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Abstract—In this digital era that we live in, Recommendation 

systems have become a part and parcel of our everyday lives. There 

are tons of options out there for everything that we do and people 

might find themselves in a difficult place while making a choice, ‘a 

perfect one!’ This is where the Recommendation Systems step in. 

Internet Giants such as Amazon, Netflix, YouTube, Spotify, 

Facebook etc can be seen using these technologies to keep their 

audience interested. So, through this work, we attempt to build a 

simple movie recommendation system employing the famous 

technique‘User-User Collaborative Filtering’ and design a GUI for 

the same. 

Keywords—recommender system, collaborative filtering, user 

based collaborative filtering, cosine similarity. 

 

I. INTRODUCTION  
Generally, Recommendation Systems are algorithms 

intended to suggest relevant items to users (items being videos 
or movies to watch, music to listen, products to buy or anything 
else depending on enterprises). Recommender Systems have a 
vast category of applications . We can observe a dramatic 
increase in the prominence  of these technologies particularly 
on the online channels . The products that are recommended on 
these online channels range from a song or a film on web 
streaming apps to people on dating websites and career forums 
or even something naive like a web search on the search 
engines. In most cases, these systems are so advanced that they 
are capable of collecting information about users' tendencies 
resulting in the knowledge that can be used in the future to 
enhance their recommendations. YouTube, for example, will 
track your viewing history on their website and decide what 
kinds of videos are appealing to you. Such systems also often 
improve their suggestions based on the activities that are 
similar between a group of people. For example, if a shopping 
website recognises that a large number of customers who 
purchased a professional camera have purchased a carrying 
case for it, then the algorithm may recommend the carrying 
case to the new consumer who is viewing a camera on their 
site. 

 Users often expect outstanding recommendations because 
of the developments in Recommender Systems. They have a 
small tolerance for programs which can’t offer appropriate 
suggestions. For example, if a music streaming app can't 

predict and play the music the user likes, then the user will 
eventually get bored and the app wouldn't seem great to him. 
This has brought the Recommender Systems to the spotlight 
and the tech companies focusing on improvising their models. 
But, the problem here is not as simple as it may appear. Each 
user has his/her owntendencies. Adding to this, the problem 
gets even more complex as the user’s tendencies are also 
influenced largely by factors, such as the time of the day, his 
surroundings, his mood etc. For example, a user might like to 
listen to a higher tempo genre such as rock while he’s 
exercising and maybe a low-tempo genre such as smooth-jazz.  

Collaborative filtering (CF) algorithm is the most common 
technique employed in Recommender Systems. It is widely 
used due to its personalised recommendation. The main idea 
behind this technique is to utilize neighbours who have similar 
likings as of the active user and suggest the recommendations 

based on their liking history [6]. The CF algorithm is 
essentially built on the following three postulates: Users share 
comparable choices and likings; Their selections and likings 
are consistent; Their likings can be predicted based on their 
selections. Owing to the above postulates, comparison of users’ 

behaviours and their tendenciesis the base of the CF algorithm. 
In this work, we will attempt to build a simple 
Recommendation System employing this widely popular 
technique. 

The primary step of the CF algorithm is to retrieve the 
user's watch history, which can be interpreted as a matrix of 
ratings, with the user's score given to a particular movie as an 
entry[6]. The matrix is a table with rows and columns 
representing individual users and unique movies. Thus, the 
rating value of the user is denoted by the numerical value at the 
intersection of a row and column. A missing rating score at this 
intersection means that the item has not yet been rated by the 
particular user. Because of this sparse scoring problem, we 
have to ensure that the matrix is complete without any missing 
values to maintain our model's accuracy and consistency. 
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  Fig 3.1 Proposed System 

 

 

 

 

The next step is to measure the users similarity and identify 
the nearest neighbours to the active user. There are several 
techniques for assessing similarities. We have used the Cosine 
similarity measure method in our case, it’s calculated using the 
following equation: 

 
 
In the above equation 'rx' is the user rating of 'x' on item 's' 

and 'ry' is user y rating on item 's', 'Sxy' means the items co-
evaluated by the user 'x' and 'y'. 

 
The final step is to determine the rating of objects. The 

rating is based on the weighted average of ratings by the 
neighbour users.[1]. 

 

 
 

Explanation above indicates that the CF algorithm consumes 
high computational time and compute resources. The 
computation cycle will continue for several hours or even 
longer, if the data set is very large. Therefore, we suggest a 
system in which the scoring function is restricted only to 
movies considering the active user's nearest 'K' neighbours, 
which is derived from the rule 'Neighbourhood for User (K). 
 

II. EXISTING WORKS 

Researchers have developed various film recommendation 

strategies to recommend films to the consumer according to 

their desires or preferences. Because recommendation systems 

are such a hot topic in recent data science research, several 

scientific papers on recommendation systems have been 

published. Finally, several researchers presented genuine 

article relating to our project.[8] 

Existing Methods for movie recommendation: 

A. A paper was published in 1998 with focus on 

Recommender Systems.  It was the first paper in this 

topic. A fair number of articles have been published 

since. Different reasons for increasing the efficiency 

of the recommender program have been clarified. 

John O 'Donovar n, Barry Smyth, took confidence in 

the year 2005 as the percentage of accurate 

predictions that a person has made in general (person-

level trust) or in respect of a particular item (item-

level trust)[1]. The key goal of our project is to 

recommend movies to users according to their 

preferences. The system should be able to look at the 

data on videos in the database and provide these 

videos to people who might like them. 

Recommendation Systems are used to provide 

automatic recommendations to users of a service by 

using user’s behaviors from the past. There are a lot 

of algorithms available for recommender systems. 

Thus, choosing one among all of these is a difficult 

task. This decreases the prediction error by 22%. 

B. Lops et al. (2011) [2], presented item based 

collaborative filtering recommendation algorithm 

which resolves the problem arrived in rating. Rating 

of user to user based collaborative filtering by using 

the rating distribution per item, not for user. This 

leads to more stable rating distribution in the model, 

so the model doesn’t have to rebuild as often. By 

using this algorithm accuracy of 75% was achieved 

by the system. 

C. Collaborative filtering and content driven filtering 

have been classified into recommendation systems. 

This technique was known to highlight two major 

problems: problem of sparsity and problem of 

scalability. Burkey (2007)[3] proposed a hybrid 

device capable of solving this problem and achieving 

70 percent accuracy. 

D. D. Hongli Lin et al.(2008)[4] introduced a process 

called Content-Boosted Collaborative Filtering 

(CBCF). The algorithm is divided into two stages: 

First, content-based filtering, which enhances existing 

trainee case ratings and second, collaborative 

filtering, which provides the final predictions. The 

CBCF algorithm contains all the benefits of CBF and 

CF, thus also addressing all of their disadvantages. 

There are various types of recommender systems with 

different methods, some of which are listed as below: 

Content-based Filtering Systems (CBF-based 

systems), as this method is 75 percent accurate. 

E. Eugene Seo and Ho-Jin Choi (2009) [5], presented 

the k-means Clustering method is superior to other 

algorithm and more accurate to predict the rating and 

review. It gives great sense of accuracy of about 75%. 

F. Costin-Gabriel Chiru et al.[6], suggested Movie 

Recommender, a program that uses user-known 

knowledge to make recommendations for films. This 

program attempts to solve the problem of unique 

suggestions resulting from ignoring the user-specific 

data. The user's psychological profile, their history of 

viewing and the data from other websites that contain 

movie scores are collected. We are founded upon the 

estimation of aggregate similarity. This program has 

introduced a hybrid algorithm and is 79 per cent 

effective. 

 

III. PROPOSED SYSTEM 

We have proposed a simple, end to end system which 

comprises a basic GUI and connected to an online instance of 
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MongoDB. The system can be broken down to three major 

components, namely:  

A. Python GUI (Tkinter) 
‘Tkinter’, is the standard GUI bundled with Python. It is 

readily available with Python installs on Linux, Windows  and 
MacOS. We have used this tool to build a simple GUI for our 
Recommendation System with a Login/Register Page and a 
User Page where Recommendations are listed. 

B. CF Script (Python) 
The CF Script is the main driver code of the system. It is 

written using Python 3.7 and contains the User-User 
Collaborative Filtering function which is the base of our 
system. Python packages such as numpy, sklearn and pandas 
are used. 

 

 
  
  Fig 3.2Model Flowchart 

C. Mongo DB (Database) 
An online instance of a MongoDB, a non-relational 

database, has been implemented on the Atlas platform. This 
stores the user login information and the datasets our system is 
dependent on. 

A user can run the program and login using his credentials 
into the system on the GUI or create a new account if he is 

new. The login details are verified with the MongoDB hosted 
online. After a successful login, the user is taken into his/her 
personal page where he can find his recommendations or edit 
his profile details. The CF script is triggered with the user’s id 
to display the recommendations on the GUI. 

IV. METHODOLOGY 

 

A. Score Function  

The score function generates a score that evaluates how strong 

the user 'u' likes / prefers an object 'i'. Typically, this is 

achieved by considering other users' ratings who share 

similarities with the active user. The formula employed here is: 

 

(3) 

 

 

   In this equation,'s' is the predicted score for the item, 'u' is 

the active user, 'i' is the item in consideration, 'r' is the user's 

rating and 'w' is the weight. The score is determined as the sum 

of the ratings that each user gave that particular item and 

subtracting that user's average rating. This sum is then 

compounded by a weight which expresses a users' similarity or 

in other words how largely the user is expected to contribute to 

other user's predictions.  Thescore can vary from 0 to 1 where 0 

is the minimum and 1 is the maximum. 

B. Cosine Similarity 

To measure the weight in the formula (mentioned above) which 

is used to determine how close the users are, Cosine Similarity 

is used. It is based on the scores which have been rated by both 

users in the past. Once matrix of user ratings is normalized, this 

function is enforced it to find similarities. The function is 

borrowed from sklearn library in Python. 

C. Neighbourhood for User (K) 

This function is mainly to address the complexity of the 

problem. Recommendation Systems work on large datasets. 

Even a simple analysis task would take a significantly long 

time. Therefore, it is necessary to emphasize preserving and 

collecting only the appropriate and necessary highlights from 

the dataset to solve the complexity issue. 

In our case the matrix obtained for calculating similarity is 

(862*862), as there are 862 unique users in the dataset. 

Therefore, we create a notion of neighbourhood to resolve this 

complexity issue. This only includes the set of (K) identical 

users who share similarities with a given user. We took the 

value of k as 30, in our test run. So, we would have 30 nearest 

neighbours for all the users to consider the movies that they 

have rated as consideration for the active user. This function 

takes the matrix of similarity and the value of n as the input and 

returns the users' nearest 'n' neighbours. 

 

D. User-User Collaborative Filtering 

 

Step 1: Import the data from the Movie Lens Dataset namely 

‘Movies’, ‘Ratings’ and ‘Tags’ as separate Data Frames 

(Pandas). 
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 Fig 4.1 DataFrames 

 

Step 2: Normalise the user ratings. 

 

 
  Fig 4.2 Normalised Ratings 

 

Step 3: Fill the missing ratings in the user ratings table by 

taking the average of the movie ratings.  

 

 
Fig 4.3 User Ratings table with missing values 

 

 
Fig 4.4 User Ratings table after replacing missing values 

 

Step 4: Find the similarity of the active user with other users 

and find N (30 in our case) nearest neighbours.   

 

 
Fig 4.5 User Similarity Matrix 

 

Step 5: For the list of all the movies that the N neighbours 

have seen except the movies that the active user has already 

watched, generate a score using the Score Function. 

 

Step 6: With the scores list arranged in descending order, pick 

the top 5 movies in the list and suggest them to the users. 

 

 
Fig 4.6Snapshot of the GUI displaying the recommendations 

V. RESULT 

In this section, we show the end-results of our system. We 

successfully implemented a User-User Collaborative Filtering 

Technique in a Recommendation System. The system was 

tested on a Laptop running Ubuntu 16.04 LTS with an Intel i5 

6200u processor and 8gb ram and 256 gb Ram with a WLAN 

connection to the internet. Our testing wasdone on the 

MovieLens data set with 862 unique users and 2501 movies. 

Our first run gave us a recommendation with a  score(u,i) = 

4.25576643. 

VI. CONCLUSION 

In this Paper, we successfully built a Recommendation System 

with User-User Collaborative Filtering Technique. The system 

worked seamlessly but it faced a major issue in the form of 

cold-start. The accuracy and consistency is highly dependent 

on the pre-existing knowledge about the user’s preferences 

and likings. So, a new user without any pre-recorded 

information about him would not receive good 

recommendations when compared to a user with already 

existing information about his likings and preferences. 

    In our future works, we plan to try different approaches 

improve the model accuracy and to overcome the data sparsity 

in the ratings matrix using techniques such as matrix 

factorisation etc and compare the performances of the same. 

We also would like to bring other aspects like genre, cast and 

language as the factors of our recommendations. 
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