
Volume 2, No. 4, July-August 2011

International Journal of Advanced Research in Computer Science

RESEARCH PAPER

Available Online at www.ijarcs.info

© 2010, IJARCS All Rights Reserved 501

ISSN No. 0976-5697

A Study & Emergence To Implement The DISSP Using Netbed Software

G. Satya Vani*
Qualification: M.Tech

Sphoorthy Engineering college
Hyderabad,India

bsvani2009@gmail.com

G. Varun Reddy
Qualification: M.Tech

Sphoorthy Engineering college
Hyderabad,India

 Varung.mca@gmail.com

N.K. Vishal Babu
Qualification: M.Tech

Sphoorthy Engineering college
Hyderabad,India

Krishnavishal22@gmail.com

K. Srujan Raju

Designation: Head of Department
Sphoorthy Engineering college

Hyderabad,India
ksrujanraju@gmail.com

K. Vekatesh Sharma
Designation: Head of Department

TKR college of Engineering
Hyderabad,India

venkatesh_k123@rediffmail.com

Abstract—In this paper, we consider the problem that lack of an infrastructure for globally processing stream data from sensor networks and
making this data available to millions of users in real-time. To build such a system, we need to implement by using net testbed software which is
used for only distributed networks are Emulab and Planetlab it is feasible to guarantee perfect data processing at a global scale. Instead, the
degradation of result quality due to failure and resource should be made explicit to users. The objective is to design, implement dependable
internet scale stream processing by emulab, deployment with planetlab.Our article describes the security issues intrusion, attacks also the
comparison between testbed software that have the best efficiency to design the proposed system.

Keywords – Internet dependability, intrusion, anomaly, malicious Packets, softwares.

I. INTRODUCTION

Internet is completely unreliable. How can we deal with
that, the rapid growth of the world wide web and increased
reliance on the web for almost every aspect of man's life
today, Internet reliability is perhaps the most important
challenge that researchers and practitioners face today. The
real growth of the internet lies in bandwidth-intensive web
content, rich media, and web and IP-based applications.
There are many challenges facing internet reliability as
businesses more of their critical functions on-line, and as
consumer entertainment shifts to the internet from other
broadcast media. Leighton (2009) considered the most
serious reliability challenge as the ownership of the
heterogeneous internet infrastructure by many competing
entities with little incentive to expand capacity.

Complicated tasks cannot be executed on the computing
machine in an accepted interval time. They must be divided
into small sub-tasks. The sub-tasks can be executed either in
the expensive multiprocessors or in the distributed systems.
The latter choice is preferred due to better ratio of cost per
performance. On the other hand, in most cases because of
some constraints on multiprocessor systems or the natural
distribution of tasks, the only optimum choice is employing
the distributed systems [1].

Two primary descriptions for the fault tolerance of a
distributed system is data integrity and high availability.
A. Data integrity relates to whether a system protects its

configuration and other data from becoming corrupted

in such a way that would cause a loss of data or a
disruption of service. A simple example of a data
integrity failure is a data replication system in which the
replicas allow inconsistent changes to be made. More
complex examples include cases where the system
becomes confused and begins acting erratically because
of an inability to cope with behavior in the network.
Distributed systems require extreme levels of data
integrity, otherwise business continuation is put at
serious risk and significant amounts of money can be
lost. High availability relates to whether a system will
be able to continue operating in the presence of one or
more failures, either in the network or in the machine.
By examining the different types of failures that can be
sustained and how systems monitor and respond to
them, it is possible to determine the fraction of time a
system will be operational. For example, a system with
five nines availability (0.99999) will be operational
99999/100000 of the time, thus, being able to
compensate very quickly for issues as they arise in a
network.

II. DISTRIBUTED SYSTEMS

In distributed systems data is not stored at a single
location, nor is data processing performed by only one
computer. Such interconnected systems are far more
susceptible to failures than non distributed ones: if only one
of the many computers fails, or if a single network link is
down, the system as a whole may become unavailable. The
most commonly used approach to improve availability is to

G. Satya Vani et al, International Journal of Advanced Research in Computer Science, 2 (4), July-August, 2011, 501-504

© 2010, IJARCS All Rights Reserved 502

replicate services and data to several locations in the
network, making at least one copy available while failures
are present. Intrusion detection systems (IDS) process large
amounts of monitoring data. As an example, a host-based
IDS examines log files on a computer (or host) in order to
detect suspicious activities. A network-based IDS, on the
other hand, searches network monitoring data for harmful
packets or packet flows

A. Types Of Intrusion Detection System

a. Network Intrusion Detection:
Network –based intrusion detection system[NIDS]][16]

that tries to detect malicious activity such as denial of
service attacks, port scan or even attempts to crack into
computer by monitoring network traffic. NIDS does this by
reading all incoming packets and trying to find number of
TCP connection requests to a very large number of different
ports are observed, one could assume that there is someone
conducting a port scan of some or all of the computers in the
network . It mostly tries to detect incoming shell codes in
the same manner that an ordinary intrusion detection system
does. Often inspecting valuable information about an
ongoing intrusion can be learned from outgoing or local
traffic and also work with other systems as well, for
example update some firewalls blacklist with the IP address
of computers used by suspected crackers.

b. Host-based Intrusion Detection:
Host-based intrusion detection system [HIDS] [16]

monitors parts of the dynamic behavior and the state of
computer system, dynamically inspects the network packets.
A HIDS could also check that appropriate regions of
memory have not been modified, for example- the system-
call table comes to mind for Linux and various v table
structures in Microsoft windows. For each object in question
usually remember its attributes (permissions, size,
modifications dates) and create a checksum of some kind (
an MD5, SHA1 hash or similar) for the contents, if any, this
information gets stored in a secure database for later
comparison (checksum-database). At installation time-
whenever any of the monitored objects change legitimately-
a HIDS must initialize its checksum-database by scanning
the relevant objects. Persons in charge of computer security
need to control this process tightly in order to prevent
intruders making un-authorized changes to the database.

c. Protocol-based Intrusion Detection System:
Protocol-based intrusion detection system [PIDS][16]

typically installed on a web server, monitor the dynamic
behavior and state of the protocol, typically consists of
system or agent that would sit at the front end of a server,
monitoring the HTTP protocol stream. Because it
understands the HTTP protocol relative to the web
server/system it is trying to protect it can offer grater
protection than less in-depth techniques such as filtering by
IP address or port number alone, however this greater
protection comes at the cost of increased computing on the
web server and analyzing the communication between a
connected device and the system it is protecting.

d. Application Protocol Intrusion Detection System:
Application protocol based intrusion detection system

[APIDS][16] will monitor the dynamic behavior and state of
the protocol and typically consists of a system or agent that

would sit between a process, or group of servers, monitoring
and analyzing the application protocol between two
connected devices.

B. Malicious Packet
The malicious packets of the attack report analyzes the

packets that the Guard module dropped and sent back to the
source in a verification attempt (replied). The report
classifies the packets by their type (spoofed or malformed)
and by the Guard module function that handled them (filter
types or the rate limiter).
Types of malicious packets
a. Rate Limiter: Packets that were dropped because they

exceeded the rate of traffic defined by the rate limit
parameter of the user filters and the zone rate-limit
command as allowed to be injected to the zone.

b. Flex-Content Filters: Packets that were dropped by the
flex-content filters.

c. User Filters: Packets that were dropped by the user
filters.

d. Dynamic Filters: Packets that were dropped by the
dynamic filters.

C. Reliable Networks
Distributed computing systems can be made reliable,

motivated by our review of servers used in web settings, but
seeking to generalize beyond these specific cases to include
future servers that may be introduced by developers of new
classes of critical distributed computing applications.
Communications technologies, but we do review persistent
storage technologies based on the transactional computing
model, particularly as it has been generalized to apply to
objects in distributed environments.

III. PROBLEM DOMAIN

Real-time data stream play vital role an increasingly
important on the Internet. One of the causes for this is the
proliferation of geographically-distributed stream data
sources such as sensor networks, scientific instruments,
pervasive computing environments and web feeds connected
to the Internet. Potentially millions of users world-wide
want to take advantage of the availability of this data.
Therefore they require a convenient way to process real-
time stream data at a global scale through applications that
perform Internet-scale stream processing (ISSP). Similar to
the ease of relational queries in DBMS, stream-processing
systems allow users to access and manipulate distributed
data streams through declarative queries. However, the scale
of an Internet-wide system poses substantial challenges
when it comes to providing a dependable service. Any such
system must gracefully handle the failure of network links
and processing hosts while managing a large pool of CPU
and network resources.

For example, astronomers want to detect transient sky
events, such as gamma-ray bursts, in real-time. To detect
such events, they must correlate real-time image streams
from geographically-distributed radio telescopes. These
events only last for minutes and, after an event has been
detected, instruments need to be re-aligned to focus on on-
going occurrences. The left figure below shows an ISSP
system, executing a query that takes images from radio
telescopes, processes them in real-time and delivers data
about transient anomalies to two astronomers. The

G. Satya Vani et al, International Journal of Advanced Research in Computer Science, 2 (4), July-August, 2011, 501-504

© 2010, IJARCS All Rights Reserved 503

processing is done by a distributed set of hosts (or data
centres). The logical structure of the query implementing the
application is shown on the right. The system must ensure
that image data is transported reliably between processing
sites. However, some data loss is acceptable, as long as no
transient sky events are missed as a consequence.

Figure.1. DISSP system as an overlay network, executing a query

Figure 2: DISSP query for detection of transient sky objects

The DISSP project investigates how to

build dependable Internet-scale stream-processing systems
for interconnecting tomorrow's pervasive sensor systems
and global scientific experiments. We argue that Internet-
scale stream processing needs new models for achieving
dependability. Achieving dependability in this context is a
significant challenge for several reasons: (1) failure will be
the common case in the system. Due to its size, a fraction of
Internet paths and hosts will be unavailable at any time; (2)
the real-time nature of the data means that there is little time
for recovery from failure; (3) a shared infrastructure, such as
an ISSP system, will experience high utilization.
Consequently the additional resource demand during
recovery can overload the system. The traditional wisdom of
substantially over-provisioning a system to compensate for
failure is infeasible in such a shared, federated platform.

Therefore we believe that we need to depart from the
hard dependability guarantees of traditional DBMSs and
today's stream-processing systems. Ensuring no tuple loss at
all times may be feasible within a single data centre, but we
cannot hope to achieve this at an Internet-scale. Instead, we
explore dependability guarantees that are driven by
application requirements. Many sensing applications can
cope with a controlled degradation of result quality. While
result quality is reduced, the system provides constant
feedback to users on the achieved level of service. Feedback

is expressed in a domain-specific way, e.g., by notifying a
scientific user about the reduction in detection confidence of
events of interest. This feedback also drives an adaptive
fault-tolerance mechanism allowing the DISSP system to
strategise about resource allocation in order to minimise the
reduction in service quality of a maximum number of users.

IV. DISSP SYSTEM IMPLEMENTATION IS
DEVELOP BY USING TESTBED SOFTWARE

EMULAB AND PLANETLAB

A. Netbed and Emulab
Netbed is a open research platform that intends to

integrate the three experimental environments mentioned
above, in order to streamline the evaluation of network
scenarios and free of charge for authorized users. Netbed
was founded in 1999 when a prototype for a large cluster of
computers, Emulab, was compiled. After a time, it was
made public to remote researchers via a web interface.

Emulab was primarily intended to be an emulation
platform, but there is no restriction against running a
simulation on a machine in the test bed as well. Over time,
Netbed has evolved and now also an experimental wide area
network is available. This network consists of computers in
different parts of the world connected to the Internet,
especially dedicated to research activities and running a
special configuration. This network offers the ability to use
a live network under controlled forms [3]. Netbed is
intended to be an experimental platform available for users
from all over the world. The intention is to let researchers,
research groups as well as companies use the platform for
performing their own experiments [2]. The ambition of the
founders1 was also to integrate the three test approaches, for
computer networking research. Three goals were set up
when designing the platform:
“Ease of use”. By using a web interface and also a Java GUI
for users to allocate
resources and to configure and run experiments
· “Control”. An authorized user gets full control of the nodes
in the allocated
network during test performance
· “Realism”. By offering both emulation, simulation and
wide area facilities

Figure 3 An overview of the Netbed architecture

Netbed consists of two parts. The first part is a number
of computer clusters. Originally there was only one cluster
called Emulab, situated at the University of Utah (168 PCs)
[6]. Over time the cluster was cloned and today there exist

G. Satya Vani et al, International Journal of Advanced Research in Computer Science, 2 (4), July-August, 2011, 501-504

© 2010, IJARCS All Rights Reserved 504

two other clusters controlled by Netbed. One of them is
situated at the University of Kentucky (48 PCs) [5] and the
other at Georgia Institute of Technology (40 PCs) [4]. These
clusters are configured in the same way as the Emulab
cluster and are controlled by Netbed staff. Emulab is the
cluster primarily intended for external users, but also the
cluster in Kentucky may be used by externals, although it is
used primarily as a teaching aid. The cluster in Georgia is
used only for classes and for research purposes, not for
external users. The second part of Netbed is a distributed
system of different test beds and separate nodes contributed
by different organizations. This system is dynamic and
nodes may be added and withdrawn dynamically from the
system by the owners. All nodes in this network run a
special UNIX configuration. This network is called
Planetlab [30] . The scope of this thesis includes evaluation
of only one part of Netbed, the public cluster of computers
situated at the University of Utah, Emulab. Therefore,
subsequent parts of this thesis concerning Netbed will focus
on Emulab.

B. Planetlab:
Planetlab is a global research network that supports the

development of new network services on demand
customizable, is an overlay-based test bed and distributed
test-lab for planetary-scale services. It supports continual
innovation, evolution, NSF, DARPA & Planetlab
Consortium Structure of Planetlab: categorized into four that
are
Site: A site is a physical location where planetlab nodes are
located
Node: A node is a dedicated server that runs components of
planetlab services.
Sliver: A set of allocated resources on a single planetlab
node.
Slice: A slice is a set of allocated resources distributed
across planetlab.
To run a task on planetlab need to follow the steps below:

Discover and allocate resources
 Distribute files

Configure environment
Monitor application throughout execution
Usually done on application basis

Figure: 4 Model for Planet Lab

C. Comparative Study:
The aim DISSP system is to investigate and develop a

novel reliable model that includes user-perceived quality of
query results and provides feedback to users on quality
degration due to unmask able network host failures. Emulab
and planetlab are software requirements for distributed

etworks which works on the testbed. The objective of
DISSP is to design, implement and evaluate a scalable
prototype system for dependable internet scale stream
Processing using controlled experiments on the
Emulab network testbed and deploy an open global shared
platform for DISSP as a public service on the planetlab
 research network and thus to facilitate and encourage the
use of DISSP across research communities.

V. CONCLUSION

In this work dependability internet-scale stream
processing, which play vital role in the future global sensor
web. We also believe that the methods for handling real-
time stream data from sensor networks will provide useful
input to efforts on next generation Internet designs.
Proposed system based on the internet, also concentrates on
the security issues to detect the intrusions and attacks. This
work shows the importance of the testbed software useful
for distributed systems. As a next step we intend to research
our ideas with the detailed implementation of DISSP.

VI. ACKNOWLEDGMENT

The Successful Completion of any task would be
incomplete without expression of simple gratitude to the
people who encouraged our work. Though words are not
enough to express the sense of gratitude towards everyone
who directly or indirectly helped in this task.

I thankful to this Organization Sphoorthy Engineering
College, which provided good facilities to accomplish my
work and would like to sincerely thank to our Principal,
HOD, guide and faculty members for giving great support,
valuable suggestions and guidance in every aspect of my
work.

VII. REFERNCES

[1] Tanenbaum, A. S., Modern Operating Systems, Prentice
Hall, 1992.

[2] Leprau J., et al. An Emulation Testbed for Networks
and Distributed Systems

 http://www.cs.utah.edu/flux/testbed-docs/testbed-intel-
jun01.htm September 2003

[3] White B., Lepreau J., Stoller L.,Ricci R., Guruprasad S.,
Newbold M., Hibler M., Barb C.and Joglekar A.. An
Integrated Experimental Environment for Distributed
Systems and Networks. 5th Symposium on Operating
Systems Design & Implementation, Boston, US,
December 2002

[4] Emulab at Georgia Institute of Technology
http://www.netlab.cc.gatech.edu/ September 2003

[5] Emulab at University of Kentucky
http://www.uky.emulab.net/ September 2003

[6] Emulab at University of Utah http://www.emulab.net/
September 2003

[7] FreeBSD implementing SCTP http://www.freeBSD.org
November 2004

[8] Linux 2.4 auto-tuning/caching
 http://www.csm.ornl.gov/~dunigan/net100/auto.html

February 2004
[9] Linux Kernel SCTP

 http://sourceforge.net/projects/lksctp September 2003
[10] Planetlab http://www.planet-lab.org/ September 2003

http://www.netlab.cc.gatech.edu/�
http://www.csm.ornl.gov/~dunigan/net100/auto.html�

