
Volume 2, No. 4, July-August 2011

International Journal of Advanced Research in Computer Science

REVIEW ARTICLE

Available Online at www.ijarcs.info

© 2010, IJARCS All Rights Reserved 319

ISSN No. 0976-5697

An automated Framework for Measuring the Code Readability to Maintain the Quality
of Software

Panchamukesh chandaka*

(Asst Prof), Computer Science Department
HITAM,

Hyderabad,India
mukesh_1229@yahoo.com

Neelima S

(Asst Prof), Computer Science Department
Pydha Engineering College,

Kakinada,India
neelima.sadineni@gmail.com

Deepika Rani K
(Asst Prof), Computer Science Department

HITAM,
Hyderabad, India

deepikarani.d@gmail.com

Sailaja D
(Asst Prof), Commuter Science Department

SVPEC,
Visakhapatnam,India

Sailubhanu25@gmail.com

Abstrac: IT industry uses software metrics to evaluate the complexity of software systems to find software cost estimation, software
development control, software assurance, software testing, and software maintenance. Taking the help of Human annotators much data has been
collected to derive the relationship between a simple set of local code features and human concept of readability. In this paper, we explore the
concept of code readability and investigate its relation to software quality. A Framework has been developed to evaluate proposed metrics and
apply to the use of Bug counts which reduces the complexity of not capturing or missing even the small parts of the meaning of the attributes
they are being used to measure. The constructed automated readability measure can be more effective than a human on average at predicting the
judgment of readability. So, this paper strongly satisfies with three measures of software quality: Changes in the code, defect log messages, and
automated defect reports.

Keywords: Quality, Code Readability, Snippets, Annotators, Classifier.

I. INTRODUCTION

Readability can be defined as a human judgment of
understanding a text. The critical factor in maintaining the
software quality is readability and the readability of a
program is related to its maintainability. Where the cost of a
software product in the total life cycle the maintenance will
consume around 70%. According to Aggarwal in
maintenance of the software both the source code readability
and documentation readability play a critical role. On other
hand some researchers have noted that the act of reading
code is the most time-consuming component of all
maintenance activities.

As of the modern software engineering, maintaining
software often means evolving software and modifying
existing code. Readability is another important attributes of
software systems that gives substantial affect on software
maintainability. Maintenance of a less readable source code
is more difficult than a source code which has more readable
source code. Readability Metrics are a family of software
metrics that measure software complexity with taking
readability into considerations. There are several uses from
this automated readability metric like, helps in writing more
readable software to the developers by quickly identifying
code that scores poorly and also it can monitor and maintain
the readability of a code which support project managers. It
can even assist inspections by helping to target effort at
parts of a program that may need improvement. . It can
serve as a requirement for acceptance.

The contributions which included in this paper are:

A. An automatic software readability metric based on local
features. Our metric correlates strongly with both
human annotators and also external notations of
software quality.

B. A survey of 120 human annotators on 100 code snippets
that forms the basis for our metric. We are unaware of
any published software readability study of comparable
size (12,000 human judgments).

C. A discussion of the features involved in that metric and
their relation to software engineering and programming
language design.
The applications of Readability Metrics indicate the

readability of software systems and help in keeping the
source code readable and maintainable. Finally, it can be
used by other static analyses to rank warnings or otherwise
focus developer attention on sections of the code that are
less readable and thus more likely to contain bugs.

II. RELATED WORK

Many major projects like Linux, Java , MySQL and
some popular compilers has gained incredible visibility and
validation as open source model of software .“Many eyes”
approach which is a source model had led to fast evolving,
and easy to configure software that is being used in
production environments by countless commercial
enterprises. However, how exactly (if at all) do consumers
of open source measure the quality and security of any piece
of software to determine if it is a good fit for their stack?

Few would disagree that many eyes reviewing code is a
very good way to reduce the number of defects. However,
no effective yardstick has been available to measure how
good the quality really is. In this study, we propose a new

Panchamukesh chandaka et al, International Journal of Advanced Research in Computer Science, 2 (4), July-August, 2011,319-323

© 2010, IJARCS All Rights Reserved 320

technique and framework to measure the quality of software.
This technique leverages technology that automatically
analyzes 100% of the paths through a given code base, thus
allowing a consistent examination of every possible
outcome when running the resulting software. Using this
new approach to measuring quality, we aim to give visibility
into how various open source projects compare to each other
and suggest a new way to make software better.

Software has transitioned from being considered as a
liability to that of a re-usable asset. This shift in
understanding now requires that software be written for
maintainability (Troy, 1995). Of the software quality
attributes defined by ISO-9126, maintainability is
recognized by many researchers as having the largest effect
on software quality (Troy, 1995). At the 1992 Software
Engineering Productivity conference, a Hewlett- Packard
executive stated that 60 – 80% of their research and
development staff were involved with maintaining 40 – 50
million SLOC (Troy, 1995). Glass (2002) states that
software maintenance consumes from 40 – 80% of the total
software cost, with a mean of 60%. Boehm and Basili
(2001) report a mean of 70%.Spinellis (2003) observes that
programmers are poor at choosing meaningful identifier
names because they find it difficult to concurrently manage
the expression of programming constructs along with the
managing of natural language description, say to invent
identifier names. Slaughter (2006) reports that 80% of
software quality programs fail within the first year and that
these failures are not because of poor measurement
techniques but due to cultural resistance on the part of the
programmers and their management.

The techniques presented in(2011) this paper should
provide an excellent platform for conducting future
readability experiments, especially with respect to unifying
even a very large number of judgments into an accurate
model of readability.

III. BASIC TECHNIQUES AND PROCEDURES

Some of the major techniques which are used to code
readability of software are as follows.
a. Software Quality Measurement.
b. Software Quality Management.
c. Readability Model.
d. Software Verification & Validation.

A. Software Quality Measurement
Historically software quality metrics have been the

measurement of exactly their opposite—that is, the
frequency of software defects or bugs. The inference was, of
course, that quality in software was the absence of bugs. So,
for example, measures of error density per thousand lines of
code discovered per year or per release were used. Lower
values of these measures implied higher build or release
quality. For example, a density of two bugs per 1,000 lines
of code (LOC) discovered per year was considered pretty
good, but this is a very long way from today's Six Sigma
goals.

We will start this article by reviewing some of the
leading historical quality models and metrics to establish the
state of the art in software metrics today and to develop a
baseline on which we can build a true set of upstream
quality metrics for robust software architecture. Perhaps at
this point we should attempt to settle on a definition

of software architecture as well. Most of the leading writers
on this topic do not define their subject term, assuming that
the reader will construct an intuitive working definition on
the metaphor of computer architecture or even its earlier
archetype, building architecture.

B. Software Quality Management
a. Software Quality Goals and Objectives – A discussion

of how to describe, analyze and evaluate the quality
goals and objectives for programs, projects, and
products.

b. Software Quality Management (SQM) Systems
Documentation – An overview of the various SQM
system documents that a company should have in place
and their relationship to each other.

c. Overview of Cost of Quality (COQ) – How to define,
differentiate, and analyze COQ categories (prevention,
appraisal, internal and external failure). · Problem
Reporting and Corrective Action Procedures

C. Readability Model
We have shown that there is significant agreement

between our group of annotators on the relative readability
of snippets. However, the processes that underlie this
correlation are unclear. In this section, we explore the extent
to which we can mechanically predict human readability
judgments. We endeavor to determine which code features
are predictive of readability, and construct a model (i.e., an
automated Software readability metric) to analyze other
code.
Software Verification & Validation
a. Planning Procedures and Tasks – Overview of various

methods for verification and validation, including static
analysis, structural analysis, mathematical proof,
simulation, and dynamic analysis.

b. Reviews and Inspections – Overview of the various
types of reviews and inspections, including desk-
checking and inspections.

c. Testing – Overview of the various types of test,
including structural integration, black box and
regression.

IV. DESIGNING & IMPLEMENTATION OF
SYSTEM

The Snippet Extractor Eclipse plug-in is a simple and
easy-to-use plug-in for storing and using code snippets
throughout the Eclipse workbench.

Snippet is a programming term for a small region of re-
usable source code, machine code or text. Ordinarily, these
are formally-defined operative units to incorporate into
larger programming modules. Snippets are often used to
clarify the meaning of an otherwise "cluttered" function, or
to minimize the use of repeated code that is common to
other functions.

Snippet management is a feature of some text editors,
program source code editors, IDE’s, and related software. It
allows the user to persist and use snippets in the course of
routine edit operations.

Annotators do the real work of extracting structured
information from unstructured data. We can write our own
annotators, use the annotators available here, and annotators
will give judgment on quality and also represents feature
director for verifying structural format.

http://en.wikipedia.org/wiki/Source_code�
http://en.wikipedia.org/wiki/Machine_code�
http://en.wikipedia.org/wiki/Module_(programming)�
http://en.wikipedia.org/wiki/Text_editor�
http://en.wikipedia.org/wiki/Source_code_editor�
http://en.wikipedia.org/wiki/Integrated_development_environment�
http://en.wikipedia.org/wiki/Software�
http://en.wikipedia.org/wiki/Persistence_(computer_science)�

Panchamukesh chandaka et al, International Journal of Advanced Research in Computer Science, 2 (4), July-August, 2011,319-323

© 2010, IJARCS All Rights Reserved 321

Classifier is used to extract the information from
annotators and feature director then it converts into human
readable format.

Co-verity Prevent is an advanced static software
analysis tool designed to make software more reliable and
secure. It relies on a combination of dataflow analysis,
abstraction, and highly efficient search algorithms that can
detect over 40 categories of crash-causing defects while
achieving 100% path coverage.

Figure: 1. the complete data set obtained for this study. Our metric for

readability is derived from these judgments.

Types of defects detected include memory leaks, buffer
overruns, illegal pointer accesses, use after frees,
concurrency errors and security vulnerabilities. Coverity
Prevent also efficiently detects hard-to-see bugs that span
functions and modules. Most importantly, no changes to the
code or build are required and the analysis is fast, scaling
linearly with the code size.

To measure the readability and to maintain the quality
of the code initially we should check the code, so a pseudo
code is explained in Fig 2 to check the code and another
Pseudo code is displayed in Fig 3 to find the readability of
the code.

Figure 2: The Pseudo Code to Check the Code

Figure 3: The Pseudo Code for Readability of Code

V. RESULTS

The following are the screen shots of the system.

Figure 4: Processing of Code and Doc Snippet’s

Panchamukesh chandaka et al, International Journal of Advanced Research in Computer Science, 2 (4), July-August, 2011,319-323

© 2010, IJARCS All Rights Reserved 322

Figure 5: Generating the code readability check

Figure 6: Generating the doc readability check

VI. CONCLUSION

Using this automated readability measure we can judge
readability about as well as the “average” human can. This
concept of readability shows major relationship with: The
output of a bug finder, Version Changes and Self-reported
program maturity. Using the predictive power of our
model’s feature we may also learn more about software
readability.

In this paper we have presented an automated
readability measure for modeling code readability based on
the judgments of human annotators. We have shown that it

is possible to create a metric that agrees with these
annotators as much as they agree with each other by only
considering a relatively simple set of low-level code
features.

VII. REFERENCES

[1] Buse, R. & Weimer, W. (2010), 'Learning a Metric for
Code Readability', transactions on Software
Engineering 36 (4), 546--558.

[2] C. M. Chung, and C. Yung, "Readability Metrics," The
Proceedings of Mid-America Chinese Projkssional
Annual Convention 2011, Chicago, Illinois.

[3] C. M. Chung, W. R. Edwards, and M. G. Yang, "Static
and Dynamic Data Flow Metrics," Policy and
Information, Vol. 13, No. 1, pp. 91-103, June 2010.

[4] N.E.Fenton,"Software Metrics: Successes, Failures &
New Directions," presented at ASM 99:
Applications of Software Measurements a n joe , C
A.

[5] C.M.Chung, and M. G. Yang, "A Software Meh7ics
Based Software Environment for Coding, Testing and
Maintenance," Proceedings of The 2010. Science,
Engineering and Technology Seminars, Houston,
Texas, pp. T3-13 - T3-17.

[6] K.Aggarwal, Y. Singh, and J. K. Chhabra. Anintegrated
measure of software aintainability.

[7] Reliability and Maintainability Symposium,
2009.Proceedings. Annual, pages 235{241, September
2009.

[8] C. M. Chung, and C. Yung, "Measuring Software
Complexity Considering Both Readability and Size,"
Infomration and Communication, Tamkang Univ.,
Taiwan.

[9] C. M. Chung, and C. Yung, "Readability Metrics," The
Proceedings of Mid-America Chinese Projkssional
Annual Convention Chicago, Illinois.

[10] S. D. Conte, H. E. Dunsmore, and
Models,Benjamin/Cummings Press

[11] K. Aggarwal, Y. Singh, and J. K. Chhabra, “An
integrated measure of software maintainability,”
Reliability and Maintainability Symposium, pp. 235–
241, Sep. 2010.

[12] Ben Chelf Chief Technology Officer Cove rity,Inchttp
://www.coverity.com /library/pdf
/open_source_quality_report.pdf

[13] M,Jorgensen,‘Software quality measureme nt’
Advances in Engineering Software
Volume 30, Issue 12, December 1999, Pages 907-912

[14] Ms.vinita & Ms.Shaily Malik ‘Software Verification
and Validation’ http: //www .bvicam.ac.in/news/INDIA
Com%202008 % 20Proceedingspdfs/papers /95.pdf

[15] Sazawal, Kim.M, Notkin D ‘A study of evolution in
the presence of source-deri ved partial design
representations ‘ in Software Evolution, 2004. Date of
Current Version: 20 September 2004.

http://www.coverity.com/library/pdf/open_source_quality_report.pdf�
http://www.coverity.com/library/pdf/open_source_quality_report.pdf�
http://www.coverity.com/library/pdf/open_source_quality_report.pdf�
http://www.sciencedirect.com/science/journal/09659978�
http://www.sciencedirect.com/science?_ob=PublicationURL&_tockey=%23TOC%235680%231999%23999699987%23124591%23FLA%23&_cdi=5680&_pubType=J&view=c&_auth=y&_acct=C000050221&_version=1&_urlVersion=0&_userid=10&md5=3ae9cad02cb997f43986800909e9d4f8�
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=9269�

Panchamukesh chandaka et al, International Journal of Advanced Research in Computer Science, 2 (4), July-August, 2011,319-323

© 2010, IJARCS All Rights Reserved 323

AUTHORS

#1 Panchamukesh Chandaka received
Bachelors degree in Computer science and Information
Technology from JNTUH, M.Tech in Information
Technology from JNTUK. Presently working as Reviewer
for IJCIIS an international peer review journal. He is a
research scholar in field of Information Security and
Software Engineering. He is having experience of 5 Years in
the field of Computer Science and Engineering, presently
working as Assistant Professor in the department of CSE,
Hyderabad Institute of Technology and Management
(HITAM), Gowdavally, R.R.Dist., A.P, INDIA. He can be
reached at mukesh_1229@yahoo.com.

*2 Neelima Sadineni received Bachelors
degree in Computer science and Information Technology
from JNTUH, Pursuing M.Tech in Software Engineering
from JNTUK. She is a research scholar in field of Data
Mining and Software Engineering. She is having experience
of 5 Years in the field of Computer Science and
Engineering, presently working as Assistant Professor in the
department of CSE, Pydah College of engineering

Kakinada, A.P,INDIA. She can be reached at
neelima.sadineni@gmail.com.

*3 Sailaja D received Bachelors degree in
Information Technology from JNTUK, Pursuing M.Tech in
Software Engineering from JNTUK. She is a research
scholar in field of Data Mining and Software Engineering.
She is having experience of 5 Years in the field of Computer
Science and Engineering, presently working as Assistant
Professor in the department of CSE, Ssnkethika Vidya
Parishad Engineering College, Visakhapatnam, and A.P,
INDIA. She can be reached at sailubahnu25@gmail.com

Deepika Rani Kampally received Bachelor’s degree in
Computer science and Engineering from JNTUH,
Pursuing M.Tech in Computer Science and Engineering
from JNTUH. She is a research scholar in field of
Information Security. She is having an experience of 3.8
Years in the field of Computer Science and Engineering,
presently working as Assistant Professor in the department
of CSE, Hyderabad Institute of Technology and
Management, Hyderabad. E-
Mail:deepikarani.d@gmail.com

	[15] Sazawal, Kim.M, Notkin D ‘A study of evolution in the presence of source-deri ved partial design representations ‘ in Software Evolution, 2004. Date of Current Version: 20 September 2004.

