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Abstract: The objective of this model is to compute a block of text and return its equivalent summary. The text provided could be both content 
from an online website or an offline text document. The purpose of this project is to help generate an efficient algorithm which could provide a 
meaningful summary of the text and help the user save time on reading and help grasp maximum information in a minimalistic amount of time. 
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I. INTRODUCTION  

With the steady advancements in the field of technology, 
the internet’s growth has also increased to a great extent. In 
today’s fast moving world, information is in great abundance. 
Information is easily available in the form of text documents, 
files, statistics and data. As the internet contains more than the 
required amount of information, it becomes very difficult to 
search for valuable information through a vast quantity of 
documents. People need to take decisions and even need to 
acquire knowledge quickly and on the go. Nowadays, even 24 
hours are not enough to complete our day to day tasks and 
having to read pages and pages of emails, books or even 
websites would be impossible. To help aid the situation, we 
have designed an application that will help generate a summary 
or a brief version of the text provided to the application. Our 
application mainly emphasizes taking transcripts or data from 
the user and giving a summary of the transcript or data. User 
can either enter his own text or enter the URL from where he 
wants the data to be summarized. On the basis of the data 
received, we provide an appropriate summary for the same. 
This will be very beneficial as it will help users to get relevant 
information from a large pool of data. The user need not read 
the entire document but just the summary generated by our 
application to know the content present in the data. It will help 
users to get a brief idea of the entire document based on the 
summary generated by our application. The summary provided 
by our application ensures to include the most relevant 
information such that the user does not miss on any important 
points.  This will help save on time and gain maximum 
information from the data. 

 

II. LITERATURE SURVEY 

In this paper, extractive text summarization is used to 
generate the summary. Two summaries are generated for each 
document using Restricted Boltzmann Machine and Fuzzy 

Logic. The text document received is pre-processed  and 
sentence features are calculated to find sentence scores. Once 
sentence features have been calculated for all sentences, a 
sentence feature matrix is formed. In this matrix, each sentence 
has nine feature values. The sentence matrix is then normalized 
and is given as an input to the Restricted Boltzmann Machine 
to enhance the values for obtaining the sentence score. An 
enhanced feature matrix is then calculated. For the first 
summary, the sum of all enhanced feature values is calculated 
and sentences are arranged in descending manner of their 
sentence scores. The summary generated will include the first 
sentence and then top 50% of the remaining sentences based on 
their descending scores and sorted according to their original 
position in the document. For the second summary, the feature 
scores calculated earlier are converted into percentage and 
triangular membership functions are used to fuzzify each score 
into high, medium and low levels. Defuzzification is done to 
determine whether the sentence is Important, Average or 
Unimportant. The sentences which fit in “Important” category 
are added in the second summary according to their original 
position in the document. Both the summaries are combined 
and a set of common and uncommon sentences are found. The 
common set is added into the final summary and the 
uncommon sentences are sorted position wise and half parts of 
uncommon set of sentences are added in the final summary. 
After adding, the sentences are arranged according to their 
original position in the text document. The results obtained 
show that the proposed system helps to overcome the problem 
of text overloading by generating an effective summary. They 
concluded that the results obtained by using the proposed 
method gives better evaluation parameters in comparison with 
prevailing RBM method. [1] 

In this paper, they have discussed the features and methods 
for extractive text summarization. They have listed the features 
that should be applied to exclusive sentences to be included in 
the summary. They have listed the various supervised and 
unsupervised learning methods along with their concept, 
advantages and disadvantages to generate a summary. Various 
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datasets such as TIPSTER, TREC, TAC, DUC, CNN can be 
used for experimental evaluation of extractive summarization. 
After analyzing all the methods for extractive summarization, 
they came to a conclusion that evaluating summaries is a 
difficult task due to the impossibility of building a standard 
against which the results of the system can be compared. They 
also concluded that their work can be further improved by 
focusing on the various challenges of extractive text 
summarization process in premises of time and space 
compilation. [2]   

In this paper, they presented an extensive text 
summarization approach using neural networks. The neural 
network had been trained by extracting ten features including 
word vector embedding from the training dataset. Testing had 
been performed on the DUC 2002 dataset, where up to 284 
documents were used in various test experiments. ROUGE 
scores (1, 2, and L) computed for their proposed model and 
four of the online text summarizers showed the effectiveness of 
the proposed model. They also concluded that the performance 
of the proposed model may further be improved by increasing 
the size and diversity of the training dataset and applying more 
effective approaches to convert the abstract summaries into 
extractive summaries. [3] 

In this paper, a POS tagging method is proposed based on 
statistical machine learning and SWJTU segmentation 
dictionary and the method optimizes the POS tagging results of 
SWJTU Chinese word segmentation system. The accuracy 
achieves 95.80% when the method is tested in People’s Daily 
January 1989 news data. Compared with other POS tagging 
methods, the method mentioned in the paper is better and 
accuracy is 88% in ambiguity words POS tagging experiment. 
This method also solves the problem of POS tag errors in the 
dictionary, insufficient training corpus in statistical machine 
learning method, ignoring context information of words. [4] 

In this paper, extractive text summarization is obtained by 
using sentence ranking. The input file is first tokenized and 
stop words are removed to get the filtered text. The words that 
are preserved are considered as keywords and part of speech is 
assigned to each word(token).Weights are assigned to 
individual tokens and weighted frequency is calculated. The 
sum of the weighted frequencies and individual term ranks are 
calculated. The summarizer will extract the high weighted 
frequency sentences in order to find a summary of a document 
and the extracted summaries are converted into audio form. 
They have evaluated the performance of their system with 
human generated summary and came to a conclusion that their 
system provided a more effective summary. The proposed 
system provides better accuracy when compared to the 
traditional approach.[5] 

 

III. PROBLEM DEFINITION 

Our problem mainly deals with data having many 
sentences. People need to learn much from data. But they tend 
to want to spend less time while doing this. It is very difficult 
for human beings to manually extract the summary of a large 
document of text. There are plenty of text materials available 
on the Internet. So there is a problem of searching for relevant 
documents from the number of documents available, and 
absorbing relevant information from it. This is when our 
project comes into action. We aim to solve this problem by 
supplying them the summaries of the text from which they 
want to gain information. No matter how large is the data; our 
project will give a summary of it. 

 

IV. PROPOSED SYSTEM METHODOLOGY 

 

Fig. 1 Block diagram of one of the many applications of the system. 
In the project, we’ve used the extractive approach to 

generate a summary. Our code first removes all stopwords, 
square brackets, extra spaces, special characters and digits as 
these are used frequently and cannot be taken as a base to get a 
summary. Once this is done, our code calculates the frequency 
(word count) of every word in the data. The word having the 
highest frequency is taken as a base in order to calculate the 
frequency (percentile) of every word. Once we calculate the 
frequency of every word, we calculate the score of every 
sentence. This is done by simply adding the frequency of every 
word in the sentence to get the score. We provide an option to 
the user to enter the number of sentences he wants in his 
summary. Based on the number of sentences the user wants, we 
provide the sentences having highest scores in the summary. 
The system works by assigning scores to sentences in the 
document to be summarized, and using the highest scoring 
sentences in the summary. Score values are based on features 
extracted from the sentence. A linear combination of feature 
scores is used. Almost all of the mappings from feature to score 
and the coefficient values in the linear combination are derived 
from a training corpus. We have ensured that our project can 
take any amount of data and provides a summary for the same. 
We have also designed our system in such a way that while 
processing the data, it removes stopwords, unnecessary words 
and provide a summary based on the relevant information in 
the data. Our system will be greatly beneficial to the end user 
as it will present the source text into a shorter version with 
semantics. The most important advantage of using a summary 
is that it provides us with maximum information in a short span 
of time. Our system will identify the most important 
meaningful information in a document or a set of 
related documents and compress them into a shorter version 
preserving its overall meanings. 

V. SUMMARIZING ALGORITHM 

The preferred spelling of the word “acknowledgment” in 
America is without an “e” after the “g”. The algorithm we 
design is an amalgamation of  three steps, these steps together 
produced the desired output. The steps are as follows: 

1. Find the Highest Text Rank Sentences, using the 
Pagerank Algorithm with Cosine Similarity as the 
comparison parameter 

 

def textrank():
     S = Create Similarity Matrix 

sentence_ranks = pagerank(S)  
Sort the sentence ranks in Descending Order 
Select Top 50% of the Sentences 
Summary_1 -> Join all the selected sentences.

 
2. We acquire a summary from the above step, now we 

use that summary and perform POS analysis. In POS analysis 
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for the entire text we find the  proper nouns, calculate 
the  number of occurrences of that noun and choose the top 
50% Nouns and select the sentences that have the selected 
nouns present in  them. 

 

def POStag():     
words = Convert the text into words. 
POS = Perform POS Tagging on the words using 

NLTK 
     df -> calculate the frequency of each noun 
     #Remove stopwords from the list 
     Table -> Create 'Noun' and 'Frequency' Table 
     Arrange the Table in descending order of Frequency 
     Select the Nouns with  Top  25% Frequency in the Table 
Summary_2 -> Join the sentences with selected nouns

 
3. Finally after we acquire the second summary from the 

algorithm using POS Tagging, we pass that summary for a final 
level of refinement. We convert the entire text to words, find 
the frequency of each word, now next we calculate the sentence 
score which is for a sentence we add the frequency 
corresponding to each word in the sentence. Finally the top 
25%  of the highest sentence scores are selected and joined to 
create a summary. 

 

def sentencescore(): 
Table -> 'Word' and 'Frequency' Table     
Sentence List = Divide Summary_2 into sentences     
    for sentence in Sentence List:   
        for word in Total Word List: 
            if word in Table['Word']: 
                if First word of the Sentence: 
                    Sentence Scores  = frequency[word] 
                else: 
                    Sentence Scores += frequency[word] 
 Sort the Sentence Scores in Descending Order 
 Select the Top 25% of the Sentence Score Table 
 Summary_Final -> Join Selected Sentences.

 
4. The Algorithm in short is First Text Rank, the POS 

Tagging and Finally Sentence Score Algorithm. 
For summarizing online websites we create the data using a 

beautiful soup package that extracts all the data in the <p> 
paragraph tags.  

VI. PERFORMANCE EVALUATION PARAMETER 

The algorithm output statistics  of some sample texts are 
shown below in numerical format for better understanding of 
how the algorithm is generated and how brief the summary is. 

1. Link 1 
https://en.wikipedia.org/wiki/Computer 
Original data – 1023 sentences 
Our summary – 20 sentences 

2. Link 2 
https://en.wikipedia.org/wiki/Machine_learning 
Original data – 756 sentences 
Our summary – 19 sentences 

3. Offline Summary  
Original data – 200 sentences 
Our summary – 13 sentences 

Since it is a summary of the text, we cannot evaluate how 
precise it is. The method used is extractive and not abstractive 
there is no mathematical way to calculate preciseness of the 

summary. There are a few differences which we observed in 
the outputs we received for the same text using two different 
algorithms they are as follows: 

1. Time taken for extractive summarisation is faster 
compared to the abstractive algorithm (i.e. RNN and 
LSTM) we implemented. 

2. Abstractive Summarization shows promising results 
but the observed trend is that this method is data 
hungry and needs to be fed a lot of data to train, hence 
to increase the accuracy there has to be a compromise 
in computation time, whereas the extractive was faster 
and gave quite relevant output. 

3. Deep Learning Algorithms such as RNN and LSTM 
give different output for different configurations of 
hyper parameters such as no epochs, learning rate, etc. 
hence every text has a unique value of hyper 
parameters to get optimum accuracy but it’s not 
possible to tweak the parameters after the model is 
created. Hence the more adaptive solution found is 
extractive summarisation that shows best output 
according to the text given  

4. RNN and LSTM follow semantic analysis where they 
follow a fixed set of grammar they are trained to , 
hence if no kind of data is present for the person 
whose data it is not trained the results may be 
variable. To overcome the problem the extractive 
analysis works on frequency as a metric hence it is 
document specific and also user specific where the 
authors favourite words and ideas are repeated and 
they are reflected in the summary 

To make the analysis more prudent we conducted two tests 
to check which type of summarization is the best. 

1. Machine / Mathematical Based Testing  
2. Human based Testing  

The results for the tests are shown below in a tabular form  
Test 1: The first test involved taking 3 texts and having a 
human creating a summary for all three and then comparing 
them using cosine and jaccard similarity. 
 

Sample 1 Sample 2 Sample 3

Abstractive 
Summary

Cosine 
Similarity

0.95524 0.98992 0.96415 

Jaccard 
Similarity

0.96221 0.90426 0.93251 

Extractive 
Summary

Cosine 
Similarity

0.96175 0.98963 0.97157 

Jaccard 
Similarity

0.97012 0.98847 0.97693 

Table 1: Results of test 1 
 

Test 2: The second test is generating 3 summaries and asking 
two humans who have read the text to judge the summaries 
using parameters such as Similarity, Briefness and Relevance. 
 

Sample 1 Sample 2 Sample 3

Relevance
Abstractive 
Summary

6 7 7 

Extractive 
Summary

8 6 9 

Similarity Abstractive 9 8 8 
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Summary 

 
Extractive 
Summary 8 7 8 

Briefness Abstractive 
Summary 7 6 6 

 
Extractive 
Summary 9 8 8 

 
Table 2: Results of test 2 
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