
DOI: http://dx.doi.org/10.26483/ijarcs.v11i4.6639

Volume 11, No. 4, July-August 2020

International Journal of Advanced Research in Computer Science

RESEARCH PAPER

Available Online at www.ijarcs.info

© 2020-2022, IJARCS All Rights Reserved 18

ISSN No. 0976-5697

TEXT SUMMARIZER FOR URL AND .DOCX FILES

Jasmine Pinto
Computer Engineering

St. Francis Institute of Technology
Mumbai, India

Disha Rathod
Computer Engineering

St. Francis Institute of Technology
Mumbai, India

Alston Quadros

Computer Engineering
St. Francis Institute of Technology

Mumbai, India

Abstract: The objective of this model is to compute a block of text and return its equivalent summary. The text provided could be both content
from an online website or an offline text document. The purpose of this project is to help generate an efficient algorithm which could provide a
meaningful summary of the text and help the user save time on reading and help grasp maximum information in a minimalistic amount of time.

Keywords: NLP, Text Rank, Word Frequency, Cosine Similarity, POS tagging, Extractive Summarization.

I. INTRODUCTION

With the steady advancements in the field of technology,
the internet’s growth has also increased to a great extent. In
today’s fast moving world, information is in great abundance.
Information is easily available in the form of text documents,
files, statistics and data. As the internet contains more than the
required amount of information, it becomes very difficult to
search for valuable information through a vast quantity of
documents. People need to take decisions and even need to
acquire knowledge quickly and on the go. Nowadays, even 24
hours are not enough to complete our day to day tasks and
having to read pages and pages of emails, books or even
websites would be impossible. To help aid the situation, we
have designed an application that will help generate a summary
or a brief version of the text provided to the application. Our
application mainly emphasizes taking transcripts or data from
the user and giving a summary of the transcript or data. User
can either enter his own text or enter the URL from where he
wants the data to be summarized. On the basis of the data
received, we provide an appropriate summary for the same.
This will be very beneficial as it will help users to get relevant
information from a large pool of data. The user need not read
the entire document but just the summary generated by our
application to know the content present in the data. It will help
users to get a brief idea of the entire document based on the
summary generated by our application. The summary provided
by our application ensures to include the most relevant
information such that the user does not miss on any important
points. This will help save on time and gain maximum
information from the data.

II. LITERATURE SURVEY

In this paper, extractive text summarization is used to
generate the summary. Two summaries are generated for each
document using Restricted Boltzmann Machine and Fuzzy

Logic. The text document received is pre-processed and
sentence features are calculated to find sentence scores. Once
sentence features have been calculated for all sentences, a
sentence feature matrix is formed. In this matrix, each sentence
has nine feature values. The sentence matrix is then normalized
and is given as an input to the Restricted Boltzmann Machine
to enhance the values for obtaining the sentence score. An
enhanced feature matrix is then calculated. For the first
summary, the sum of all enhanced feature values is calculated
and sentences are arranged in descending manner of their
sentence scores. The summary generated will include the first
sentence and then top 50% of the remaining sentences based on
their descending scores and sorted according to their original
position in the document. For the second summary, the feature
scores calculated earlier are converted into percentage and
triangular membership functions are used to fuzzify each score
into high, medium and low levels. Defuzzification is done to
determine whether the sentence is Important, Average or
Unimportant. The sentences which fit in “Important” category
are added in the second summary according to their original
position in the document. Both the summaries are combined
and a set of common and uncommon sentences are found. The
common set is added into the final summary and the
uncommon sentences are sorted position wise and half parts of
uncommon set of sentences are added in the final summary.
After adding, the sentences are arranged according to their
original position in the text document. The results obtained
show that the proposed system helps to overcome the problem
of text overloading by generating an effective summary. They
concluded that the results obtained by using the proposed
method gives better evaluation parameters in comparison with
prevailing RBM method. [1]

In this paper, they have discussed the features and methods
for extractive text summarization. They have listed the features
that should be applied to exclusive sentences to be included in
the summary. They have listed the various supervised and
unsupervised learning methods along with their concept,
advantages and disadvantages to generate a summary. Various

Alston Quadros et al, International Journal of Advanced Research in Computer Science, 11 (4), July-August 2020,18-21

© 2020-2022, IJARCS All Rights Reserved 19

datasets such as TIPSTER, TREC, TAC, DUC, CNN can be
used for experimental evaluation of extractive summarization.
After analyzing all the methods for extractive summarization,
they came to a conclusion that evaluating summaries is a
difficult task due to the impossibility of building a standard
against which the results of the system can be compared. They
also concluded that their work can be further improved by
focusing on the various challenges of extractive text
summarization process in premises of time and space
compilation. [2]

In this paper, they presented an extensive text
summarization approach using neural networks. The neural
network had been trained by extracting ten features including
word vector embedding from the training dataset. Testing had
been performed on the DUC 2002 dataset, where up to 284
documents were used in various test experiments. ROUGE
scores (1, 2, and L) computed for their proposed model and
four of the online text summarizers showed the effectiveness of
the proposed model. They also concluded that the performance
of the proposed model may further be improved by increasing
the size and diversity of the training dataset and applying more
effective approaches to convert the abstract summaries into
extractive summaries. [3]

In this paper, a POS tagging method is proposed based on
statistical machine learning and SWJTU segmentation
dictionary and the method optimizes the POS tagging results of
SWJTU Chinese word segmentation system. The accuracy
achieves 95.80% when the method is tested in People’s Daily
January 1989 news data. Compared with other POS tagging
methods, the method mentioned in the paper is better and
accuracy is 88% in ambiguity words POS tagging experiment.
This method also solves the problem of POS tag errors in the
dictionary, insufficient training corpus in statistical machine
learning method, ignoring context information of words. [4]

In this paper, extractive text summarization is obtained by
using sentence ranking. The input file is first tokenized and
stop words are removed to get the filtered text. The words that
are preserved are considered as keywords and part of speech is
assigned to each word(token).Weights are assigned to
individual tokens and weighted frequency is calculated. The
sum of the weighted frequencies and individual term ranks are
calculated. The summarizer will extract the high weighted
frequency sentences in order to find a summary of a document
and the extracted summaries are converted into audio form.
They have evaluated the performance of their system with
human generated summary and came to a conclusion that their
system provided a more effective summary. The proposed
system provides better accuracy when compared to the
traditional approach.[5]

III. PROBLEM DEFINITION

Our problem mainly deals with data having many
sentences. People need to learn much from data. But they tend
to want to spend less time while doing this. It is very difficult
for human beings to manually extract the summary of a large
document of text. There are plenty of text materials available
on the Internet. So there is a problem of searching for relevant
documents from the number of documents available, and
absorbing relevant information from it. This is when our
project comes into action. We aim to solve this problem by
supplying them the summaries of the text from which they
want to gain information. No matter how large is the data; our
project will give a summary of it.

IV. PROPOSED SYSTEM METHODOLOGY

Fig. 1 Block diagram of one of the many applications of the system.
In the project, we’ve used the extractive approach to

generate a summary. Our code first removes all stopwords,
square brackets, extra spaces, special characters and digits as
these are used frequently and cannot be taken as a base to get a
summary. Once this is done, our code calculates the frequency
(word count) of every word in the data. The word having the
highest frequency is taken as a base in order to calculate the
frequency (percentile) of every word. Once we calculate the
frequency of every word, we calculate the score of every
sentence. This is done by simply adding the frequency of every
word in the sentence to get the score. We provide an option to
the user to enter the number of sentences he wants in his
summary. Based on the number of sentences the user wants, we
provide the sentences having highest scores in the summary.
The system works by assigning scores to sentences in the
document to be summarized, and using the highest scoring
sentences in the summary. Score values are based on features
extracted from the sentence. A linear combination of feature
scores is used. Almost all of the mappings from feature to score
and the coefficient values in the linear combination are derived
from a training corpus. We have ensured that our project can
take any amount of data and provides a summary for the same.
We have also designed our system in such a way that while
processing the data, it removes stopwords, unnecessary words
and provide a summary based on the relevant information in
the data. Our system will be greatly beneficial to the end user
as it will present the source text into a shorter version with
semantics. The most important advantage of using a summary
is that it provides us with maximum information in a short span
of time. Our system will identify the most important
meaningful information in a document or a set of
related documents and compress them into a shorter version
preserving its overall meanings.

V. SUMMARIZING ALGORITHM

The preferred spelling of the word “acknowledgment” in
America is without an “e” after the “g”. The algorithm we
design is an amalgamation of three steps, these steps together
produced the desired output. The steps are as follows:

1. Find the Highest Text Rank Sentences, using the
Pagerank Algorithm with Cosine Similarity as the
comparison parameter

def textrank():
 S = Create Similarity Matrix

sentence_ranks = pagerank(S)
Sort the sentence ranks in Descending Order
Select Top 50% of the Sentences
Summary_1 -> Join all the selected sentences.

2. We acquire a summary from the above step, now we

use that summary and perform POS analysis. In POS analysis

Alston Quadros et al, International Journal of Advanced Research in Computer Science, 11 (4), July-August 2020,18-21

© 2020-2022, IJARCS All Rights Reserved 20

for the entire text we find the proper nouns, calculate
the number of occurrences of that noun and choose the top
50% Nouns and select the sentences that have the selected
nouns present in them.

def POStag():
words = Convert the text into words.
POS = Perform POS Tagging on the words using

NLTK
 df -> calculate the frequency of each noun
 #Remove stopwords from the list
 Table -> Create 'Noun' and 'Frequency' Table
 Arrange the Table in descending order of Frequency
 Select the Nouns with Top 25% Frequency in the Table
Summary_2 -> Join the sentences with selected nouns

3. Finally after we acquire the second summary from the

algorithm using POS Tagging, we pass that summary for a final
level of refinement. We convert the entire text to words, find
the frequency of each word, now next we calculate the sentence
score which is for a sentence we add the frequency
corresponding to each word in the sentence. Finally the top
25% of the highest sentence scores are selected and joined to
create a summary.

def sentencescore():
Table -> 'Word' and 'Frequency' Table
Sentence List = Divide Summary_2 into sentences
 for sentence in Sentence List:
 for word in Total Word List:
 if word in Table['Word']:
 if First word of the Sentence:
 Sentence Scores = frequency[word]
 else:
 Sentence Scores += frequency[word]
 Sort the Sentence Scores in Descending Order
 Select the Top 25% of the Sentence Score Table
 Summary_Final -> Join Selected Sentences.

4. The Algorithm in short is First Text Rank, the POS

Tagging and Finally Sentence Score Algorithm.
For summarizing online websites we create the data using a

beautiful soup package that extracts all the data in the <p>
paragraph tags.

VI. PERFORMANCE EVALUATION PARAMETER

The algorithm output statistics of some sample texts are
shown below in numerical format for better understanding of
how the algorithm is generated and how brief the summary is.

1. Link 1
https://en.wikipedia.org/wiki/Computer
Original data – 1023 sentences
Our summary – 20 sentences

2. Link 2
https://en.wikipedia.org/wiki/Machine_learning
Original data – 756 sentences
Our summary – 19 sentences

3. Offline Summary
Original data – 200 sentences
Our summary – 13 sentences

Since it is a summary of the text, we cannot evaluate how
precise it is. The method used is extractive and not abstractive
there is no mathematical way to calculate preciseness of the

summary. There are a few differences which we observed in
the outputs we received for the same text using two different
algorithms they are as follows:

1. Time taken for extractive summarisation is faster
compared to the abstractive algorithm (i.e. RNN and
LSTM) we implemented.

2. Abstractive Summarization shows promising results
but the observed trend is that this method is data
hungry and needs to be fed a lot of data to train, hence
to increase the accuracy there has to be a compromise
in computation time, whereas the extractive was faster
and gave quite relevant output.

3. Deep Learning Algorithms such as RNN and LSTM
give different output for different configurations of
hyper parameters such as no epochs, learning rate, etc.
hence every text has a unique value of hyper
parameters to get optimum accuracy but it’s not
possible to tweak the parameters after the model is
created. Hence the more adaptive solution found is
extractive summarisation that shows best output
according to the text given

4. RNN and LSTM follow semantic analysis where they
follow a fixed set of grammar they are trained to ,
hence if no kind of data is present for the person
whose data it is not trained the results may be
variable. To overcome the problem the extractive
analysis works on frequency as a metric hence it is
document specific and also user specific where the
authors favourite words and ideas are repeated and
they are reflected in the summary

To make the analysis more prudent we conducted two tests
to check which type of summarization is the best.

1. Machine / Mathematical Based Testing
2. Human based Testing

The results for the tests are shown below in a tabular form
Test 1: The first test involved taking 3 texts and having a
human creating a summary for all three and then comparing
them using cosine and jaccard similarity.

Sample 1 Sample 2 Sample 3

Abstractive
Summary

Cosine
Similarity

0.95524 0.98992 0.96415

Jaccard
Similarity

0.96221 0.90426 0.93251

Extractive
Summary

Cosine
Similarity

0.96175 0.98963 0.97157

Jaccard
Similarity

0.97012 0.98847 0.97693

Table 1: Results of test 1

Test 2: The second test is generating 3 summaries and asking
two humans who have read the text to judge the summaries
using parameters such as Similarity, Briefness and Relevance.

Sample 1 Sample 2 Sample 3

Relevance
Abstractive
Summary

6 7 7

Extractive
Summary

8 6 9

Similarity Abstractive 9 8 8

Alston Quadros et al, International Journal of Advanced Research in Computer Science, 11 (4), July-August 2020,18-21

© 2020-2022, IJARCS All Rights Reserved 21

Summary

Extractive
Summary 8 7 8

Briefness Abstractive
Summary 7 6 6

Extractive
Summary 9 8 8

Table 2: Results of test 2

VII. REFERENCES

[1] N. S. Shirwandkar and S. Kulkarni, "Extractive Text
Summarization Using Deep Learning," 2018 Fourth
International Conference on Computing Communication
Control and Automation (ICCUBEA), Pune, India, 2018,
pp. 1-5.

[2] N. Moratanch and S. Chitrakala, "A survey on extractive
text summarization," 2017 International Conference on
Computer, Communication and Signal Processing
(ICCCSP), Chennai, 2017, pp. 1-6. doi:
10.1109/ICCCSP.2017.7944061

[3] A. Jain, D. Bhatia and M. K. Thakur, "Extractive Text
Summarization Using Word Vector Embedding," 2017
International Conference on Machine Learning and Data
Science (MLDS), Noida, 2017, pp. 51-55. doi:
10.1109/MLDS.2017.12

[4] Z. Ye, Z. Jia, J. Huang and H. Yin, "Part-of-speech
tagging based on dictionary and statistical machine
learning," 2016 35th Chinese Control Conference (CCC),
Chengdu, 2016, pp. 6993-6998. doi:
10.1109/ChiCC.2016.7554459

[5] J. N. Madhuri and R. Ganesh Kumar, "Extractive Text
Summarization Using Sentence Ranking," 2019
International Conference on Data Science and
Communication (IconDSC), Bangalore, India, 2019, pp.
1-3. doi: 10.1109/IconDSC.2019.8817040

[6] Inderjeet Mani and Eric Bloedorn, “Multi-document
summarization by graph search and matching,”
AAAI/IAAI, vol. cmplg/ 9712004, pp. 622- 628, 1997.

[7] J. M. Conroy, and D. P. O'leary, “Text summarization via
hidden markov models,” In Proceedings of SIGIR '01, pp.
406-407, New York, NY, USA, 2001.

[8] Nenkova, A.(2011).“Automatic summarization,
Foundations and Trends in Information
Retrieval”,5(2),103-233

[9] Gupta,V and Lehal,G.s (2010). “A survey of text
summarization extractive techniques.” Journal of
Emerging Technologies in Web Intelligence,2(3),258-268

[10] J. Cheng, M. Lapata, “Neural summarization by extracting
sentences and words,” arXiv:1603.07252 [cs.CL]

[11] M. S. Patil, M. S. Bewoor, S. H. Patil, “A Hybrid
Approach for Extractive Document Summarization Using
Machine Learning and Clustering Technique,”
International Journal of Computer Science & Information
Technology, Vol. 5, Issue 2, 2014, pp. 1584

[12] R. Nallapati, F. Zhai, B. Zhou, “SummaRuNNer: A
Recurrent Neural Network based Sequence Model for
Extractive Summarization of Documents,” in Proc. AAAI
Conference on Artificial Intelligence (AAAI),
Computational and Language(cs.CL),
arXiv:1611.04230v1 [cs.CL]

[13] F. Chen, K. Han, and G. Chen, "An approach to sentence-
selection based text summarization," in TENCON'02.
Proceedings. 2002 IEEE Region 10 Conference on
Computers, Communications, Control and Power
Engineering, vol. 1. IEEE, 2002, pp. 489-493.

