
Volume 11, Special Issue I, May 2020

International Journal of Advanced Research in Computer Science

CONFERENCE PAPER

Available Online at www.ijarcs.info

2nd International Conference on
Advances in Computing & Information Technology (IACIT-2020)

Date: 29-30 April 2020
Organized by School of Computing and Information Technology

Reva University, Bengaluru, India
336

ISSN No. 0976-5697

MOVIE RECOMMENDATION SYSTEM

Prajwal S

School of C & IT

REVA University,Bengaluru, India

meisprajwal@gmail.com

Sagar Chavan

School of C & IT

REVA University,Bengaluru, India

sagarsc01@gmail.com

Sharan Kumar P

School of C & IT

REVA University,Bengaluru, India

sharankmr31@gmail.com

Prof. Anil Kumar Ambore

School of C & IT

REVA University,Bengaluru, India

anilambore@reva.edu.in

Sharath Kumar T L

School of C & IT

REVA University,Bengaluru, India

sharathg138@gmail.com

Abstract—In this digital era that we live in, Recommendation

systems have become a part and parcel of our everyday lives. There

are tons of options out there for everything that we do and people

might find themselves in a difficult place while making a choice, ‘a

perfect one!’ This is where the Recommendation Systems step in.

Internet Giants such as Amazon, Netflix, YouTube, Spotify,

Facebook etc can be seen using these technologies to keep their

audience interested. So, through this work, we attempt to build a

simple movie recommendation system employing the famous

technique‘User-User Collaborative Filtering’ and design a GUI for

the same.

Keywords—recommender system, collaborative filtering, user

based collaborative filtering, cosine similarity.

I. INTRODUCTION
Generally, Recommendation Systems are algorithms

intended to suggest relevant items to users (items being videos
or movies to watch, music to listen, products to buy or anything
else depending on enterprises). Recommender Systems have a
vast category of applications . We can observe a dramatic
increase in the prominence of these technologies particularly
on the online channels . The products that are recommended on
these online channels range from a song or a film on web
streaming apps to people on dating websites and career forums
or even something naive like a web search on the search
engines. In most cases, these systems are so advanced that they
are capable of collecting information about users' tendencies
resulting in the knowledge that can be used in the future to
enhance their recommendations. YouTube, for example, will
track your viewing history on their website and decide what
kinds of videos are appealing to you. Such systems also often
improve their suggestions based on the activities that are
similar between a group of people. For example, if a shopping
website recognises that a large number of customers who
purchased a professional camera have purchased a carrying
case for it, then the algorithm may recommend the carrying
case to the new consumer who is viewing a camera on their
site.

 Users often expect outstanding recommendations because
of the developments in Recommender Systems. They have a
small tolerance for programs which can’t offer appropriate
suggestions. For example, if a music streaming app can't

predict and play the music the user likes, then the user will
eventually get bored and the app wouldn't seem great to him.
This has brought the Recommender Systems to the spotlight
and the tech companies focusing on improvising their models.
But, the problem here is not as simple as it may appear. Each
user has his/her owntendencies. Adding to this, the problem
gets even more complex as the user’s tendencies are also
influenced largely by factors, such as the time of the day, his
surroundings, his mood etc. For example, a user might like to
listen to a higher tempo genre such as rock while he’s
exercising and maybe a low-tempo genre such as smooth-jazz.

Collaborative filtering (CF) algorithm is the most common
technique employed in Recommender Systems. It is widely
used due to its personalised recommendation. The main idea
behind this technique is to utilize neighbours who have similar
likings as of the active user and suggest the recommendations

based on their liking history [6]. The CF algorithm is
essentially built on the following three postulates: Users share
comparable choices and likings; Their selections and likings
are consistent; Their likings can be predicted based on their
selections. Owing to the above postulates, comparison of users’

behaviours and their tendenciesis the base of the CF algorithm.
In this work, we will attempt to build a simple
Recommendation System employing this widely popular
technique.

The primary step of the CF algorithm is to retrieve the
user's watch history, which can be interpreted as a matrix of
ratings, with the user's score given to a particular movie as an
entry[6]. The matrix is a table with rows and columns
representing individual users and unique movies. Thus, the
rating value of the user is denoted by the numerical value at the
intersection of a row and column. A missing rating score at this
intersection means that the item has not yet been rated by the
particular user. Because of this sparse scoring problem, we
have to ensure that the matrix is complete without any missing
values to maintain our model's accuracy and consistency.

Prajwal S et al, International Journal of Advanced Research in Computer Science, Vol 11, Special Issue I, May 2020,336-340

2nd International Conference on
Advances in Computing & Information Technology (IACIT-2020)

Date: 29-30 April 2020
Organized by School of Computing and Information Technology

Reva University, Bengaluru, India
337

 Fig 3.1 Proposed System

The next step is to measure the users similarity and identify
the nearest neighbours to the active user. There are several
techniques for assessing similarities. We have used the Cosine
similarity measure method in our case, it’s calculated using the
following equation:

In the above equation 'rx' is the user rating of 'x' on item 's'

and 'ry' is user y rating on item 's', 'Sxy' means the items co-
evaluated by the user 'x' and 'y'.

The final step is to determine the rating of objects. The

rating is based on the weighted average of ratings by the
neighbour users.[1].

Explanation above indicates that the CF algorithm consumes
high computational time and compute resources. The
computation cycle will continue for several hours or even
longer, if the data set is very large. Therefore, we suggest a
system in which the scoring function is restricted only to
movies considering the active user's nearest 'K' neighbours,
which is derived from the rule 'Neighbourhood for User (K).

II. EXISTING WORKS

Researchers have developed various film recommendation

strategies to recommend films to the consumer according to

their desires or preferences. Because recommendation systems

are such a hot topic in recent data science research, several

scientific papers on recommendation systems have been

published. Finally, several researchers presented genuine

article relating to our project.[8]

Existing Methods for movie recommendation:

A. A paper was published in 1998 with focus on

Recommender Systems. It was the first paper in this

topic. A fair number of articles have been published

since. Different reasons for increasing the efficiency

of the recommender program have been clarified.

John O 'Donovar n, Barry Smyth, took confidence in

the year 2005 as the percentage of accurate

predictions that a person has made in general (person-

level trust) or in respect of a particular item (item-

level trust)[1]. The key goal of our project is to

recommend movies to users according to their

preferences. The system should be able to look at the

data on videos in the database and provide these

videos to people who might like them.

Recommendation Systems are used to provide

automatic recommendations to users of a service by

using user’s behaviors from the past. There are a lot

of algorithms available for recommender systems.

Thus, choosing one among all of these is a difficult

task. This decreases the prediction error by 22%.

B. Lops et al. (2011) [2], presented item based

collaborative filtering recommendation algorithm

which resolves the problem arrived in rating. Rating

of user to user based collaborative filtering by using

the rating distribution per item, not for user. This

leads to more stable rating distribution in the model,

so the model doesn’t have to rebuild as often. By

using this algorithm accuracy of 75% was achieved

by the system.

C. Collaborative filtering and content driven filtering

have been classified into recommendation systems.

This technique was known to highlight two major

problems: problem of sparsity and problem of

scalability. Burkey (2007)[3] proposed a hybrid

device capable of solving this problem and achieving

70 percent accuracy.

D. D. Hongli Lin et al.(2008)[4] introduced a process

called Content-Boosted Collaborative Filtering

(CBCF). The algorithm is divided into two stages:

First, content-based filtering, which enhances existing

trainee case ratings and second, collaborative

filtering, which provides the final predictions. The

CBCF algorithm contains all the benefits of CBF and

CF, thus also addressing all of their disadvantages.

There are various types of recommender systems with

different methods, some of which are listed as below:

Content-based Filtering Systems (CBF-based

systems), as this method is 75 percent accurate.

E. Eugene Seo and Ho-Jin Choi (2009) [5], presented

the k-means Clustering method is superior to other

algorithm and more accurate to predict the rating and

review. It gives great sense of accuracy of about 75%.

F. Costin-Gabriel Chiru et al.[6], suggested Movie

Recommender, a program that uses user-known

knowledge to make recommendations for films. This

program attempts to solve the problem of unique

suggestions resulting from ignoring the user-specific

data. The user's psychological profile, their history of

viewing and the data from other websites that contain

movie scores are collected. We are founded upon the

estimation of aggregate similarity. This program has

introduced a hybrid algorithm and is 79 per cent

effective.

III. PROPOSED SYSTEM

We have proposed a simple, end to end system which

comprises a basic GUI and connected to an online instance of

Prajwal S et al, International Journal of Advanced Research in Computer Science, Vol 11, Special Issue I, May 2020,336-340

2nd International Conference on
Advances in Computing & Information Technology (IACIT-2020)

Date: 29-30 April 2020
Organized by School of Computing and Information Technology

Reva University, Bengaluru, India
338

MongoDB. The system can be broken down to three major

components, namely:

A. Python GUI (Tkinter)
‘Tkinter’, is the standard GUI bundled with Python. It is

readily available with Python installs on Linux, Windows and
MacOS. We have used this tool to build a simple GUI for our
Recommendation System with a Login/Register Page and a
User Page where Recommendations are listed.

B. CF Script (Python)
The CF Script is the main driver code of the system. It is

written using Python 3.7 and contains the User-User
Collaborative Filtering function which is the base of our
system. Python packages such as numpy, sklearn and pandas
are used.

 Fig 3.2Model Flowchart

C. Mongo DB (Database)
An online instance of a MongoDB, a non-relational

database, has been implemented on the Atlas platform. This
stores the user login information and the datasets our system is
dependent on.

A user can run the program and login using his credentials
into the system on the GUI or create a new account if he is

new. The login details are verified with the MongoDB hosted
online. After a successful login, the user is taken into his/her
personal page where he can find his recommendations or edit
his profile details. The CF script is triggered with the user’s id
to display the recommendations on the GUI.

IV. METHODOLOGY

A. Score Function

The score function generates a score that evaluates how strong

the user 'u' likes / prefers an object 'i'. Typically, this is

achieved by considering other users' ratings who share

similarities with the active user. The formula employed here is:

(3)

 In this equation,'s' is the predicted score for the item, 'u' is

the active user, 'i' is the item in consideration, 'r' is the user's

rating and 'w' is the weight. The score is determined as the sum

of the ratings that each user gave that particular item and

subtracting that user's average rating. This sum is then

compounded by a weight which expresses a users' similarity or

in other words how largely the user is expected to contribute to

other user's predictions. Thescore can vary from 0 to 1 where 0

is the minimum and 1 is the maximum.

B. Cosine Similarity

To measure the weight in the formula (mentioned above) which

is used to determine how close the users are, Cosine Similarity

is used. It is based on the scores which have been rated by both

users in the past. Once matrix of user ratings is normalized, this

function is enforced it to find similarities. The function is

borrowed from sklearn library in Python.

C. Neighbourhood for User (K)

This function is mainly to address the complexity of the

problem. Recommendation Systems work on large datasets.

Even a simple analysis task would take a significantly long

time. Therefore, it is necessary to emphasize preserving and

collecting only the appropriate and necessary highlights from

the dataset to solve the complexity issue.

In our case the matrix obtained for calculating similarity is

(862*862), as there are 862 unique users in the dataset.

Therefore, we create a notion of neighbourhood to resolve this

complexity issue. This only includes the set of (K) identical

users who share similarities with a given user. We took the

value of k as 30, in our test run. So, we would have 30 nearest

neighbours for all the users to consider the movies that they

have rated as consideration for the active user. This function

takes the matrix of similarity and the value of n as the input and

returns the users' nearest 'n' neighbours.

D. User-User Collaborative Filtering

Step 1: Import the data from the Movie Lens Dataset namely

‘Movies’, ‘Ratings’ and ‘Tags’ as separate Data Frames

(Pandas).

Prajwal S et al, International Journal of Advanced Research in Computer Science, Vol 11, Special Issue I, May 2020,336-340

2nd International Conference on
Advances in Computing & Information Technology (IACIT-2020)

Date: 29-30 April 2020
Organized by School of Computing and Information Technology

Reva University, Bengaluru, India
339

 Fig 4.1 DataFrames

Step 2: Normalise the user ratings.

 Fig 4.2 Normalised Ratings

Step 3: Fill the missing ratings in the user ratings table by

taking the average of the movie ratings.

Fig 4.3 User Ratings table with missing values

Fig 4.4 User Ratings table after replacing missing values

Step 4: Find the similarity of the active user with other users

and find N (30 in our case) nearest neighbours.

Fig 4.5 User Similarity Matrix

Step 5: For the list of all the movies that the N neighbours

have seen except the movies that the active user has already

watched, generate a score using the Score Function.

Step 6: With the scores list arranged in descending order, pick

the top 5 movies in the list and suggest them to the users.

Fig 4.6Snapshot of the GUI displaying the recommendations

V. RESULT

In this section, we show the end-results of our system. We

successfully implemented a User-User Collaborative Filtering

Technique in a Recommendation System. The system was

tested on a Laptop running Ubuntu 16.04 LTS with an Intel i5

6200u processor and 8gb ram and 256 gb Ram with a WLAN

connection to the internet. Our testing wasdone on the

MovieLens data set with 862 unique users and 2501 movies.

Our first run gave us a recommendation with a score(u,i) =

4.25576643.

VI. CONCLUSION

In this Paper, we successfully built a Recommendation System

with User-User Collaborative Filtering Technique. The system

worked seamlessly but it faced a major issue in the form of

cold-start. The accuracy and consistency is highly dependent

on the pre-existing knowledge about the user’s preferences

and likings. So, a new user without any pre-recorded

information about him would not receive good

recommendations when compared to a user with already

existing information about his likings and preferences.

 In our future works, we plan to try different approaches

improve the model accuracy and to overcome the data sparsity

in the ratings matrix using techniques such as matrix

factorisation etc and compare the performances of the same.

We also would like to bring other aspects like genre, cast and

language as the factors of our recommendations.

ACKNOWLEDGMENT

Prajwal S et al, International Journal of Advanced Research in Computer Science, Vol 11, Special Issue I, May 2020,336-340

2nd International Conference on
Advances in Computing & Information Technology (IACIT-2020)

Date: 29-30 April 2020
Organized by School of Computing and Information Technology

Reva University, Bengaluru, India
340

This project was developed under the guidance of Prof. Anil
Kumar Ambore and with a tremendous support from the
School of C & IT at REVA University.

REFERENCES

[1] Adomavicius G., Tuzhilin A., Toward the next generation of

recommender systems: A survey of the state-of-the-art and possible
extensions. IEEE Trans. on Knowledge and Data Engineering, 2005,
17(6): 734-749

[2] J. Herlocker, J. Konstan, L. Terveen, and J. Riedl. Evaluating
collaborative filtering recommender systems. ACM Transactions on
Information Systems, 22(1):5-53.

[3] Baptise Rocca : “Introduction to Recommender Systems.”
https://towardsdatascience.com/introduction-to-recommender-systems-
6c66cf15ada.

[4] Abdur Rrahmaan Janhangeer : “Python GUI – Tkinter”.
https://www.geeksforgeeks.org/python-gui-tkinter/

[5] T. K. Quan, I. Fuyuki and H. Shinichi, "Improving Accuracy of
Recommender System by Clustering Items Based on Stability of User
Similarity," 2006 International Conference on Computational Inteligence
for Modelling Control and Automation and International Conference on
Intelligent Agents Web Technologies and International Commerce
(CIMCA'06), Sydney, NSW, 2006, pp. 61-61.

[6] N. Mustafa, A. O. Ibrahim, A. Ahmed and A. Abdullah, "Collaborative
filtering: Techniques and applications," 2017 International Conference
on Communication, Control, Computing and Electronics Engineering
(ICCCCEE), Khartoum, 2017, pp. 1-6..

[7] R. Zhang, Q. Liu, Chun-Gui, J. Wei and Huiyi-Ma, "Collaborative
Filtering for Recommender Systems," 2014 Second International
Conference on Advanced Cloud and Big Data, Huangshan, 2014, pp.
301-308.

[8] https://aihubprojects.com/movie-recommendation-system-ai-projects/
[9] https://docs.mongodb.com/manual/

https://auth.geeksforgeeks.org/user/abdurrahmaanjanhangeer/

