. return Promise.all(

5. keys

6. .filter((key) => key !== staticCacheName && key

!== dynamicCacheName)

7. .map((key) => caches.delete(key))

8.);

9. })

10.);

11. });

Listing 3: Sample Codes to Activate the Service Worker

From the above Listing,

• Line 1: This fires the activate event (self – refers to

the service worker).

• Line 2: While the event is being fired, this line puts

the activated event on hold

• Line 3-7: This checks the current key(s) for the

current cache memories (static and dynamic)

respectively and deletes any cache memory that does

not correspond with the current cache memory.

4) Fetch Event: After activation, the service worker begins

to receive requests and synchronization events which will be

triggered multiple times based on the HTTPS request as the

users navigate from one page to another. While requests are

made, the Dynamic cache memory is checked for a

corresponding response, if the response is not found, then the

request is fetched and the dynamic cache is updated.

1. self.addEventListener("fetch", (evt) => {

2. evt.respondWith(

3. caches

4. .match(evt.request)

5. .then((cacheRes) => {

6. return (

7. cacheRes ||

8. fetch(evt.request).then((fetchRes) => {

9. return

caches.open(dynamicCacheName).then((cache) => {

10. cache.put(evt.request.url, fetchRes.clone());

11. limitCacheSize(dynamicCacheName, 40);

12. return fetchRes;

13. });

14. })

15.);

16. })

S. A. Idowu et al, International Journal of Advanced Research in Computer Science, 13 (2), March-April 2022,1-8

© 2020-2022, IJARCS All Rights Reserved 5

17. .catch(() => {

18. if (evt.request.url.indexOf(".js") > -1) {

19. return caches.match("/fallback");

20. }

21. })

22.);

23. });

Listing 4: Sample Codes for the Service Worker Fetch

Event

From the above Listing,

• Line 1: This fires the fetch event (self – refers to the

service worker) whenever a request is made.

• Line 2-4: This checks the cache for a match with the

user’s request.

• Line 5-10: Once there is a match, the cached response

is sent back to the user, if not the response to the

request is pulled from the server, and a clone is made

which is sent and stored in the dynamic cache.

• Line 11: Shows the number of responses that can be

stored in the Dynamic cache at any given time. Once

the number is exceeded, the first response in the

dynamic cache is automatically deleted.

• Line 17-20: This shows a customized fallback page to

the user if the user requests any file other than

JavaScript file.

C. Browser Compatibility with Service Worker (SW)

SW is progressive and thus the experience varies across

browsers (Parbat, 2018). For a PWA to fully implement its

SW functionality, the user’s browser must be fully compatible

with SW. however, browsers with partial compatibility will

experience some benefits of SW due to to its progressive

enhancement nature. Figure 4 shows the current browser

compatibility.

Figure 4: Current Browser Compatibility for Service Worker [19]

As shown in figure, there are eleven (11) browsers that fully

support SW, two (2) browsers partially support SW, and three

(3) browsers do not support SW at all. Comparing this report

with that of (Parbat, 2018) where only 5 browsers fully

supported SW, shows a consistent and significant increase in

the number of browsers that fully supports SW, which implies

that in coming years, all browsers will fully support SW thus

making PWA a great choice.

IV. SERVICE WORKERS CACHING STRATEGIES

The SW can implement caching various scenarios to
effectively present offline contents to users based on the

network condition and the content. Below are various SW
caching strategies that can be utilized by web application
developers:

A. Fastest Caching Strategy

This strategy presents to the users the content that can be
loaded first from the server through a network request or the
cache memory. This is an efficient strategy with almost fresh
content. The fastest strategy is depicted in figure 5.

B. Fastest Caching Strategy

Here, an attempt is made to provide a response based on the
user’s request from the cache. If the corresponding response is
found in the cache (cache hit), it is sent to the user but the
corresponding response is not found in the cache (cache miss),

S. A. Idowu et al, International Journal of Advanced Research in Computer Science, 13 (2), March-April 2022,1-8

© 2020-2022, IJARCS All Rights Reserved 6

then the response will be pulled from the server through the
network after which the cache will be updated. This caching
strategy is efficient as it reduces the response time. However,
the content in the cache might be outdated. This strategy is
suitable for data that are stable over time. Figure 6
diagrammatically shows this strategy.

C. Network First Strategy

This is the direct opposite of the cache first approach. Here,
an attempt is made to retrieve the user’s response first from the
network. If the network connection is established, then it is a
success. If a network connection is unavailable, then the cache
is accessed to retrieve the most recent data that correspond to
the user’s request. The advantage of this approach is that data
presented to the users will always be updated provided there is
a network connection. Network connection time out is however
a challenge. This approach is the best fit for data that are

constantly updated. Figure 7 shows this strategy
diagrammatically.

D. Cache Only Strategy

This strategy loads users' responses from the cache only.
There is no option for a network connection. This approach
provides a fast response to the user but can only be utilized for
data that are permanently cached and never needs to be
updated. The cache-only strategy is depicted in figure 8.

E. Network Only Strategy

This approach ensures that responses are only gotten
through the network. Cache memory is not accessed even if
they are available. Figure 9 shows the representation of this
strategy.

(a) Web Resources Already Cached (b) Web Resources Not Cached

Figure 5: Fastest Caching Strategy

(a) Web Resources Already Cached (b) Web Resources Not Cached

Figure 6: Cache First Caching Strategy

(a) Presence of Network Connection (b) Absence of Network Connection

Figure 7: Cache First Caching Strategy

S. A. Idowu et al, International Journal of Advanced Research in Computer Science, 13 (2), March-April 2022,1-8

© 2020-2022, IJARCS All Rights Reserved 7

Figure 8: Cache Only Caching Strategy

Figure 9: Network Only Caching Strategy

V. CONCLUSION

Various approaches can be adopted in the development of
web applications by incorporating various caching mechanisms
such as the Hypertext Transfer Protocol cache otherwise known
as the browser cache, AppCache, and so on. So far, the research
has been able to propose five (5) service worker caching
strategies that can be adopted by web application developers to
support offline accessibility, maintain content validity by
supporting background content synchronization either in the
presence or absence of internet connections. The integration of
service workers into web applications can go a long way in
improving the loading time as well as increase the number of
daily active users of a web application.

VI. REFERENCES

[1] O. Akeem and Y. Sun, “Mobile E-learning Support
System for Secondary Schools in Nigeria,” in In 2018 1st
IEEE International Conference on Knowledge Innovation
and Invention (ICKII), 2018, pp. 262–265, doi:
10.1109/ICKII.2018.8569091.

[2] R. R. Eka, T. V. Utami, and K. D. Listriana, “Mobile
Based Learning Development for Improving Quality of
Nursing Education in Indonesia,” in In 2019 IEEE
Conference on Sustainable Utilization and Development
in Engineering and Technologies (CSUDET), 2019, pp.
39–44, doi: 10.1109/CSUDET47057.2019.9214755.

[3] A. Al-Hunaiyyan, S. Al-Sharhan, and R. Alhajri,
“Prospects and Challenges of Mobile Learning
Implementation: Kuwait HE Case Study,” 2017.
Accessed: Mar. 14, 2021. [Online]. Available:
https://www.researchgate.net/publication/346473760.

[4] S. S. Oyelere, J. Suhonen, and E. Sutinen, “M-learning: A
New Paradigm of Learning ICT in Nigeria,” Int. J.
Interact. Mob. Technol., vol. 10, no. 1, pp. 35–44, 2016,
doi: 10.3991/ijim.v10i1.4872.

[5] J. Chen, “Service Worker Caching and HTTP Caching,”
Web Dev, 2020. https://web.dev/service-worker-caching-
and-http-caching/ (accessed Jul. 25, 2021).

[6] S. Meysam, “Caching in Web Applications,” Codementor,
2018.
https://www.codementor.io/@meysamsamanpour/caching
-in-web-applications-fz1gzizpa (accessed Jul. 25, 2021).

[7] M. I. Zulfa, R. Hartanto, and A. E. Permanasari, “Caching
Strategy for Web Application – A Systematic Literature
Review,” International Journal of Web Information
Systems, vol. 16, no. 5. Emerald Group Holdings Ltd., pp.
545–569, Nov. 09, 2020, doi: 10.1108/IJWIS-06-2020-
0032.

[8] E. Bidelman, “A Beginner’s Guide to Using the
Application Cache,” HTML5Rocks, 2013.
https://www.html5rocks.com/en/tutorials/appcache/beginn
er/ (accessed Jul. 25, 2021).

[9] B. James, “Problems with Application Cache,” Disqus,
2012.
https://blog.jamesdbloom.com/ProblemsWithApplication
Cache.html (accessed Jul. 25, 2021).

[10] M. Firtman, “Service Workers Replacing AppCache: A
Sledgehammer to Crack a Nut,” Medium, 2016.
https://medium.com/@firt/service-workers-replacing-
appcache-a-sledgehammer-to-crack-a-nut-5db6f473cc9b
(accessed Jul. 25, 2021).

[11] J. Posnick, “Preparing for AppCache Removal,” WebDev,
2021. https://web.dev/appcache-removal/ (accessed Jul.
25, 2021).

[12] L. Chris, “What is a Service Worker? Transform Your
Web Site to an Instant Loading Powerhouse!,” Love2Dev,
2021. https://love2dev.com/blog/what-is-a-service-
worker/ (accessed Jul. 25, 2021).

[13] J. Lee, H. Kim, J. Park, I. Shin, and S. Son, “Pride and
Prejudice in Progressive Web Apps: Abusing Native App-
Like Features in Web Applications,” in Proceedings of the
ACM Conference on Computer and Communications
Security, 2018, pp. 1731–1746, doi:
10.1145/3243734.3243867.

S. A. Idowu et al, International Journal of Advanced Research in Computer Science, 13 (2), March-April 2022,1-8

© 2020-2022, IJARCS All Rights Reserved 8

[14] A. D. Hume, Progressive Web Apps, 1st ed. New York:
Manning Publications Co., 2018.

[15] T. Parbat, “Evaluation and Implementation of Progressive
Web Application,” Helsinki Metropolia University of
Applied Sciences, 2018.

[16] A. Gambhir and G. Raj, “Analysis of Cache in Service
Worker and Performance Scoring of Progressive Web
Application,” in 2018 International Conference on
Advances in Computing and Communication
Engineering, ICACCE 2018, 2018, pp. 294–299, doi:
10.1109/ICACCE.2018.8441715.

[17] R. S. Mishra, “Progressive Web App: Review,” Int. Res.
J. Eng. Technol., vol. 3, no. 6, pp. 3028–3032, 2016.

[18] I. Malavolta, G. Procaccianti, P. Noorland, and P.
Vukmirovic, “Assessing the Impact of Service Workers
on the Energy Efficiency of Progressive Web Apps,” in In
2017 IEEE/ACM 4th International Conference on Mobile
Software Engineering and Systems (MOBILESoft), 2017,
pp. 35–45, doi: 10.1109/MOBILESoft.2017.7.

[19] caniuse.com, “Can I Use Service Workers,” Fyrd, 2021. .

