
Volume 2, No. 4, July-August 2011

International Journal of Advanced Research in Computer Science

CASE STUDY AND REPORTS

Available Online at www.ijarcs.info

© 2010, IJARCS All Rights Reserved 432

ISSN No. 0976-5697

Various object picking algorithms in Non Immersive Virtual World-A Report

K.Merriliance*
Lecturer in MCA Department,

Sarah Tucker College,
Tirunelveli, India.

merriliance@gmail.com

Dr M.Mohamed Sathik
Associate Professor in Computer Science Dept,

Sadakathullah Appa College,
Tirunelveli, India.

mmdsadiq@gmail.com

Abstract: This paper presents a method for picking up an indicated object in a Non Immersive Virtual environment. First the user should
indicate a target object and provides the system with a task instruction on how to get it. The system acquires geometric information about the
target object and constructs a Virtual environment model and the system finds a main point based on evaluation using the acquired information.
An important and advantageous feature of this scheme is to perform the object picking task through simple clicking operations, and the user can
execute the task without exact models of the target object and the environment being available in advance. A user study of these was performed
which revealed their characteristics and deficiencies of objects in the non immersive virtual world, and led to the development of a new class of
techniques. Object selection is a primary interaction technique which must be supported by any interactive three-dimensional virtual reality
application. Although numerous techniques exist, few have been designed to support the selection of objects in dense target environments, or the
selection of objects which are occluded from the user's viewpoint. We presented a limited understanding on how these important factors will
affect selection performance hence to realize these operations it is necessary to use interaction techniques that would allow us to accomplish
given type of interaction better and faster.

Keywords: Non Immersive Virtual Environment, object picking, Pick ray, positioning, Pick sphere.

 I. INTRODUCTION
The advance of computer graphics knowledge and

technology, itself tied to the enormous increase in
processing power and decrease in cost, together with the
development of relatively efficient and unobtrusive sensing
devices, has led to the emergence of participatory immersive
virtual environments, commonly referred to as "virtual
reality" Non-immersive virtual environment, as the name
suggests, are the least immersive implementation of VR
techniques. Using the system, the virtual environment is
viewed through a portal or window by utilizing a standard
high resolution monitor. The manipulations of virtual
objects have been proposed as special human computer
interfaces for the scientific visualization process. In the
earliest stage physical objects are tracked on the table by
using markers attached to them. The physical objects can
then be used for interactions on the table. Picking is a simple
technique for capturing which 3D object the user clicked on
with the mouse. It can be used to discover the object at any
X, Y position on the screen, when the user clicks the mouse.
Picking means objects can be selected from the Virtual
world. In a Virtual world there could be thousands of
objects. Here we have explained as how the virtual object to
be picked. The transformation of the 2D mouse position to a
3D location in the virtual world is an important process in
picking. Because computer display is really a regenerated
2D view of the underlying 3D world.

Picking the correct 3D object is to find the direction of
the picking shape and the virtual world coordinates of the
starting point. It is the process of determining which object
in the world is selected through user interaction, usually a
mouse click. Typically, picking involves the selection of a
3D object from its 2D projection on the screen by pointing
and clicking the mouse. The process involves casting a ray
into the world from a selected point on the virtual
Environment. Any objects the ray intersects after passing the
VE are potential objects for selection. A ray is a line with a

start point and a direction. Picking makes extensive use of
Bounding Volume's intersection method. The object
position follows the mouse cursor position closely, while the
object always stays in contact with other surfaces in the
scene. When the object moves in the virtual world its system
of coordinates(x, y, z) moves with it. Therefore the position
and orientation of object vertices in the object. System of
coordinate remains invariant, regardless of the object
position in the scene.

A. Object Picking
The ability to navigate through a world seen only on

your computer screen or through a special headset opens the
door for an incredible variety of experiences. It adds the
ability to navigate through a virtual environment or the
capability of picking up objects, or otherwise interacting
with objects found in the virtual environment. Now that we
have the ability to put objects in virtual world and move
around them, it would also be nice to be able to choose
which object we are focused on. One method of doing this
would be to click on the object on the screen and have the
camera refocus itself around that object. This method of
choosing an object from the screen with the mouse is called
picking. Picking is an important interaction technique in
graphics applications. Things which are inside the Virtual
Environment are known as objects. The objects computer-
generated stereo images are projected onto the surface of the
workbench. Interaction means objects in the scene can be
manipulated. we implemented operations on objects’
topology and geometry, and choosing and moving around
objects. In the Virtual world it is important that the pick
generates exact information using the accurate model and
supports the identification of topological entities such as
faces, edges and vertices. Using a mouse to select objects in
virtual world is a little tricky because the mouse gives only
2D pixel coordinates which must be some how converted to
3D coordinates. Often the third dimension brings along an
extra complexity in terms of completing the task in an

http://jmonkeyengine.org/wiki/doku.php/ray�
http://jmonkeyengine.org/wiki/doku.php/ray�
http://jmonkeyengine.org/wiki/doku.php/projection_plane�
http://jmonkeyengine.org/wiki/doku.php/boundingvolume�

K.Merriliance et al, International Journal of Advanced Research in Computer Science, 2 (4), July-August, 2011,432-436

© 2010, IJARCS All Rights Reserved 433

efficient and comfortable manner. In fact, the mouse
location on screen represents an infinite number of points in
world space which are projected on to a single point in
screen space. In a Virtual environment, there may be more
than one object under the mouse pointer when it is clicked.
Normally, the user's intention is to select the object which is
visible at this point. The ray will be compared against every
object. If more than one object is intersected, the object
nearest the viewer is selected. We may pick object within a
specific bound which can be updated dynamically
depending on changes in the view point of a user with in the
virtual world using mouse. Clicking a mouse will create an
appropriate picking bound at a 3D coordinate associated
with the current mouse position.

We would like to have a way for the user to know
which object is currently manipulating. Our basic idea is to
disable the bounding box on the old current object when the
mouse is first clicked, then enable the bounding box as soon
as we have the new object. This approach, which utilizes
other structures in the scene, typically uses a ray from the
eye point through the current pixel to identify the first
intersection point with the scene. This intersection is then
used to compute the position of the object. These behaviors
are then used to constrain objects to particular places in a
scene. A ray along the current mouse position is then used to
find the places in the scene where the constraints are
fulfilled and the object is close to the cursor position.
Therefore, we keep the pick ray connected to the object, but
gradually straighten the ray every time the movement of the
user’s hand decreases the angle to the object, whereas the
object’s position is unchanged. The first part of picking is
simply getting the mouse clicks and sending them on to our
scene. The second thing is for getting the Scene to pick all
of our objects and to write the next part of the picking
function, converting the 2D point into a 3D ray by
projecting it using an inverse matrix. It will also set the
clicked on object to be active in the scene so we can access
it and know what was clicked.

II. PICK SPHERE

Selecting an object is easy for the user to reach out until
the ray intersects the target object. An object is selected
when this box intersects the object’s bounding box. Here we
have considered the shape of the box as sphere which is
referred here as pick sphere. A pick in virtual world is
normally carried out as pick ray. The computer projects a
ray from the extended finger; if the ray intersects the object
it is captured. 2Dmouse pointer defines the ray. The
normalized ray direction that projects infinitely into the
scene is then calculated. The closest intersected object is
retrieved. In cases where the hand is used as a mouse, the
data glove serves as an input source for a real-time,
animated computer graphics model of the hand. The virtual
hand moves around in response to the user moving his or her
hand and may intersect with objects or may project a
selection ray from an extended finger.

The objective is to grab an object by pointing a finger at
it. To solve this problem, this paper presents a new system
for picking up an indicated object in a virtual environment.
Due to its extension it is easy to pick topological entities and
the transparency of the sphere renders intersections between
the model and the pick sphere obviously. First the user
should indicate a target object and provides the system with

a task instruction on how to get it. The system acquires
geometric information about the target object and constructs
a Virtual environment model and the system finds a main
point based on evaluation using the acquired information.
Because the object picking depends on the object’s shape,
situation inside the virtual environment.

Figure 1: 3D cursor and its pick sphere

It is the most basic picking shape and will pick an
object in the same way as a penetrating a ray or radiation.
Here we obtain local mouse and eye position from the view
plane to 3D coordinate. In this paper, we perform the exact
object-space-based ray-sphere intersection test in a
geometry shape by taking advantage of its geometric
processing capability. Ray is projected into the virtual world
from the position of the mouse pointer. Intersection of this
ray with the objects of the virtual world is computed. The
visual object intersecting closest to the virtual environment
is selected for interaction.

The object picking is defined as the sphere between the
user’s eye point and the cursor. This fact improves the
sphere-casting by rotating movements of the ray by simple
translations of the cursor. Selecting objects via ray-based
approaches have many ambiguities. If the ray does not hit
any object the selection is underspecified. If several objects
are intersected by the selection is over specified. Both cases
should be modified. Our goal was to find out if these
methods allow users to interact better and faster with the
virtual environment. We also wanted to discover what
problems they bring along and how we can handle them.

Figure: 2 Projection of Pick Ray in the Virtual World

A. Pick Ray
Creates a Pick Ray with origin and direction of (0, 0, 0)

and also specifies the 3D origin and a vector 3D direction.
Intersecting an Object to test for intersection of an object,
the ray needs to be compared with the bounding volume of
the object. This would necessitate applying the object's
world transforms to the bounding volumes. It is usually
more efficient to apply the inverse of the world transform to
the near and far points. Ray tracing gives some of the most

K.Merriliance et al, International Journal of Advanced Research in Computer Science, 2 (4), July-August, 2011,432-436

© 2010, IJARCS All Rights Reserved 434

realistic results of any rendering technique. Instead of
building a scene polygon by polygon, ray tracing passes a
ray from the eye through each pixel into the scene. The path
of the ray is traced to see what object is strikes first and at
which point .From this point further rays are traced to all the
light sources in the scene in order to determine how this
point is illuminated. Then the contribution to surface of each
of these rays is calculated. The view port is sub-divided by a
grid of rows and columns, the number of which is
determined by the required image resolution.

For each square on the grid, a ray is built which extends
from the eye through the centre of the square and into the
scene. This ray is tested against all objects in the scene to
determine which objects are intersected by the ray and
gives a list of points of intersection. The list is sorted and the
intersection nearest the eye is determined. This point will be
used for further processing. In order to find the point of
intersection of a ray with an object, we reverse the
transformation that created the object from a primitive and
apply that reversed transformation to the ray. Then find the
points of intersection of the transformed ray and the original
primitive. If we have a scene with many objects, for each
ray from the eye we need to check for intersections with all
objects. However each ray will usually strike a small
percentage of the objects in a scene. An extent defines a
simple area around each object which can be quickly tested
for intersections. Each object is projected onto the view
plane and the minimum bounding rectangle for each object
is calculated before ray tracing .The minimum bounding
rectangle is determined by finding the maximum and
minimum x and y co-ordinates for the virtual environment.
Each ray is then tested to see if it intersects the minimum
bounding rectangle, if it does not; the object cannot possibly
be intersected by the ray and is ignored.

III. RAY INTERSECTION TEST IN THE SPHERE

The ray tracing is the calculation of intersection
between a ray and objects in the scene. All of this equation
begins with the parametric equation for a line. A line from
the point A=(x1, y1, z1) to point B=(x2, y2, z2). The two
end points of our ray need to be converted to world
coordinates by applying the inverse of the view and
projection matrices.
Consider a Ray: Ray (t) = o +td, t>=0
Sphere: |P - C|2 - r 2 = 0

To perform a ray-sphere intersection test we need a ray
with a known point of origin O, and direction vector d. A
sphere with a known centre at a point C and a known
radius r Given the above mentioned sphere, a point P lies on
the surface of the sphere if
(P – c). (P-c)=r2 -- (1)

Given a ray with a point of origin O, and a direction
vector d
Ray (t) = o +td, t>=0
We can find the t at which the ray intersects the sphere by
setting ray (t) equal to P
(o +td-c). (o +td-c)= r2--------------------------------- (2)
To solve for t we first expand the above into a more
recognizable quadratic equation form

(d.d)t2+2(0-c).dt+(o-c).(o-c)-r2=0 or At2 + Bt + C = 0

where A = d.d ;

 B = 2(o-c).d;

C = (o-c).(0-c)-r2;

 Figure 3: Ray-Sphere Intersection

This can be solved using a standard quadratic formula.
Note that in the absence of positive, real, roots, the ray does
not intersect the sphere. In the object space of a sphere it is
centered at origin, meaning that if we first transform the ray
from world space into object space, the mathematical
solution presented above can be simplified significantly.
The following Java code is an example how the simplified
version of the ray/sphere intersection described above might
be implemented.
Public class Ray
{
float o,d,c;
Ray(float x, float y, float z)
{
o=x;
d=y;
c=z;
}
Boolean Sphereintersect(const Ray& r1, float* t)
{
 float a = dot(r1.d, r1.d);
 float b = 2 * dot((r1.o-r1.c),r1.d);
 float c = dot((r1.o-r1.c), (r1.o-r1.c)) - (r * r);
 float d = b * b - 4 * a * c;
 float dis, t0,t1,q;
 if (d < 0)
 return false;
else
 dis = sqrtf(d);
 if (b < 0)
 q = (-b - dis)/2.0;
 else
 q = (-b + dis)/2.0;
 t0 = q / a;
 t1 = c / q;
 if (t1 < 0)
 return false;
 if (t0 < 0)
 {
 t = t1;
 return true;
 }
 else
 {
 t = t0;

d

O

t

t1

r

C

K.Merriliance et al, International Journal of Advanced Research in Computer Science, 2 (4), July-August, 2011,432-436

© 2010, IJARCS All Rights Reserved 435

 return true;
 }
}
Class demo
{
Public static void main(String args[1])
{
Ray r1=new Ray();
Ray obj=new Ray(1.0,5.0,10.0);
Boolean b=r1.sphereintersect (obj,5.0);
{
System.out.println (“Intersection point=”,+b)
If (b==1)
 System.out.println (“ray intersects the sphere”);
 Else
System.out.println (“ray misses the sphere”);
}
}

If B2-4AC<0, then ray and sphere do not intersect
because the intersections are imaginary numbers .If B2-
4AC=0, then the ray intersects the sphere at one point. If
B2-4AC>0, then the ray intersects the sphere at exactly two
points Finally we can find the point of intersection then
check If the center of the sphere is inside the enlarged object
bounding box all object faces are checked. Again, the
procedure starts with enlarging the face bounding boxes by
the pick radius and checks if the cursor center is inside the
enlarged box. The vertices are checked by simply comparing
there position with the cursor position and the pick radius.

Finally, if all these checks failed, an is-inside check is
performed to see if the cursor is in the interior of an object
without intersecting any of its topological elements. The
shape of the virtual object is determined by their 3D surface,
which can be described in many the object picking depends
on the object’s shape, situation in the environments.

Figure: 4 Pick Ray test to find the depth state among visible objects.

The solutions to the quadratic equation give the time of
intersection. If this gives two real solutions, then the ray has
intersected the sphere twice. If only one solution is found,
then the ray is a tangent to the sphere. If no real solutions
are found, then the ray does not intersect the sphere. Once
the intersection times are known, they can be inserted into
the original equation of the ray to calculate the co-ordinates
of intersection. A sphere is a common shape to use and is
centered on the object and has the smallest radius which
allows it to enclose the entire object. To determine if a ray
passes through an object, first test for intersections with its
bounding sphere. This is usually a lot simpler than testing
for intersections with complex objects. However, some
objects, are not suitable for sphere bounding, also,

calculating the minimum bounding sphere can be difficult.
The object space based ray-sphere intersection test is
implemented in a highly parallelized geometry shader.
When we applying the occlusion queries, only a small
number of objects are rendered in subsequent layers, which
accelerates the picking efficiency.
The algorithm is as follows
Input: Cursor point and Virtual scene
Output: Ray intersection point, object id
Step 1: Compute the picking ray intersection point and the

direction in the view coordinate system.
Step 2: Set the depth states to false. The bounding boxes

consist of the visible objects. We pass a query for
each object.

Step 3: The bounding boxes of all sub-objects whose
corresponding query returns true. Again we issue a
Boolean query for each sub-object during the
pass. Then set the depth state to true.

Step 4: Consider the actual spheres whose queries have
been returns true then pass query for all sphere
shaped objects.

Step 5: If the occlusion query returns true, the picking
information returns the one-pixel-sized target data;
otherwise, no object is picked. Sphere

 outside the view ray is discarded, and only the
 closest sphere is needed.
Step 6: If the query passes, the sphere with the minimal

distance from the eye-point is picked and its
intersection information can be retrieved from
the target.

After this algorithm performs the object-space-based
ray intersection test in the geometry shader, output a point
with picking information if the sphere is intersected. The x
and y-components of the intersection point are set to 0, and
the z-component is assigned as the depth value of the point.

Output the picking information directly in the pixel
shader. When the user clicks the mouse, the screen
coordinates of the cursor are transformed through the
projection matrix into a view-space ray that goes from the
eye-point through the point clicked on the screen and into
the screen. A 3D picking problem can be reduced to a
problem of determining the object that intersects at a given
point the eye-ray fired from the center of projection through
the pixel’s center into the un projected scene. This problem
can be solved by determining all the objects that intersect
the ray and performing point-in-solid inclusion tests to find
out which object contains the specified 3D point. It may
reduce the problem to a one-dimensional problem by
determining the intersection intervals along the eye-ray for
each object.

Then, the object that is pointed at can be obtained with
a point-in-segment inclusion test this is because when no
bounding box intersects with the picking ray, our approach
will not render the actual spheres and return false directly.
It may reduce the problem to a one-dimensional problem by
determining the intersection intervals along the eye-ray for
each object. Then, the object that is pointed at can be
obtained with a point-in-segment inclusion test. For
handling a sphere shape, the problem is reduced to the
computation of the nearest point on the shape, most of
which require potentially time consuming point-and-shape
or the ray-and-shape intersection algorithms. It allows

K.Merriliance et al, International Journal of Advanced Research in Computer Science, 2 (4), July-August, 2011,432-436

© 2010, IJARCS All Rights Reserved 436

accurate fine positioning in 3D-space.Reduced to a simple
rounding of the device position to a point of a specified grid.

A. Advantages
a. Cost of performing intersection test will be totally

application-independent and very low.
b. Selection Supports both visible and occluded target.
c. Accurate fine positioning in 3D space
d. It is possible to minimize the costly nearest point

calculations.
e. Results can be easy reused if these have already

acquired at once.
f. No additional information on the object and

environment are needed.
g. Ray intersection test is performed through searching the

best solution from many other feasible solutions.
When we analysis these concepts in the view of

selection and cost of performing an intersection test (see
Fig:5), picking using Ray intersection test algorithm is
always greater than the average cost among other
algorithms.

Figure 5. Average cost of performing an intersection test

IV. CONCLUSION

We have presented an efficient algorithm for intersection
tests between a picking ray and multiple objects in non
immersive environment. Furthermore, the Analytical Report
provides some new areas for future developments of
usability evaluation methods. We discussed an
implementation of the proposed algorithms, based on these
guidelines, we present new forms of the pick ray casting and
3D picking using sphere shape algorithm techniques, which
are augmented with positioning, selection and the average
cost of performing intersection test feedback, to support
selection within the Virtual environments. We have
demonstrated the performance of the three methods, with
retrieval results. Furthermore, the results showed that our

new techniques adequately allowed users to select targets
which were not visible from their initial viewpoint. In this
paper, we perform the exact object-space-based ray-sphere
intersection test in a geometry shader by taking advantage of
its sphere shaped object. The overall approach makes no
assumptions about the object's motion and can be directly
applied to all sphere models. This paper has given a good
starting point for designers and can be directly applied to all
sphere models.

V. REFERENCES

[1] Cleber S.Ughini, Fausto R.Blahco “3D interaction
Technique for accurate object selection in Immersive
Environment”. Proceedings of the 1997 symposium on
Interactive 3D

[2] Foley, J.D., van Dam, A., Feiner, S.K., and Hughes, J.F.
Computer Graphics: Principles and Practice. Addison-
Wesley, 1990.

[3] Sebastian Knodel.” Navidget for Virtual Environments”
Proceedings of the 2008 ACM symposium on Virtual
reality software and technology.

[4] Williams, G., McDowell, I. E. and M. T. Bolas. Human
scale interaction for virtual model displays: A clear case
for real tools. In Proc. Of The Engineering Reality of
Virtual Reality.

[5] Wu, 2002. shin - ting, marcel abrantes, daniel tost,
and harlen costa batagelo ”picking for 3d objects”.

[6] Wu, X. 1992. A linear time simple bounding volume
algorithm. In Graphics Gems III, David Kirk, Ed.,
chapter VI, pages 301–306.Academic Press, San Diego,
CA.

[7] Antony Sted.”Evaluating Effectiveness of Interactions
technique across immersive virtual Environment
Systems”. October 2005, Vol. 14, No. 5, Pages 511-527
Posted Online March 13, 2006.

[8] Jesper Kjeldskov.”Combining Interaction technique and
Display types of Virtual Reality”. J Kjeldskov -
Proceedings of OzCHI, 2001 - cs.aau.dk

[9] Cleber S.Ughini, Fausto R.Blahco “3D interaction
Technique for accurate object selection in Immersive
Environment”. Proceedings of the 1997 symposium on
Interactive 3D.

[10] Foley, J.D., van Dam, A., Feiner, S.K., and Hughes, J.F.
Computer Graphics: Principles and Practice.Addison-
Wesley, 1990.

[11] Neider, J., Davis, T., and Woo, M. Open GL
Programming Guide: The Official Guide to Learning
OpenGL, release 1. Addison-Wesley, 1993.

[12]Mine.”Virtual Environment Interaction Technique”
1995.

