
DOI: http://dx.doi.org/10.26483/ijarcs.v10i6.6485
Volume 10, No. 6, November-December 2019

International Journal of Advanced Research in Computer Science

RESEARCH PAPER

Available Online at www.ijarcs.info

© 2015-19, IJARCS All Rights Reserved 29

ISSN No. 0976-5697 ISSN No. 0976-5697

VECTOR OPERATION ON NODES OF PERFECT DIFERENCE NETWORK

USING LOGICAL OPERATORS

Rakesh Kumar Katare
1
, Shrinivash Premikar

1
, Neha Singh

1
, Sunil Tiwar

1
, Charvi K

2
,

Department of Computer Science, Awadhesh Pratap Singh University, Rewa (MP)
 1

Jawaharlal Nehru College of Technology, Ratahra, Rewa (MP)
 2

Abstract: In this paper we are exploring the bitwise connection between the nodes of a interconnection network. We are taking

PDN as a model, First of all we are converting the interconnection network into its equivalent connectivity matrix .Then

Row/Column vectors of connectivity matrix is used to present the value of a particular node of interconnection network which is

shown in Figure 1 as state diagram of PDN which is δ=2. Each bitwise vector shows connectivity with another node in position of

bit 1.The vectors also shows the mathematical property of PDN, it means the value of vector of a node in the connectivity matrix

preserves the mathematical property of the topology. We assume that each node is connected to itself as a self loop in connectivity

matrix. Therefore the diagonal matrix is always 1. The presence of 1’s in a vector (Excluding the self loop) shows degree of the

node .The connectivity and its complexity will be explored by using logical operators between the nodes of a PDN so that we can

develop algorithms for automatic switching between two nodes automatically. In the due course of study we found many patterns

of binary/logical relationship between the nodes which will be discussed in our future discussion in this paper.

Keywords: PDN, PDS, Interconnection Network, Connectivity Matrix.

1. INTRODUCTION

The Perfect difference set is discussed by J Singer

in 1938 [11]. The formulation was in this terms of points

and lines in a finite projective plane [1,2,3]. The Perfect

Difference Set (PDS) considered for being develop into a

interconnect network mainly through works of Parhami ,

Behrooz and Rakov, M.A [4,5]. In their, Perfect Difference

Network (PDN) interconnection, they have shown that PDN

interconnection scheme is best possible in the sense that it

can cover the nodes with smallest node degree with network

diameter 2. They have compared PDNs and some of their

derivatives to interconnection networks with similar cost

and performance with hypercube and its other variants[4].

Perfect difference networks are a robust high-performance

interconnection network for parallel and distributed systems.

A more exhaustive comparative study of perfect difference

network and hypercube was done by Katare et al.,[6,10],

based on topological structured properties. Topological

properties of perfect difference network compared with the

corresponding properties of hypercube by Katare et. al,[10].

In this technique, sparse linear system was implemented. It

was proved that access function or routing function to map

data on hypercube contains topological properties. The

study of circuits based on the architecture of PDN is further

taken forward by Katare et.al, july-25, 2013[12] in their

research work on study of link utilization of PDN and

Hypercube. They have shown that the circuits formed in

PDN are a combination of odd and even length. Adjacency

matrix of n x n of PDN presented to study the link

utilization and topological Properties[12]. In this paper we

are converting PDN architecture in to equivalent Data

structure for mapping into itself so that transition between

nodes can be determined properly. The row vector which is

equivalence to column vector can be used for logical

operation for determining the binary relationship between

nodes. The fabric nature of architecture can be properly

defined for Development of algorithm to study the

connectivity and Complexity of the architecture[5].

1.1 Perfect Difference Set

A set {s0,s1,……sδ) of δ+ 1 integers having the property

that their δ
2
+ δ differences,0≤ i≠ j≤ δ , are congruent

modulo δ
2
+ δ+ 1, to the integers 1,2,……., δ

2
+ δ in some

order is a perfect difference set of order δ . Perfect

Difference Sets[11] are sometimes also called simple

difference sets, given that they correspond to the special δ=

1 as a case of difference sets for which each of the possible

differences is formed in exactly δ ways, where δ is a prime

or power of prime and n= δ
2
+ δ+ 1 and (Si-Sj) = (δ

2
+ δ) mod

δ
2
+ δ+ 1.

1.2 Perfect Difference Network

The Perfect Difference set of each node of the PDN can be

evaluated by the remainder theorem i.e.

(N= R+ D * Q)

Where N= Numerator, R=Remainder, D= Denominator and

Q=Quotient

The above equation can be written as

Integer = (Si-Sj) +(δ
2
+ δ+ 1)*1

Where integer is a member of the set (1, 2,…, δ
2
+ δ) and Si-

Sj is numerator or the difference set.

So we can write as-

(Si-Sj) = (integer) mod δ
2
+ δ+ 1[12]

In the due case of study we are assuming that a

node is connected to itself therefore the node is self

connected in PDN. The following is the connectivity

relation between nodes of a PDN.

 i ± 1 (0<i< δ
2
 + δ)

 i ± Sj (mod n) for 2 ≤ j ≤ δ

Rakesh Kumar Katare et al, International Journal of Advanced Research in Computer Science, 10 (6), Nov-Dec 2019,29-39

© 2015-19, IJARCS All Rights Reserved 30

 This formulation is based on the definition of the

PDS {S0, S1, .. , Sδ} There are n= δ
2
 + δ+ 1 nodes,

numbered 0 to n- 1,the direct mapping between nodes is

represented by i ± 1, which gives cordal ring pattern in

network flow (i±sj (mod n), for 2 ≤ j ≤ δ) means for each

link from node i to node j,[3,6] the reverse link from node j

to node i is also exists, hence the network can be drawn as

an undirected graph.

Fig.1: PDN having δ=2

Now the structural relation between nodes of a PDN can be

connecting method in the following manner, where we are

assuming that self loop for each node is considered for

interconnection between processor & Peripheral of one

node.

1.3 Connectivity Matrix

In connectivity matrix if there is a connection between two

nodes then its represented as 1 otherwise it is 0.

Symbolically connection matrix for PDN we have

 1 i ± 1(0<i< δ
2
 + δ) (if node is

connected to itself or to another

node)

CMij =

otherwise

 0

The connectivity matrix derived is always a square matrix

since number of nodes for both columns and rows are equal.

This defined the relation of nodes to itself.

Table 1 represents the connectivity matrix for PDN with

δ=2.

 0 1 2 3 4 5 6

0 1 1 0 1 1 0 1

1 1 1 1 0 1 1 0

2 0 1 1 1 0 1 1

3 1 0 1 1 1 0 1

4 1 1 0 1 1 1 0

5 0 1 1 0 1 1 1

6 1 0 1 1 0 1 1

Table 1: Connectivity matrix of nodes in a PDN having

δ=2

In this matrix Zero (0) represent that there is no information

flow between the nodes and One (1) represent the

information flow between the nodes. Such as node 0 can

communicate with node 2 via node 1 or node 3 so in Table 1

(0, 2) contains 0.Similary node 0 can communicate directly

with node 1, so in the connectivity matrix in table (0, 1)

contains 1.

1.4 The explanation of connectivity of as per vector of

each node

Perfect Difference Networks based on normal form of

PDSs are special types of cordal rings. In the terminology of

cordal rings, the links connecting consecutive nodes i-1 and

i+1 are ring links, while those that connect nonconsecutive

nodes i and i±s j(mod n), for 2 ≤ j ≤ δ , are skip links or

chords. The link connecting nodes i and i+sj (mod n), for 2j

≤ δ is a forward skip link of node i and a backward skip link

of node i+sj (mod n).

 Node 0 is connected with node (0,1,3,4,6)

 Node 1 is connected with node (0,1,2,4,5)

 Node 2 is connected with node (1,2,3,5,6)

 Node 3 is connected with node (1,2,3,4,6)

 Node 4 is connected with node (0,1,3,4,5)

 Node 5 is connected with node (1,2,4,5,6)

 Node 6 is connected with node (0,2,3,5,6)

 Table 1 Shown the connectivity of nodes of a PDN

each row of the matrix where “1” shows the connectivity of

nodes in “0” shows no connectivity between nodes is a

vector used for logical operation for the investigation of the

inter node connectivity of the network. Row and Column

vectors are same which shows the symmetry of connectivity

between processors. Here we are assuming & considering

the vector of a connectivity matrix as the value of a node,

for example the vector of 0 node is (1101101) so this value

is the value of node zero.

Now we are explaining the connectivity of each node as

follows.

Node Number 0 1 2 3 4 5 6

0 {1,1,0,1,1,0,1}

1 {1,1,1,0,1,1,0}

2 {0,1,1,1,0,1,1}

3 {1,0,1,1,1,0,1}

4 {1,1,0,1,1,1,0}

5 {0,1,1,0,1,1,1}

6 {1,0,1,1,0,1,1}

Table 2: Connectivity between processors in an

interconnection network .

Now we are converting connectivity Matrix of

PDN into its equivalent state diagram of PDN,

interconnection network have been studied researcher for

reduce the connectivity & complexity of a set of nodes with

particular architecture (PDN). Study of logical operation

helps network flow to reaches from node i to any other

Rakesh Kumar Katare et al, International Journal of Advanced Research in Computer Science, 10 (6), Nov-Dec 2019,29-39

© 2015-19, IJARCS All Rights Reserved 31

nodes in minimum node connectivity. Here we present the

some relation and show how the information flow may

possible in the PDN when, one of node, connection fails.

The logical AND operation between row vector of adjacent

matrix of PDN gives the set of possible path for information

network flow.

the row '0' 1101101

the row '3' 1011101

1 1 0 1 1 0 1

1 0 1 1 1 0 1

1 0 0 1 1 0 1

0 X X 3 4 X 6

Here (0,3) in express the direct connection & (0,4)

& (0,6) in a alternate path for network flow. alternate path

is useful when one of node connection in PDN architecture

is failure, this relation also offer the benefits of full

connectivity at a fault occurrence and a louver cost.

Fig.2 state diagram of PDN with δ=2.

Theorem: Vector of node 0 shows the connectivity between

the nodes of PDN say (1101101) 0 Possible connectivity of

this node is with 0, 1,3,4,6 if the connected node has value

1.

Proof:-The vector representation of each node shows the

node connectivity as per perfect difference in Prefect

Difference Network. For example vector of node 0 is

(1101101) the presence of 1 shows the connectivity and 0

shows the disconnectivity.

(0, 1, 3, 4, 6) nodes are connected in PDS {0, ±1, ±3}.

The logical operation AND shows the connectivity of two

nodes for example:

 Node 0

 Node 1

Node (0, 1, 4) are connected to each other or in other words

intersection of node 0 & node 1 is {0, 1, 4} both the

operation are same as per the assumption of Discrete math's

between Set Theory and mathematical logic.

 Similarly other logical operations are OR, EX-OR,

implication, Bi-Implication which can also be performed for

finding the binary relation between the nodes of a PDN.

Nodes 0123456 OR EX-OR Implication Bi-Implication

0 1101101
1111111 0011011 1111111 1111111

1 1110110

2. Explanation of bit representation of Nodes

In this section we are trying to establish the bitwise

logical operation on the combination of vectors for find out

the binary relation between the nodes, so that the binary

relation can be proved for the study of connectivity and

complexity of the flow of information in this architecture.

2.1 Structural Pattern of architecture

The operation “AND” gives the common nodes

between two nodes where as OR gives the one of the nodes

connectivity or both way connectivity. The equivalence

gives both ways connectivity .on the other hand the

implication gives validity of consequent. The Ex-OR gives

the two way switching.

The following tables show the binary logical

relation between the nodes.

Node AND Possible

Connectivity

Patterns of

PDN

connectivity

OR Possible

Connectivity

patterns of

PDN

connectivity

EX-OR Possible

Connectivity

Patterns of

PDN

connectivity

0 1101101 0,1,3,4,6 5 1101101 0,1,3,4,6 5 1101101 no nodes

are

connected

0

0 1101101 1101101 1101101

 1101101 1101101 0000000

0 1101101 0,1,4 3 1101101 all nodes

are

connected

7 1101101 2,3,5,6 4

1 1110110 1110110 1110110

 1100100 1111111 0011011

0,1,2,3,4,5,6

1,1,0,1,1,0,1

AND

1101101

1110110

1100100

Rakesh Kumar Katare et al, International Journal of Advanced Research in Computer Science, 10 (6), Nov-Dec 2019,29-39

© 2015-19, IJARCS All Rights Reserved 32

0 1101101 1,3,6 3 1101101 all nodes

are

connected

7 1101101 0,2,4,5 4

2 0111011 0111011 0111011

 1001101 1111111 1010110

0 1101101 0,3,4,6 4 1101101 0,1,2,3,4,6 6 1101101 1,2 2

3 1011101 1011101 1011101

 1001101 1111101 0110000

0 1101101 0,1,3,4 4 1101101 0,1,3,4,5,6 6 1101101 5,6 2

4 1101110 1101110 1101110

 1101100 1101111 0000011

0 1101101 1,4,6 3 1101101 all nodes

are

connected

7 1101101 0,2,3,5 4

5 0110111 0110111 0110111

 100101 1111111 1011010

0 1101101 0,3,6 3 1101101 all nodes

are

connected

7 1101101 1,2,4,5 4

6 1011011 1011011 1011011

 1001001 1111111 0110110

1 1110110 0,1,2,4,5 5 1110110 0,1,2,4,5 5 1110110 no nodes

are

connected

0

1 1110110 1110110 1110110

 1110110 1110110 0000000

1 1110110 1,2,5 3 1110110 all nodes

are

connected

7 1110110 0,3,4,6 4

2 0111011 0111011 0111011

 0110010 1111111 1001101

1 1110110 0,2,4 3 1110110 all nodes

are

connected

7 1110110 1,3,5,6 4

3 1011101 1011101 1011101

 1010100 1111111 0101011

1 1110110 0,1,4,5 4 1110110 0,1,2,3,4,5 6 1110110 2,3 2

4 1101110 1101110 1101110

 1100110 1111110 0011000

1 1110110 1,2,4,5 4 1110110 0,1,2,4,5,6 6 1110110 0,6 2

5 0110111 0110111 0110111

 0110110 1110111 1000001

1

1110110

0,2,5

3

1110110

all nodes

are

connected

7

1110110

1,3,4,6

4

6 1011011 1011011 1011011

 1010010 1111111 0101101

2

0111011

1,2,3,5,6

5

0111011

1,2,3,5,6

5

0111011

no nodes

are

connected

0

2 0111011 0111011 0111011

 0111011 0111011 0000000

2 0111011 2,3,6 3 0111011 all nodes

are

connected

7 0111011 0,1,4,5 4

3 1011101 1011101 1011101

 0011001 1111111 1100110

2 0111011 1,3,5 3 0111011 all nodes

are

connected

7 0111011 0,2,4,6 4

4 1101110 1101110 1101110

 0101010 1111111 1010101

2 0111011 1,2,5,6 4 0111011 1,2,3,4,5,6 6 0111011 3,4 2

5 0110111 0110111 0110111

Rakesh Kumar Katare et al, International Journal of Advanced Research in Computer Science, 10 (6), Nov-Dec 2019,29-39

© 2015-19, IJARCS All Rights Reserved 33

 0110011 0111111 0001100

2 0111011 2,3,5,6 4 0111011 0,1,2,3,5,6 6 0111011 0,1 2

6 1011011 1011011 1011011

 0011011 1111011 1100000

3 1011101 0,2,3,4,6 5 1011101 0,2,3,4,6 5 1011101 no nodes

are

connected

0

3 1011101 1011101 1011101

 1011101 1011101 0000000

3 1011101 0,3,4 3 1011101 all nodes

are

connected

7 1011101 1,2,5,6 4

4 1101110 1101110 1101110

 1001100 1111111 0110011

3 1011101 2,4,6 3 1011101 all nodes

are

connected

7 1011101 0,1,4,5 4

5 0110111 0110111 0110111

 0010101 1111111 1101010

3 1011101 0,2,3,6 4 1011101 0,2,3,4,5,6 6 1011101 4,5 2

6 1011011 1011011 1011011

 1011001 1011111 0000110

4 1101110 0,1,3,4,5 5 1101110 0,1,3,4,5 5 1101110 no nodes

are

connected

0

4 1101110 1101110 1101110

 1101110 1101110 0000000

4 1101110 1,4,5 3 1101110 all nodes

are

connected

7 1101110 0,2,3,6 4

5 0110111 0110111 0110111

 0100110 1111111 1011001

4 1101110 0,3,5 3 1101110 all nodes

are

connected

7 1101110 1,2,4,6 4

6 1011011 1011011 1011011

 1001010 1111111 0110101

5 0110111 1,2,4,5,6 5 0110111 1,2,4,5,6 5 0110111 no nodes

are

connected

0

5 0110111 0110111 0110111

 0110111 0110111 0000000

5 0110111 2,5,6 3 0110111 all nodes

are

connected

7 0110111 0,1,3,4 4

6 1011011 1011011 1011011

 0010011 1111111 1101100

6 1011011 0,2,3,5,6 5 1011011 0,2,3,5,6 5 1011011 no nodes

are

connected

0

6 1011011 1011011 1011011

 1011011 1011011 0000000

Table-3 logical operation with AND, OR, EX-OR

Node Implication

Possible

Connectivity

Patterns of PDN

connectivity

Bi-

Implication

Possible

Connectivity

Patterns of PDN

connectivity

0 1101101

all nodes are

connected 7

1101101

all nodes are

connected 7

0 1101101 1101101

 1111111 1111111

0 1101101

0,1,2,4,5 5

1101101

0,1,4 3

1 1110110 1110110

 1110110 1100100

0 1101101

1,2,3,5,6 5

1101101

1,3,6 3 2 0111011 0111011

Rakesh Kumar Katare et al, International Journal of Advanced Research in Computer Science, 10 (6), Nov-Dec 2019,29-39

© 2015-19, IJARCS All Rights Reserved 34

 0111011 0101001

0 1101101

0,2,3,4,5,6 6

1101101

0,3,4,5,6 5

3 1011101 1011101

 1011111 1001111

0 1101101

0,1,2,3,4,5 6

1101101

0,1,2,3,4 5

4 1101110 1101110

 1111110 1111100

0 1101101

1,2,4,5,6 5

1101101

1,4,6 3

5 0110111 0110111

 0110111 0100101

0 1101101

0,2,3,5,6 5

1101101

0,3,6 3

6 1011011 1011011

 1011011 1001001

1 1110110

all nodes are

connected 7

1110110

all nodes are

connected 7

1 1110110 1110110

 1111111 1111111

1 1110110

1,2,3,5,6 5

1110110

1,2,5 3

2 0111011 0111011

 0111011 0110010

1 1110110

0,2,3,4,6 5

1110110

0,2,4

3

3 1011101 1011101

1011101 1010100

1 1110110

0,1,3,4,5,6 6

1110110

]0,1,4,5,6

5

4 1101110 1101110

 1101111 1100111

1 1110110

1,2,3,4,5,6 6

1110110

1,2,3,4,5 5

5 0110111 0110111

 0111111 0111110

1 1110110

0,2,3,5,6 5

1110110

0,2,5 3

6 1011011 1011011

 1011011 1010010

2 0111011

all nodes are

connected

7

0111011

all nodes are

connected 7

2 0111011 0111011

 1111111 1111111

2 0111011

0,2,3,4,6

5

0111011

2,3,6

3

3 1011101 1011101

 1011101 0011001

2 0111011

0,1,3,4,5 5

0111011

1,3,5 3

4 1101110 1101110

 1101110 0101010

2 0111011

0,1,2,4,5,6 6

0111011

0,1,2,5,6 5

5 0110111 0110111

 1110111 1110011

2 0111011

0,2,3,4,5,6 6

0111011

2,3,4,5,6 5

6 1011011 1011011

 1011111 0011111

Rakesh Kumar Katare et al, International Journal of Advanced Research in Computer Science, 10 (6), Nov-Dec 2019,29-39

© 2015-19, IJARCS All Rights Reserved 35

Table-3(Continue) logical operation with Implication and Bi-Implication

2.2 Finding Connectivity links, Missing link between nodes of PDN as per PDS = {-3, -1, 0, 1, 3}

Based on PDS(0,±1,±3) For AND logical operation

A B connected nodes A+0 A+1 A-1 A+3 A-3 B+0 B+1 B-1 B+3 B-3

0 0 0,1,3,4,6 0 1 6 3 4 0 1 6 4 0

0 1 0,1,4 0 1 * * 4 1 * 0 4 *

0 2 1,3,6 0 1 6 3 * * 3 1 * 6

0 3 0,3,4,6 0 6 * 4 3 3 * 4 6 0

0 4 0,1,3,4 0 1 * 3 4 4 * 4 0 1

0 5 1,4,6 * 1 6 * 4 * 6 4 1 *

0 6 0,3,6 0 6 3 * 6 0 * * 3

1 1 0,1,2,4,5 1 2 0 4 5 1 2 0 4 5

1 2 1,2,5 1 2 * * 5 2 * 1 5 *

1 3 0,2,4 * 2 0 4 * * 4 2 * 0

1 4 0,1,4,5 1 * 0 4 5 4 5 * * 1

1 5 1,2,4,5 1 2 * 4 5 5 * 4 1 2

3 1011101

all nodes are

connected 7

1011101

all nodes are

connected 7

3 1011101 1011101

 1111111 1111111

3 1011101

0,1,3,4,5 5

1011101

0,3,4 3

4 1101110 1101110

 1101110 1001100

3 1011101

0,2,4,5,6 5

1011101

2,4,6 3

5 0110111 0110111

 1010111 0010101

3 1011101

0,1,2,3,5,6 6

1011101

0,1,2,3,6 5

6 1011011 1011011

 1111011 1111001

4 1101110

all nodes are

connected 7

1101110

all nodes are

connected 7

4 1101110 1101110

 1111111 1111111

4 1101110

1,2,4,5,6 5

1101110

1,4,5 3

5 0110111 0110111

 0110111 0100110

4 1101110

0,2,3,5,6 5

1101110

0,3,5

3

6 1011011 1011011

 1011011 1001010

5 0110111

all nodes are

connected

7

0110111

all nodes are

connected 7

5 0110111 0110111

 1111111 1111111

5 0110111

0,2,3,4,6 5

0110111

2,4,6 3

6 1011011 1011011

 1011101 0010101

6 1011011

all nodes are

connected 7

1011011

all nodes are

connected 7

6 1011011 1011011

 1111111 1111111

Rakesh Kumar Katare et al, International Journal of Advanced Research in Computer Science, 10 (6), Nov-Dec 2019,29-39

© 2015-19, IJARCS All Rights Reserved 36

1 6 0,2,5 1 2 0 * 5 * 0 5 2 *

2 2 1,2,3,5,6 2 3 1 5 6 2 3 1 5 6

2 3 2,3,6 2 3 * * 6 3 2 6 *

2 4 1,3,5 2 3 1 5 * * 5 3 * 1

2 5 1,2,5,6 2 * 1 5 6 5 6 * 1 2

2 6 2,3,5,6 2 3 * 5 6 6 * 5 2 3

3 3 0,2,3,4,6 3 4 2 6 0 3 4 2 6 0

3 4 0,3,4 3 4 * * 0 4 * 3 0 *

3 5 2,4,6 * 4 2 6 * * 6 4 * 2

3 6 0,2,3,6 3 * 2 6 0 6 0 2 3

4 4 0,1,3,4,5 4 5 3 0 1 4 5 3 0 1

4 5 1,4,5 4 5 * * 1 5 * 4 1 *

4 6 0,3,5 * 5 3 0 1 * 0 5 * 3

5 5 1,2,4,5,6 5 6 4 1 2 5 6 4 1 2

5 6 2,5,6 5 * 6 2 * 6 5 * 2 *

6 6 0,2,3,5,6 6 5 0 3 2 6 5 0 3 2

Based on PDS(0,±1,±3) For OR logical operation

A B connected nodes A+0 A+1 A-1 A+3 A-3 B+0 B+1 B-1 B+3 B-3

0 0 0,1,3,4,6 0 1 6 3 4 0 1 6 4 0

0 1 0,1,2,3,4,5,6 0 1 6 3 4 1 2 0 4 5

0 2 0,1,2,3,4,5,6 0 1 6 3 4 2 3 1 5 6

0 3 0,1,2,3,4,6 0 6 1 4 3 3 2 4 6 0

0 4 0,1,3,4,5,6 0 1 6 3 4 4 5 3 0 1

0 5 0,1,2,3,4,5,6 0 1 6 3 4 5 6 4 1 2

0 6 0,1,2,3,4,5,6 0 6 3 4 6 0 5 2 3

1 1 0,1,2,4,5 1 2 0 4 5 1 2 0 4 5

1 2 0,1,2,3,4,5,6 1 2 0 4 5 2 3 1 5 6

1 3 0,1,2,3,4,5,6 1 2 0 4 5 3 4 2 6 0

1 4 0,1,2,3,4,5 1 2 0 4 5 4 5 3 0 1

1 5 0,1,2,4,5,6 1 2 0 4 5 5 6 4 1 2

1 6 0,1,2,3,4,5,6 1 2 0 4 5 6 0 5 2 3

2 2 1,2,3,5,6 2 3 1 5 6 2 3 1 5 6

2 3 0,1,2,3,4,5,6 2 3 1 5 6 3 4 2 6 0

2 4 0,1,2,3,4,5,6 2 3 1 5 6 4 5 3 0 1

2 5 1,2,3,4,5,6 2 3 1 5 6 5 6 4 1 2

2 6 0,1,2,3,5,6 2 3 1 5 6 6 0 5 2 3

3 3 0,2,3,4,6 3 4 2 6 0 3 4 2 6 0

3 4 0,1,2,3,4,5,6 3 4 2 6 0 4 5 3 0 1

3 5 0,1,2,3,4,5,6 3 4 2 6 0 5 6 4 1 2

3 6 0,2,3,4,5,6 3 4 2 6 0 6 0 5 2 3

4 4 0,1,3,4,5 4 5 3 0 1 4 5 3 0 1

4 5 0,1,2,3,4,5,6 4 5 3 0 1 5 6 4 1 2

4 6 0,1,2,3,4,5,6 4 5 3 0 1 6 0 5 2 3

5 5 1,2,4,5,6 5 6 4 1 2 5 6 4 1 2

5 6 0,1,2,3,4,5,6 5 4 6 2 1 6 5 0 2 3

Rakesh Kumar Katare et al, International Journal of Advanced Research in Computer Science, 10 (6), Nov-Dec 2019,29-39

© 2015-19, IJARCS All Rights Reserved 37

6 6 0,2,3,5,6 6 5 0 3 2 6 5 0 3 2

Based on PDS(0,±1,±3) For EX-OR logical operation

A B connected nodes A+0 A+1 A-1 A+3 A-3 B+0 B+1 B-1 B+3 B-3

0 0 Not connected * * * * * * * * * *

0 1 2,3,5,6 * * 6 3 * * 2 * * 5

0 2 0,2,4,5 0 * * * 4 2 * * 5 *

0 3 1,2 * 1 * * * * * 2 * *

0 4 5,6 * * 6 * * * 5 * * *

0 5 0,2,3,5 0 * * 3 * 5 * * * 2

0 6 1,2,4,5 * 1 * * 4 * * 5 2 *

1 1 Not connected * * * * * * * * * *

1 2 0,3,4,6 * * 0 4 * * 3 * * 6

1 3 1,3,5,6 1 * * * 5 3 * * 6 *

1 4 2,3 * 2 * * * * * 3 * *

1 5 0,6 * * 0 * * * 6 * * *

1 6 1,3,4,6 1 * * 4 * 6 * * * 3

2 2 Not connected * * * * * * * * * *

2 3 0,1,4,5 * * 1 5 * * 4 * * 0

2 4 0,2,4,6 2 * * * 6 4 * * 0 *

2 5 3,4 * 3 * * * * * 4 * *

2 6 0,1 * * 1 * * * 0 * * *

3 3 Not connected * * * * * * * * * *

3 4 1,2,5,6 * * 2 6 * * 5 * * 1

3 5 0,1,4,5 * 4 * * 0 5 * 4 1 *

3 6 4,5 * 4 * * * * * 5 * *

4 4 Not connected * * * * * * * * * *

4 5 0,2,3,6 * * 3 0 * * 6 * * 2

4 6 1,2,4,6 4 * * 1 6 6 * * 2 *

5 5 Not connected * * * * * * * * * *

5 6 0,1,3,4 * 4 * * 1 * * 0 * 3

6 6 Not connected * * * * * * * * * *

Based on PDS(0,±1,±3) For Bi-implication logical operation

A B connected nodes A+0 A+1 A-1 A+3 A-3 B+0 B+1 B-1 B+3 B-3

0 0 0,1,2,3,4,5,6 0 1 6 3 4 0 1 6 3 4

0 1 0,1,4 0 1 * * 4 1 * 0 4 *

0 2 1,3,6 * 1 6 3 * 2 3 1 5 6

0 3 0,3,4,5,6 0 * 6 3 4 3 4 * 6 0

0 4 0,1,2,3,4 0 1 * 3 4 4 5 3 0 1

0 5 1,4,6 * 1 6 * 4 5 6 4 1 2

0 6 0,3,6 0 * 6 3 * 6 0 5 2 3

1 1 0,1,2,3,4,5,6 0 1 6 3 4 0 1 6 3 4

1 2 1,2,5 1 2 * * 5 2 * 1 5 *

1 3 0,2,4 * 2 0 4 * * 4 2 * 0

Rakesh Kumar Katare et al, International Journal of Advanced Research in Computer Science, 10 (6), Nov-Dec 2019,29-39

© 2015-19, IJARCS All Rights Reserved 38

1 4 0,1,4,5,6 1 * 0 4 5 4 5 * 0 1

1 5 1,2,4,5,6 1 2 * 4 5 5 6 4 1 2

1 6 0,2,5 * 2 0 * 5 6 0 5 2 3

2 2 0,1,2,3,4,5,6 0 1 6 3 4 0 1 6 3 4

2 3 2,3,6 2 3 * * 6 3 4 2 6 0

2 4 1,3,5 * 3 1 5 * * 5 3 0 1

2 5 0,1,2,5,6 2 * 1 5 6 5 6 * 1 2

2 6 2,3,4,5,6 2 3 * 5 6 6 * 5 3 2

3 3 0,1,2,3,4,5,6 0 1 6 3 4 0 1 6 3 4

3 4 0,3,4 3 4 * * 0 4 * 3 * 0

3 5 2,4,6 * 4 2 6 * * 6 4 2 *

3 6 0,1,2,3,6 3 * 2 6 0 6 0 * 3 2

4 4 0,1,2,3,4,5,6 0 1 6 3 4 0 1 6 3 4

4 5 1,4,5 4 5 * * 1 5 * 4 * 1

4 6 0,3,5 * 5 3 0 * * 0 5 3 *

5 5 0,1,2,3,4,5,6 0 1 6 3 4 0 1 6 3 4

5 6 2,4,6 * 6 4 * 2 6 * * * 2

6 6 0,1,2,3,4,5,6 0 1 6 3 4 0 1 6 3 4

3. ALGORITHMIC DEVELOPMENT

3.1 The Algorithm setup for AND logical operation for

PDN δ=2

 Step1- set node i and node j

 Step 2- for i= 0 to n

 For j=0 to n

 Val= node i ˄ node j(bitwise)

 j++

 Print val

 I++

 Step 3- stop

The output of the algorithm will generate the following

pattern 5,33,44,33. Algorithm for the other logical operation

can be given similar way by replacing logical symbol.

4. CONCLUSION

We are using logical operators between vectors of

connectivity matrix to study connectivity & complexity of

network. We found that binary relation between nodes is

well defined with network flow. The principle of Boolean

Algebra may holds in interconnection network. The

following are the patterns of the bit of the vector of a

interconnection network.

1. AND operations of the Vectors of a PDN-5,33,44,33

2. EX-OR operation of the Vectors of PDN-5,77,66,77

3. OR operations of the Vectors of a PDN-0,44,22,44

4. Implication operation of the Vectors of a PDN-

7,55,66,55

5. Bi-Implication operations of the Vectors of a PDN -

7,33,55,33

5. REFERENCES

[1] C. Wu and T. Feng. Tutorial, interconnection networks for

parallel and distributed processing. Tutorial Texts Series.

IEEE Computer Society Press, 1984.

[2] www.interconnection of networks, elements of parallel

computing and architecture [Last seen 22-11-2018]

[3] Ms J.Nandagaoli and Dr. J.W. Bakal, “Study of Perfect

Difference Network”, International journal of Computer

Science”, Vol 3, Issue 6 July 2014.

[4] Behrooz Parhami, Mikhail Rakov “Application of Perfect

Difference Sets to the Design of Efficient and Robust

Interconnection Networks”.

[5] S.Tiwari and R.K.Katare, “A Study of fabric of Architecture

using Structural Pattern and Relation”, “International

Journal of Latest Technology in Engineering and

Management and Applied Science”, Vol 4, Issue 09,Sep

2015.

[6] S.Tiwari, R.K.Katare,V. Sharma and C.M.Tiwari, “ Study of

Geometrical Structure of Perfect Difference Network”, “

International Journal of Advanced Research in Computer

and Communication Engineering”, Vol5,Issue3,March

2016.

[7] Ms J.Nandagaoli and Dr. J.W. Bakal, “Study of Perfect

Difference Network”, International journal of Computer

Science”, Vol 3, Issue 6 July 2014.

[8] J. Beiriger, W. Johnson, H. Bivens et al., “Constructing the

ASCI Grid,” In: 9th IEEE Symposium on High

Performance Distributed Computing, IEEE Press, New

York, 2000, pp. 193 - 200.

[9] Agarwal, A. and Agarwal, A. (2011). The Security Risks

Associated with Cloud Computing. International Journal of

Computer Applications in Engineering Sciences, 1 (Special

Issue on CNS), 257-259.

[10] Katare R K and Chaudhary N S, “Study of topological

property of interconnection networks and its mapping to

Sparse Matrix model” International journal, 2009.

http://www.interconnection/

Rakesh Kumar Katare et al, International Journal of Advanced Research in Computer Science, 10 (6), Nov-Dec 2019,29-39

© 2015-19, IJARCS All Rights Reserved 39

[11] Singer J. “A theorm in Finite Projective Geometry and Some

Apllications to Number Theory” Thrans. American

Mathematical Society,Vol.43,pp.377-385,1938.

[12] Katare,R.K.,Chaudari,N.S., Mugal,S.A.,Verma,S.K., Imran,

S. Raina,R.R. ”Study of link Utilization of Perfect

Difference Network and Hypercube “Conference

on”FECS”,the world congress in Computer

Science,Computer Engineering and Applied

Computing,Las Vegas,Nevada,USA,July -25,2013

