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Abstract: Recent years have seen a significant increase in interest in object detection, which is considered to be one of the most fundamental and 
demanding computer vision tasks. It might be called the pinnacle of computer vision history, because of its rapid progress since 2005. If we 
regard today's object identification to be a kind of deep learning-powered technical aesthetics, then rewinding the clock since 2005 would allow 
us to observe the wisdom of the cold war period. This study examines studies on object detection since 2005 in the context of technological 

advancements that have occurred throughout a quarter-century. This article covers a wide range of subjects, including historical milestone 
detectors, metrics, datasets, speed-up strategies, etc. This article also reviews important traditional object detections (DPM and HOG), single-
stage object detection methods (YOLOR, RetinaNet, SSD, YOLO), and two-stage object detection methods (Mask-RCNN, Faster-RCNN, Fast-
RCNN, SPPNet, R-CNN). 

 
Keywords: Object detection, Localization, Classification, Technical evolution, Deep learning, Computer vision, Convolutional neural networks 
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I.INTRODUCTION 

 
The computer vision technique of object detection is an 
approach that is used to locate and classify occurrences of 
things in images or videos using computer vision algorithms. 
When it comes to delivering relevant results, object detection 
algorithms frequently rely on machine learning or deep 
learning approaches to do this. When gazing at or viewing 
images or videos, the human eye can recognize and pinpoint 
things of interest in a matter of seconds. One of the goals of 
object detection is to utilize a computer system to mimic 
human intelligence. 
The detection of objects is a basic concept in computer 
vision, and it is also one of the most difficult. It serves as the 
foundation for a huge range of downstream computer vision 
operations, including instance segmentation, object tracking, 
image captioning, and other applications. The detection of 
pedestrians, counting of the number of people in a given 
area, face recognition, text detection, pose detection, and 
number-plate recognition all are examples of computer vision 
applications,specifically, object detection applications. 

 

 

Object Detection = Classification + Localization 

 
Cat                                       Cat, Dog, Duck 
Fig. 3 Object Detection 

Differences between Image Classification, Object 

Localization, and Object Detection 

1) Classification: We can tell what kind of thing is in an 

image with only one object. This is a classification case as 

shown in Fig. 1. 

2) Localization: The next step is localization, in which 

we not only determine what type of object it is but also 

where it is in the image. Programmatically, we must draw 

the correct bounding box around it, as shown in Fig. 2. 

3) Object Detection: If the image contains one or 

multiple objects, we must locate and identify each one. This 

is known as Object Detection as shown in Fig. 3. 

 

II.OBJECT DETECTION: A ROAD MAP 

 

Generally, object detection has been divided into two 

historical periods over the past two decades, as 

illustrated in Fig. 4. The first is known as the Before 

Deep Learning (Traditional way of Object Detection) and 

the second is known as the After Deep Learning (Modern 

way of Object Detection) respectively. 

A. Before 2014 

Before Deep Learning (Classical or Traditional way of 

Object Detection) 

1. HOG Detector (2005), is a feature descriptor for 

object detection that is largely used in image processing and 

computer vision. 

2. DPM (2008) with Bounding box regression was 
introduced in this paper. 

B. After 2014 

After Deep Learning (CNN based or Modern way of Object 

Detection) 

Two-stage most important object detection algorithms 

1. SPPNet and RCNN (2014) 

Localization 

Fig.2 Localization 
Cat 

Classification 

Fig.1 Classification 
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2. Faster RCNN and Fast RCNN (2015) 

3. RFCN (2016) 

4. Mask R-CNN (2017) 

Single-stage that is the most significant method for object 

detection 
1. YOLO (2016) 

2. SSD (2016) 

3. RetinaNet (2017) 

4. YOLO Version3 (2018) 

5. YOLO Version4 (2020) 

6. YOLOR (2021) 

 
Fig. 4 A Roadmap of object detection since 2005 

C. Object Detection in a Traditional Way 

If we regard today's object identification to be a kind of 

deep learning-powered technical aesthetics, then rewinding 

the clock since 2005 would allow us to observe the 

wisdom of the cold war period. The majority of the first 

object identification systems were built with handcrafted 

properties. Because there was no good picture 

representation available at the time, people were forced to 

build complicated feature representations and employ a 

wide range of accelerations techniques to maximize the 

utilization with limited availability of computing power. 

1) HOG (Histogram of Oriented Gradients)Detector: B. 

Triggs and N. Dalal [1] introduced the HOG detector in 

2005, which is used to find features for object identification 

and classification. It was a significant advance over previous 

detectors [2] [3][4] [5]. Using HOG, you may generate a 

feature table by extracting the gradient and orientation of the 

edges. Each cell in the grid is represented by a histogram, 

which is created using the feature table created from the grid 

divisions and the feature table. HOG features are developed 

for the Region of Interest(ROI)and sent into a linear SVM 

(Support Vector Machine) classifier to detect their existence. 

The detector was originally developed for pedestrian 

detection; however, it may be taught to recognize a variety 

of other types of objects as needed. 

2) DPM (Deformable Part-based Model): Felzenszwalb 

et al. developed the DPM [6], which won the Pascal VOC 

competition in 2009. It was able to recognize discrete 

sections of the item with more precision than HOG because 

it did not use the whole object. It is built on the divide and 

rule principle, in which individual elements of an object are 

identified independently at the period of inference, and a 

reasonable arrangement of these parts is signaled as 

detection. As an example, a human body's parts are trained 

individually such as the torso, legs, arms, head, and other 

things. One model is trained to capture one whole body, and 

the procedure will be repeated for all of the components that 

were captured by that model. After that model eliminates 

unlikely combinations of pieces to generate detection. 

Before the introduction of deep learning algorithms, DPM-

based models [7] [8]were among the most successful. 

 

Fig. 4 Two-Stage Object Detection 

D. Modern Way of Object Detection 

1) Two-Stage Detectors: RCNN and its variants are 

examples of early-stage networks, as well as other two-stage 

networks, which are used to identification of potential 

regions of interest, or subsets of an image that may have an 

object. The second stage is concerned with categorizing the 

objects contained inside the region suggestions. Two-stage 

networks are capable of delivering exceptionally exact 

object detection results, although they are frequently slower 

in terms of processing speed than single-stage networks. 

a) RCNN (Region-based Convolutional Neural 

Network): RCNN[9] was the first article in a series of 

selective search families, and it showed how CNNs may be 

used to significantly enhance the identification performance 

of images. CNNs are used in conjunction with a class 

independent region proposal module to transform an 

identification issue into a localization and classification 

problem. The region proposal module, which generates 2000 

item candidates from a mean-subtracted input image, is the 

initial step in the processing. With the help of Selective 

Search [10], this module identifies areas of a picture where 
there is a greater likelihood of detecting an item. A CNN is 

used to extract a 212-dimension feature vector for every 

proposal after the candidates are distorted and propagated 

through the network. As the detector's backbone 

architecture, Girshick et al. used AlexNet [11]. The feature 

vectors are then fed into trained, class-specific SVMs, which 

compute confidence ratings for each class. Afterward, NMS 

(non-maximum suppression)is used to score the areas 

following their IoU and class. A trained bounding box 

regressor is used to forecast the bounding box of the class 

after it has been recognized. This predicts four parameters, 
namely the length, breadth, and center coordinate (x,y) value 

of the object. 

R-CNN features a sophisticated multistage training method 

that takes a long time. A big classification dataset is used to 

pre-train the CNN in the initial step of the process. Using 

SGD (stochastic gradient descent), and then fine-tune are 

used for detecting the domain-specific images by 

substituting an (N+1) way classifier for the classification 

layer, where N is the no. of classes. For each class, a 

bounding box regressor and one linear SVM are trained 

separately. 
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Fig. 5 Architecture of RCNN 

 

Although R-CNN was fast (47 seconds per picture) and 

costly in terms of both time and space [12], it was a 
significant step forward in object identification. Although 

certain calculations were shared, the training method was 

difficult, and it takes a long time for training on small 

datasets. 

b) SPPNet: To analyze images of any size or aspect 

ratio, He et al. [13]suggested the SPP(Spatial Pyramid 

Pooling) layer to pool images from several sources. They 

realized that only the completely linked portion of the CNN 

needed constant input. Putting the convolution layers first 

and then adding a pooling layer made the network able to 

work with any size or aspect ratio. This resulted in a smaller 

number of calculations and a more stable network. 

Candidate windows are generated by the application of the 

selective search [10] algorithm. To make feature maps, you 

feed an image via the convolution layers of a network called 

a ZF5 [14]. Feature maps are created from the candidate 
windows, which are then turned into fixed-length 

representations using SPP layer spatial bins. This vector is 

connected to a dense layer and then passed to SVM for 

classification. Same as RCNN, the SPPNet contains a post-

processing layer that uses bounding box regression to 

increase localization accuracy. It likewise employs the same 

multistage training procedure, with the exception that fine-

tuning is performed only on the layers that are completely 

connected. 

 
Fig.7 Architecture of SPPNet 

The SPPNetmodel’s accuracy is approximately the same as 

RCNN but training and testing are faster than RCNN. It can 

analyze photos with any shape or aspect ratio and, as a 

result, prevents object distortion caused by input warping 

from occurring. However, since its design is similar to 

RCNN, it has some disadvantages such as multistage 

training, computationally costly, and more training time. 

c) Fast RCNN: One of the most significant problems with 

SPPNet and RCNN was that required individual training for 

multiple systems. Fast-RCNN [12]overcome this issue by 

constructing one end-to-end trainable system. This model 

takes input as an image and then applies the brute force 

method in the input image to generate ~2k region proposals. 

This image is passed through CNNsto generate the feature 

maps. Now, these feature maps are mapped to object 

proposals. Using the SPPNet [13], Girshick replaced the 

pyramidal structure of pooling layers with a single spatial 

bin, which he named the ROI pooling layer. Now, the output 

of this layer is also connected to 2dense layers individually 

for bounding box and classification as shown in Fig. 8. Now 

SoftMax layer gives N+1 (N classes and 1 for background) 

output for classification and each class, the smooth L1 loss 

function gives four outputs (two outputs for the center of an 

object, and two outputs for height and weight of an object) 

for the bounding box of an object. One more change here 

from SPPNet is that the loss function of the bounding box 

regressor was changed from L2 to smooth L1 to improve the 

performance of the model. 

The introduction of fast R-CNN was motivated by the need 

to enhance speed (146x faster than R-CNN), with the 

increase in accuracy being a bonus. It has streamlined the 

training approach, abolished pyramidal pooling, and 

introduced a new loss function to compensate for these 

changes. Even without the use of a region proposal network, 

the object detector was able to report near the real-time 

speed and with high accuracy. 

d) Faster RCNN: An object could be identified in real-time 

by a fast R-CNN, but its region proposal generation was still 

slower than that of an RCNN (0.2 sec per image). Using an 

FCA (fully convoluted network) [15], Ren et al. proposed an 

(RPN) region proposal network [16] that takes an image as 

an input and produces a collection of candidate regions. 

Each of these regions has an associated objectness score, 

which is used to assess the possibility of an object appearing 

in the region. [17], [6], and [12] used image pyramids to 

overcome the problem of different-sized objects. RPN 

introduces anchor boxes, which do not use image pyramids. 

When it came to localizing the item, it regressed across a lot 

of bounding boxes with different aspect ratios. The image is 

fed via the CNNs to get a collection of feature maps. These 

feature maps are transmitted to an RPN, which generates 

their classification and bounding boxes. In the ROI pooling 

layer, the feature map is mapped back to chosen proposals 

acquired from the preceding CNN layer and finally supplied 

to the dense layers, which are provided to the bounding box 

regressor and classifier for localization and classification 

respectively. Faster RCNN is faster than Fast RCNN 

because of RPN as a region proposal module. 

Because of the existence of common layers between two 
models that perform quite distinct tasks, the training of 

Faster R-CNN is more complicated. Firstly, fine-tuned is 

pre-trained on the PASCAL VOC dataset [18] and RPN on 

the ImageNet dataset [19]. In the first phase, Fast RCNN is 

trained using RPNs. Until this stage, the networks don’t 

share a convolution layer. Now we'll fine-tune the unique 

Fig. 8 Architecture of Fast RCNN 
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layers in RPN and adjust the detector's convolution layers. 

Finally, the Fast RCNN is fine-tuned based on the newly 

updated RPN. 

 

 
 
In Faster RCNN, detection accuracy went up more than 3%, 

and inference time went down by a factor of magnitude. It 

eliminated the bottleneck caused by the sluggish region 

proposal and operated in near real-time at 5FPS. It was also 

advantageous to include a CNN in the region proposal since 

it allowed the system to learn to make better 

recommendations over time, increasing accuracy. 

 
Fig. 7 Time comparison graph of RCNN, SPPNet, Fast RCNN & 

Faster RCNN 

 

More rapid RCNN is noticeably faster than its predecessors, 

as illustrated in the graph to the top. As a result, it can even 

be used to identify objects in real-time if the conditions are 

right. 

 

e) RFCN (Region-based Fully Convolutional Network): To 

overcome the limitations of previous two-stage detectors, 

Dai et al. came up with the Region-based Fully 

Convolutional Network (RFCN) [20], which did most of the 
work in one place. This was different from previous two-

stage detectors, which used a lot of resources for each 

proposal. Rather than fully linked layers, they claimed that 

convolutional layers should be employed in their designs. 

Deeper layers of the convolutional network, on the other 

hand, are translation-invariant, rendering them unsuitable for 

jobs requiring localization. To address this issue, the authors 

advocated the usage of position-sensitive score maps. Now, 

these maps capture relative spatial information about the 

subject, which is then pooled to determine the subject's 

actual location in the environment. RFCN does this by 

splitting the ROI into a k × k grid and rating each cell based 

on its likelihood of being associated with the detected class 

feature map. The average of these scores is then used to 

forecast the object class. RFCN detector is made up of 4 

CNNs. To get feature maps, the input picture is first passed 

through the ResNet-101 [17]. The output of the Conv4 layer 

is sent to an RPN, then the final output passes via a 

convolutional layer and is used by a regressor and classifier. 

When combined with the ROI ideas, the position-sensitive 

map is used to produce predictions, which are then passed 

on to the classification layer, which generates the bounding 

box information. When training R-FCN, we use a similar 

four-step procedure to that of Faster-RCNN [16], but we use 

a box regression loss and combined cross-entropy. 

 
 

To solve the issue of translation invariance in CNNs, Dai et 

al. proposed a unique technique that was implemented in 

MATLAB. RFCN is a combination of FCN and Faster 

RCNN that produces a faster and more accurate detector. 

Although it did not significantly enhance accuracy, it was 
2.5-20 times quicker than its predecessor. 

f) Mask RCNN: Mask RCNN [21] is a variant of Faster 

RCNN that adds pixel-level object instance segmentation to 

a parallel branch. The branch is an FCA that is used by ROIs 

to divide every pixel into segments while incurring the least 

amount of total computation. It has the same basic structure 

as Faster RCNN, but in addition, is a mask head next to the 

bounding box regressor and classifier. There was one 

significant difference, the usage of the ROIAlign layer, 

rather than the ROIPool layer, was used to eliminate pixel-

level misalignment as a result of spatial quantization. To 

achieve more speed and accuracy, the authors used the 

ResNeXt-101 [22] as the network's backbone, in 

conjunction with the FPN(feature Pyramid Network). Faster 

RCNN's function is modified in response to the mask loss, 

and it employs the same five anchor boxes with three aspect 

ratios as FPN. Mask RCNN training is faster than RCNN in 

terms of overall performance. 

 
RCNN outperformed the state-of-the-art multimodal 

systems and introduced the feature of instance segmentation 

with little overhead calculations, outperforming the current 

state-of-the-art single-model systems as well. When used in 

applications such as key point recognition, human position 
prediction, and other similar tasks, it is straightforward to 

train and generalize. Despite this, the performance remained 

below the real-time benchmark (>30 frames per second). 

Fig. 9 Architecture of Mask RCNN 

Fig. 8 Architecture of RFCN 

 

Fig.6 Architecture of Faster RCNN 
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2) Single-Stage Detectors: Single-stage networks 

produce final bounding boxes for objects by using anchor 

boxes to generate network predictions for regions 

throughout the whole image, for example, YOLO v2. The 

CNN generates final bounding boxes for objects utilizing 

anchor boxes in multistage networks such as YOLO v2 and 

other similar networks. Single-stage networks are faster than 

two-stage networks, but the accuracy of single-stage 

networks is less, particularly in cases involving small 

objects. 

 

a) YOLO (You Only Look Once): It is necessary to 

partition an image into an 𝑆 × 𝑆 grid, within which there are 

m bounding boxes, to show the resultant grid on a computer 

screen, to utilize the YOLO [23] algorithm. A class 

bounding box and probability offset values are calculated for 

each bounding box in the network, with the network serving 

as the basis for the calculations. To find the item in the 

image, bounding boxes with a class probability larger than a 

threshold value are selected and used, and the results are 

presented on the screen as they are calculated. 

A typical object detection technique takes hundreds of 

milliseconds to detect a single item (45 frames per second). 

Although there are several advantages to using the YOLO 
approach, one downside is that it has difficulties 

differentiating between little items in photos; for example, it 

may have problems distinguishing between a flock of birds 

and other objects. This is specifically owing to the 

geographical limits imposed by the method. 

The accuracy and speed of YOLO's single-stage real-time 

models outperformed their contemporaneous counterparts 

by a wide margin. It did, however, have some important 

flaws as well as strengths. The precision with which it could 

locate tiny or grouped items, as well as the restriction on the 

number of objects that could be placed in a cell, was its 
significant limitations. These flaws were addressed in 

subsequent versions of YOLO [24] [25] [26], which were 

released after this. 

 
 

Its one-stage detector design allows it to complete bounding 

box regression and classification in a single step, which 

makes it substantially faster than most convolutional neural 

networks. To give an example, when it comes to object 

identification and tracking, RCNN is 1000 times quicker 

than YOLO, while Fast RCNN is 100 times faster. 

b) SSD (Single-shot detector): SSD [27] is the first 

one-stage detector that has the same accuracy as a two-stage 

detector with real-time speed. It was based on the VGG16 

[28]architecture, with extra CNN layers added to boost 

overall performance. The size of these supplementary 

convolution layers, which are inserted towards the end of the 

model, decreases gradually over time. During the early 

stages of the network when the picture characteristics are 

not too crude, SSD recognizes smaller objects, while the 

deeper layers were in charge of adjusting the aspect ratios 

and offset of default boxes[29]. 

SSD selects the default boxes with the best Jaccard overlap 

for each ground truth box during training, like multi box 

[29], and then trains the network appropriately. They also 
used hard negative mining techniques as well as extensive 

data augmentation. In a similar vein to DPM [33], it trained 

the model using a weighted sum of the confidence loss and 

localization datasets. It is possible to achieve the final output 

by doing non-maximum suppression. 

Although SSD was substantially quicker and more accurate 

than both the YOLO and Faster R-CNN networks, it had 

difficulties distinguishing between tiny items in the data set. 

This problem was subsequently resolved by the use of 

improved backbone topologies such as ResNet, as well as 

other tiny modifications. 
This object detection component is simple to train, and it 

may be easy to integrate into software systems that require 

object identification functionality. SSD offers significantly 

higher accuracy when compared to other single-stage 

approaches, even when working with smaller input image 

sizes. 

c) RetinaNet: Even though one-stage detectors are 

quicker and easier to use than two-stage detectors, they have 

consistently performed worse than two-stage detectors in 

terms of accuracy. T.Y. Lin et al. [30] investigated the 

reasons behind this and offered RetinaNet as a potential 

remedy in 2017. During the training of dense detectors, they 

observed a significant increase in the foreground-

background class imbalance, which they concluded was the 

fundamental cause of the issue. RetinaNet has devised a 

novel loss function known as "focused loss" to do this by 

changing the traditional cross-entropy loss [31] in such a 

way that the detector places a greater emphasis on 

problematic, misclassified samples during training. Because 

of focal loss, one-stage detectors can achieve accuracy that 

is comparable to that of two-stage detectors while 

maintaining extremely fast detection speeds. (91.1 percent 

for COCO mAP@0.5, and 39.1 percent for 

mAP@[0.5,.95]). 

d) YOLOR (You Only Learn One Representation): 

YOLOR [32] is a revolutionary object detector that was first 

introduced in the year 2021. Model training is accomplished 

using both implicit and explicit knowledge, which is applied 

simultaneously by the algorithm. Accordingly, YOLOR is 

capable of learning a general representation and performing 

a variety of tasks using this general representation. 

Integrating implicit knowledge into explicit knowledge is 

accomplished by multi-task learning, kernel space 

alignment, prediction refinement, and other techniques. 

Fig. 11 Architecture of YOLO 

Fig. 10 One Stage Object Detection 

mailto:mAP@[0.5,.95
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Using this strategy, YOLOR can significantly increase the 

performance of its object detecting algorithms.  

According to the COCO dataset benchmark, the mean 

absolute performance (MAP) of YOLOR is 3.8 percent 

greater than the mean absolute performance (MAP) of PP-
YOLOv2, although both methods run at the same inference 

speed. According to the researchers, as compared to the 

Scaled-YOLOv4, the inference speed has been increased by 

88 percent, making it the fastest real-time object detector 

currently available on the market. For further details, please 

see our dedicated topic on YOLOR - You Only Learn One 

Representation. 

 

III.OBJECT DETECTION DATASETS AND METRICS 

 

It is essential for the development of improved computer 

vision algorithms that larger datasets with less bias are 

gathered and analyzed. On the subject of object detection, 

many well-known benchmarks and datasets have been 

published in the previous ten years, including datasets 

from the PASCAL VOC Challenges [18] [33] (for 

example, VOC2007, VOC2012), ILSVRC2014 [34], MS-

COCO Detection Challenge, and others. These datasets 

and benchmarks include the PASCAL VOC Challenges 

Table 2 of this publication contains the statistics for the 

datasets discussed in this section. The detection accuracy 

of the VOC07, VOC12, and MS-COCO datasets has 

improved significantly, as shown in Fig. 3. 

A. Pascal VOC 

One of the most well-known competitions in the early 

computer vision industry was the PASCAL VOC (Visual 

Object Classes) Challenges, which were held every year 

from 2005 to 2012 [18] [33]. PASCAL VOC is capable 

of completing a wide range of tasks with semantic 

segmentation, object identification, image classification, 

action detection, etc. The most commonly used versions 

of Pascal-VOC in object identification are VOC12 and 

VOC07, with the former containing 5000training images 

plus 12000 annotated objects and the latter including 

11000training images plus 27000 annotated objects. 

These two datasets contain annotations for 20 different 

classes of objects that are commonly encountered in 

everyday life (person; animal: sheep, horse, dog, cow, 

cat, bird; vehicle: train, motorbike, car, bus, boat, bicycle, 

airplane; indoor: monitor/tv, sofa, potted plant, dining 

table, chair, bottle). As more huge datasets become 

available, such as the ILSVRC and the upcoming MS-

COCO (which will be launched), the VOC has rapidly 

lost favor, and it is now being used to evaluate the bulk of 

new detection technologies.  

B. ILSVRC 

 
 

To push the state-of-the-art in generic object 

identification further, the ILSVRC (ImageNet Large 

Scale Visual Recognition Challenge) [34] has pushed the 

frontiers of what is achievable in the field. Each year 

from 2010 to 2017, the ILSVRC is held in a different 

location. It includes a detection task that makes use of 

ImageNet images [19]. In total, there are 200 classes of 

visual objects in the ILSVRC detection dataset. When 

compared to the amount of VOC images/object instances, 

it has two orders of magnitude more of the latter type of 

image/object instance. In the case of the ILSVRC-14, 

there are 517k photos and 534k annotated items in the 

collection. 

C. MS-COCO 

 

MS-COCO [35] is the most demanding dataset for object 

identification available at the time of writing. Since 2015, 

there has been a yearly competition based on the MS-

COCO dataset. The number of object categories is less 

than that of the ILSVRC, However, there are a greater 

number of object instances. MS-COCO-17, for example, 

has 164,400 images and 897,400 tagged objects from 80 

different categories. While MS-COCO has made 

significant strides in comparison to VOC and ILSVRC, 

the most significant difference is that the bounding box 

annotations, to facilitate exact localization, each item is 

additionally tagged using per-instance segmentation. 

Moreover, unlike MS-COCO and ILSVRC, VOC 

comprises a greater number of small objects (those with a 

surface area of less than one percent of the image) and 

objects that are more densely clustered. As a result of all 

of these qualities, the object distribution in MS-COCO is 

more similar to that of the real world. MS-COCO has 

risen to the top of the object detection community's 

priority list, just like ImageNet did when it first appeared. 

These characteristics bring the distribution of things in 

MS-COCO more like the actual world than it was 

previously. MS-COCO has established itself as the 

industry standard for object detection, much like 

ImageNet did when it was first introduced. 

 

Fig.12: Object detection accuracy improvement graph on MS-COCO, 

VOC12, and VOC07, datasets. Detectors in this figure: DPM-v5, DPM-v1, 

Fast RCNN, Faster RCNN, SPPNet, RCNN 
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D. Open Images 

In the year 2018, the Open Images Detection (OID) 

challenge, which is modeled after the MS-COCO 

challenge but on a much bigger scale, is introduced. It is 

possible to complete two tasks in Open Images, one of 

which is the regular object detection task, and the other of 

which is the visual connection identification test, which 

finds paired items that have certain relationships between 

them. The dataset used for object detection contains 

1910k images including 15440k bounding boxes 

annotated on 600 different item categories. 

 

 

Table 1  The test set PASCAL VOC 2007 was used to determine the performance of the SSD, Faster RCNN, and YOLO 

techniques in terms of speed and accuracy [24]. 

Detection Frameworks FPS mAP Train 

YOLO v2 544 x 544 40 78.6 2007+2012 

YOLO v2 480 x 480 59 77.8 2007+2012 

YOLO v2 416 x 416 67 76.8 2007+2012 

YOLO v2 352 x 352 81 73.7 2007+2012 

YOLO v2 288 x 288 91 69.0 2007+2012 

SSD500 19 76.8 2007+2012 

SSD300 46 74.3 2007+2012 

YOLO 45 63.4 2007+2012 

Faster RCNN ResNet 5 76.4 2007+2012 

Faster RCNN VGG16 7 73.2 2007+2012 

Fast RCNN 0.5 70.0 2007+2012 

 

Table 2  Several well-known object identification datasets, as well as their associated statistics 

 

Table 3 Strengths and weaknesses of object detection methods. 

Methods Authors Key 

Contributions 

Strengths Weaknesses 

HOG Dalal and 

Triggs, 2005 

Gradient 

orientation 
 Shows invariance to geometric and 

photometric changes 

 Very sensitive to image 

rotation, 

 Unable to detect overlapped 

objects 

DPM Pedro F. Part templates  Detect rotated and overlapped objects  Complex computation and 
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Y O L O S S D 3 0 0 S S D 5 0 0 Y O L O  v 2  

2 8 8  x  2 8 8

Y O L O  v 2  

3 5 2  x  3 5 2

Y O L O  v 2  

4 1 6  x  4 1 6

Y O L O  v 2  

4 8 0  x  4 8 0

Y O L O  v 2  

5 4 4  x  5 4 4

C o m p a r i so n  c h a r t  o f  a c c u r a c y  a n d  F P S  o f  Y O L O ,  S S D ,  R -F C N  a n d  f a s t e r  R -C N N  a l g o r i t h m s  

u s i n g  i n p u t  i m a g e s  w i t h  d i f f e r e n t  r e so l u t i o n .

mAP FPS

Dataset 
Train Validation Train Test 

Objects Images Objects Images Objects Images Objects Images 
VOC-2007 6,301 2,501 6,307 2,510 12,608 5,011 14,976 4,952 
VOC-2012 13,609 5,717 13,841 5,823 27,450 11,540 - 10,991 
ILSVRC-2014 478,807 456,567 55,502 20,121 534,309 476,688 - 40,152 
ILSVRC-2017 478,807 456,567 55,502 20,121 534,309 476,688 - 65,500 
MS-COCO-
2015 

604,907 82,783 291,875 40,504 896,782 123,287 - 81,434 

MS-COCO-
2018 

860,001 118,287 36,781 5,000 896,782 123,287 - 40,670 

OID-2018 14,610,229 1,743,042 204,621 41,620 14,814,850 1,784,662 625,282 125,436 
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Felzenszwalb et 

al., 2008 

time have taken a process 

RCNN Girshick et al., 

2014 

Selective 

Search 
 The first to combine CNN and RP 

techniques.  

 Significantly better performance than 

prior object detectors. 

 Sequentially-trained 

multistage pipeline (BBR 

training, SVM every warped 

RP feeding to CNN, CNN 

finetuning, and External RP 
computation).  

 Training is costly in terms of 

both time and space.  

 Testing takes a long time. 

SPPNet He et al., 2014 Spatial pyramid 

pooling layer 
 Enable the exchange of convolutional 

features.  

 Increase the speed of RCNN assessment 

by an order of magnitude while 

maintaining performance. 

 Faster than Over-Feat. 

 24 times faster than the RCNN 

 Inherit the RCNN's 

drawbacks.  

 There isn't much of a 

speedup in training.  

 The CONV layers cannot be 

updated before the SPP layer 

in Finetuning. 

 For ~2k regions SPP has 3 
layers 

Fast 

RCNN 

Ross Girshick, 

2015 

ROI Pooling  For the first time, without RP generation, 

end-to-end detector training is 

achievable. 

 Create a layer for ROI pooling.  

 SPPNet is much slower and less precise.  

 For feature caching, no disc storage is 

needed. 

 146 times faster than the RCNN 

 For real-time applications, 

this is slow. 

 The new bottleneck has been 

identified as external RP 

computation. 

 Using an external candidate 

region generator slows down 

the detecting process. 

Faster 

RCNN 

Ren et al., 2015 Region 

Proposal 

Network 

 Instead of selective search, propose RPN 

for high-quality and cost-free RPs. 

 10 times faster than the Fast RCNN. 

 Introduce multiscale anchor boxes and 

translation invariant anchor boxes as 

RPN references. 

 With VGG16, testing can be done at 5 

FPS. 

 By sharing CONV layers, combine Fast 

RCNN and RPN into a single network. 

 Training is a complicated 

process, not a simple one.  

 Still lags in real-time. 

 Not for real-time application. 

RFCN Dai et al., 2016 Position-

sensitive score 

maps 

 Detection network that is fully 

convolutional.  

 Using a bank of customized CONV 

layers, create a collection of location-

sensitive score maps.  

 Quicker than Faster RCNN with a high 

level of accuracy. 

 Training is a time-consuming 

procedure that is not 

simplified still, it falls short 

of real-time. 

 RFCN is less accurate than 
Faster RCNN 

Mask 

RCNN 

He et al., 2017 ROI Align  Adds additional branch to Faster RCNN 

for predicting an object mask in addition 

to the current branch for BB prediction. 

 Good performance. 

 The location of an object is more 

accurate due to segmentation. 

 FPN is utilized. 

 An effective, flexible, and simple 

framework for object detection 

segmentation. 

 Real-time applications are 

not supported. 

 Its execution process is 

greater than Faster RCNN. 

YOLO Redmon et al., 
2015 

Grid-based 
Proposal 

 The first and most effective unified 
detector.  

 Remove the RP process entirely.  

 Framework for detection that is both 

elegant and efficient.  

 Detectors that are much quicker than 

 The detector's accuracy lags 
much behind that of modern 

detectors.  

 Small items are difficult to 

locate. 

 Struggles to detect both close 
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earlier models.  

 YOLO runs at 45 FPS whereas Fast 

YOLO runs at 155 FPS. 

 Real-time applications. 

 Efficient for locating objects. 

and small objects. 

SSD Liu et al., 2016 Featured 

Pyramid 
 The first unified detector is both accurate 

and efficient.  

 To accomplish detection at multi-scale 

CONV layers, effectively incorporate 

principles from RPN and YOLO. 

 SSD is substantially quicker and more 

precise than YOLO. 

 At 59 FPS, this can run. 

 Easily detects a small object. 

 Faster than Faster RCNN. 

 Small-item detection is poor. 

 Less accurate than Faster 
RCNN. 

RetinaNet Lin et al., 2017 Feature 

Pyramid 

Network 

 Suggest a new Focal Loss that 

concentrates training on difficult cases. 

 This is the first one-stage detector whose 
accuracy is better than two-stage 

detectors. 

 When training on a single-

stage detector, it handles the 

issue of an imbalance of 
negative and positive 

samples well. 

YOLOR Wang et al., 

2021 

Analyzer 

Network 
 It is the fastest and more accurate among 

all the above methods. 

__ 

 

IV.FUTURE DIRECTIONS 

 

The following factors may be the subject of future object 

detection research, although they are not limited to: 

A. AutoML 

The use of autonomous neural architecture search (NAS) to 

identify the properties of an object detector is already a 

rapidly expanding field. However, it is still in its infancy, as 

seen by the 16 detectors created by the National Aerospace 

and Space Administration (NAS). The search for an 

algorithm is a time-consuming and resource-intensive 

endeavor. 

B. Lightweight detectors 

For the detection method to work well on mobile devices, it 

has to be made faster. Mobile augmented reality, smart 

cameras, face identification, and other similar applications 

are examples of key applications. Despite significant 

progress in the last few years, the speed difference between 

a computer and human vision continues to be significant, 

particularly when it comes to recognizing certain 

microscopic things. 

C. 3D object detection 

When it comes to autonomous driving, 3D object 

identification is a particularly difficult challenge to solve. 

Although models have attained excellent accuracy, the 

deployment of anything that falls below human-level 

performance would raise safety concerns. 

D. Object identification in the video 

When used on individual images that do not have any 

association between them, object detectors execute their 

functions. The use of spatial and temporal relationships 

between frames to aid in object detection is still a work in 

progress. 

 

V.CONCLUSION 

Since 2005, significant advances have been achieved in 

the field of object detection. Throughout its decade-long 

history, this paper not only provides an in-depth review 

of some landmark detectors (e.g., YOLOR, RetinaNet, 

SSD, YOLO, Mask RCNN, RFCN, Faster RCNN, Fast 

RCNN, SPPNet, RCNN, DPM, HOG detector), metrics, 

datasets, speed-up methods, and key technologies but 

also discusses the challenges that the community is 

currently facing, as well as how these detectors can be 

further improved and enhanced. 
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