
Volume 2, No. 4, July-August 2011 

International Journal of Advanced Research in Computer Science 

RESEARCH PAPER 

Available Online at www.ijarcs.info 

© 2010, IJARCS All Rights Reserved                         603 

An Architecture Insensitive Approach for measuring the Quality of Software 
Modularization 

Vikas Verma* 
M.Tech Scholar,  

CSE Department, U.I.E.T., Kurukshetra University, 
Kurukshetra, India 

vik.ver86@gmail.com 

Sona Malhotra 
Assistant Professor,  
CSE Department,  

U.I.E.T., Kurukshetra University,  
Kurukshetra, India

Abstract: Today most of the software’s designed by a user follow the concept of object orientation or the modularization. Software 
Modularization is more vast term that includes the concept of procedural, object based and objects oriented languages. The notion of 
modularization uses different concepts like use of classes, objects, procedures, functions etc. The complete software modularization concept is 
divided in three  main components i) Use of API ii) Use of Non API iii) Use of shared variables. In this paper, a tool based representation is 
proposed where a graphical view is available to select the software project to perform all kind of modularization metrics on it, including 
cohesion, coupling and interface complexity etc. 
 
Keywords: OOS, MII, APIU, API, Non API , NC, IDI. 
 

I. INTRODUCTION 

Modularization refers to the division of software into 
subunits. These subunits in a programming language can be 
described as a macro, sub-routine, procedure, module and 
function. A module is a collection of data structure and 
functions that together offer a well defined task. 
Modularization is used in software due to these reasons: 
modularization provides abstraction, modularization allows 
multiple programmers to work on a problem, modularization 
allows you to reuse your work, and modularization makes it 
easier to identify structures. 

Software modularization is the reorganization of the 
software system as a set of modules with well defined APIs, 
sticking to the set of modularity principles. A module can be 
used in different aspects like a function, procedure, class, 
package, library or the component. The most common use of 
software modularization is code reusability. Other then this, 
code reusability gives the better appearance to a program. 

 
Figure 1 Example of Modularization 

Figure1 shows modularization with an example. It 
consists of nine classes distributed over three packages. A 
package represents an entity that contains only classes. 

Every class related to other classes through a set of 
dependencies. A dependency might be either method call, 
class access or class inheritance. Every dependency is either 
internal if it is related to two classes belonging to the same 
package, or external if not. Figure 1.1 shows dependencies 
between package and classes. The dotted arrow symbol 
denote the package internal dependency and package 
external dependency and solid symbol denote the inter 
package connection. 

II. EXISTING SYSTEM 

Till now a lot of work is already done on the same 
concept of software modularization. But still there are some 
flaws while working with it. Most of the available system 
provide modularization for a specific software type i.e. 
respective of object based, object oriented etc. There also 
exist some systems that work on the concept of object 
orientation. But there is no such approach that can work all 
kind of software modularization including the object based, 
procedural and object oriented software systems. Theoretical 
validation implies conformance to a set of agreed upon 
principles.  

III. PROPOSED SYSTEM 

In this paper, a tool based solution is proposed, i.e. 
Code analyzer, which measures the quality of 
modularizations of an object oriented software system 
(OOS). It uses any java software code as input. It computes 
the quality of modularization and gives output in graphical 
form. Code analyzer uses a set of four object oriented 
software metrics. These metrics are coupling based 
structural metrics which provides various measure of the 
function call interchange through the API of the module in 
relation to the overall function-call interchange. These 
metrics are given here module interaction index (MII), Non 
–API function closeness index (NC), API function usage 
index (APIU), and Implicit dependency Index (IDI). 

A. Module Interaction Index: 



Vikas Verma et al, International Journal of Advanced Research in Computer Science, 2 (4), July-August, 2011, 603-606 

© 2010, IJARCS All Rights Reserved                         604 

This metric calculates how effectively a module’s API 
functions are used by the other modules in the system. 

Assume that a module m has n functions{ }nff ...1 , of 
which the n1 API functions are given by the 

subset{ }a
n

a ff 11 ... . Also assume that the system S has 
modules. Santonu Sarkar, et.al [1] express 

Module Interaction Index (MII) for a given modules and for 
the entire software system S by: 

( ) { } ( )
( )mK

fKextfffa
mMII

ext

aa
n

a
11 ....∈∑

=
 

= 0, when no external calls made to m, 

( ) ( )∑ =
=

M

i imMII
M

SMII
1

1
. 

MII (m) = )(
)(}..........{

mKext
faKextfafaaf ∈∑

 

B. Non-API Function Closedness Index: 
Here the function calls from the point of view of non-

API functions are analyzed. The module encapsulation 
principles P2 also require minimization of non-API-based 
inter-module call traffic. Ideally, the non-API functions of a 
module should not expose themselves to the external world. 
In reality, however, a module may exist in a semi 
modularized state where there remain some residual inter-
module function calls outside the API’s. (This is especially 
true of large legacy systems that have been partially 
modularized.) In this intermediate state, there may exist 
functions that participate in both inter-module and intra-
module call traffic. The extent of this traffic is measured 
using a metric that we call “Non-API Function Closedness 

Index,” or NC. Let 
a

mF '  and 
na

mF ' represent the set of all 
functions, the API functions, and the non-API functions, 

respectively, in module m. Ideally,
na

m
a

mm FFF += . But 
since, in reality, we may not be able to conclusively 
categorize a function as an API function or as a non-API 
function, this constraint would not be obeyed. The deviation 
from this constraint is measured by the metric [1]. 

( )
||||

||
a

mm

na
m

FF
FmNC
−

=
 

 = 0 if there are no non – API functions,  

( ) ( )∑ =
−=

M

i imNC
M

SNC
1

1
  

C. API Function Usage Index: 
This index determines what fraction of the API 

functions exposed by a module is being used by the other 
modules. When a big, monolithic module presents a large 
and versatile collection of API functions offering many 
different services, any one of the other modules may not 
need all of its services. That is, any single other module may 
end up using only a small part of the API. The intent of this 
index is to discourage the formation of such large, 
monolithic modules offering services of disparate nature and 
encourage modules that offer specific functionalities. 
Suppose that m has n API functions and let us say that 

jn
number of API functions is called by another 

module jm
. Also assume that there are k modules 

kmm ....1 that call one or more of the API functions of 
module m. An API function usage index has been 
formulated in the following manner [1]. 

  
( )

kn

n
mAPIU

k

j j

*
1∑ ==

 
   = 0 if n = 0, 

( ) ( )∑ =
= apiuM

i i
apiu

mAPIU
M

SAPIU
1

1

, 

D. Implicit Dependency Index: 
An insidious form of dependency between modules 

comes into existence when a function in one module writes 
to a global variable that is read by a function in another 
module. The same thing can happen if a function in one 
module writes to a file whose contents are important to the 
execution of another function in a different module. And the 
same thing happens when modules interact with one another 
through database files. Such inter-module dependencies are 
referred as implicit dependencies.  

Detecting implicit dependencies often requires a 
dynamic runtime analysis of the software. Such analysis is 
time consuming and difficult to carry out for complex 
business applications, especially applications that run into 
millions of lines of code and that involve business scenarios 
that can run into thousands, each potentially creating a 
different implicit dependency between the modules. Here, 
we propose a simple static-analysis-based metric to capture 
such dependencies. This metric, which is  called the Implicit 
Dependency Index (IDI), is constructed by recording for 
each module the number of functions that write to global 
entities (such as variables, files, databases), with the 
specifications that such global entities are accessed by 
functions in other modules. The larger this count is in 
relation to the size of the inter-module traffic consisting of 
explicit function calls, the greater the insidiousness of 
implicit dependencies. 

For each module mi, the notation 
( ) ,,, jimmD jig ≠

is 
used to denote the number of dependencies created when a 
function in mi writes to a global entity that is subsequently 

accessed by some function in jm
let

( ) ,,, jimmD jig ≠
 

denote the number of explicit calls made by all the functions 

in mi to any of the functions in jm
.The larger gD

is in 

relation to jD
, the worse the state of the software system. 

Therefore the metric is defined as: 

( ) ( ) ( )
( ) ( ) ( )( )∑
∑

+
=

∈

∈

jfjgmCmj

jfmCmj

mmDmmD
mmD

mIDI
,,

,

 
  = 1 when C (m) =θ, 

( ) ( )∑ =
=

M

i imIDI
M

SIDI
1

1
 

Santonu Sarkar, et.al [1] explained that the leaf nodes of 
the directory hierarchy of the original source code to be the 
most fine-grained functional modules. All the files (and 
functions within) inside a leaf level directory were 



Vikas Verma et al, International Journal of Advanced Research in Computer Science, 2 (4), July-August, 2011, 603-606 

© 2010, IJARCS All Rights Reserved                         605 

considered to belong to a single module. In this manner, all 
leaf level directories formed the module set for the software. 
After that we apply Coupling-based Structural Metrics as 
follows [1]. 

IV. MODULAR DESCRIPTION OF CODE 
ANALYZER 

The modular description of the code analyzer is given 
here below, it shows the functionality of the tool: 

a. List of Modules 
b. Getting input 
c. Code Parsing. 
d. Finding Application metadata. 
e. Storing into Database. 
f. Applying Metrics. 
g. Graphical Representation. 

 

 
Figure 2: UML diagram of the proposed System 

This uml diagram represents step by step working of the 
Code Analyzer. The Java Net Beans IDE 6.8 is used to run 
the code analyzer tool. 

It accepts the coding as input, then the module parsing 
is done on the given coding. Once modules are identified 
then the metrics factors are computed to obtain the API and 
Non-API functions and the shared data. The computed 
information is stored in database. The metrics calculations 
are performed using the formulae given above. Finally the 
result in graphical form is displayed in the Code Analyzer 
Window. 

V. RESULTS 

 
Figure3 The operation of Code Analyzer 

The implementation of the Code analyzer can be 
illustrated using an example, 
Example: 
class Student 
{ 
int rollno; 
void getrollno(int r) 
{ 
        rollno=r; 
} 
void showrollno() 
{ 
        System.out.println("Rollno="+rollno); 
} 
} 
class Test extends Student 
{ 
float part1,part2; 
void getmarks(float m1,float m2) 
    { 
        part1=m1; 
        part2=m2; 
   } 
void showmarks() 
    { 
        System.out.println("Marks1="+part1); 
        System.out.println("Marks2="+part2); 
    } 
} 
interface Sports 
{ 
float wt=6.0f; 
void show(); 
} 
class Result extends Test implements Sports 
{ 
float total; 
public void show() 
{ 
        System.out.println("Sports weightage ="+wt); 
 } 
void display() 
{ 
        total=part1+part2+wt; 
        showrollno(); 



Vikas Verma et al, International Journal of Advanced Research in Computer Science, 2 (4), July-August, 2011, 603-606 

© 2010, IJARCS All Rights Reserved                         606 

        showmarks(); 
        show(); 
        System.out.println("Total Obtain Marks="+total); 
 
 } 
 } 
public class Main { 
public static void main(String[] args) 
{ 
Result r1=new Result(); 
r1.getrollno(101); 
r1.getmarks(55.0f,85.25f); 
r1.display();  
} 
} 

Corresponding this example code, the output is 
generated by Code Analyzer, which is shown in the figure 
below: 

 
Figure 4.  Output corresponding to the example 1 

In this output corresponding the example1, we have 
defined few classes and the interfaces to achieve the 
modularization. In this application no separate libraries 
being used because of this the API level is very low. The 
above application gives the modularization up the level of 
inheritance and the interfacing because of this 
modularization index is better. 

VI. CONCLUSION AND EXTENSION 

The proposed system is capable to estimate the software 
quality for any software system irrespective to the software 
architecture. It works for all kind of software systems 
including the object based system, object oriented systems, 
procedural system, open source software system etc. The 
basic complexity estimated are the functional metrics, 
interface complexity etc.The proposed work provides a 
conceptual and practical framework for the measurement of 
various attributes like inheritance, polymorphism, coupling, 
cohesion, and depth of inheritance etc. and their significance 
in the development and maintenance of object-oriented 
systems. The most common use of software modularization 

is code reusability. The code reusability is responsible for 
enhancing the quality of the software and also it gives the 
better appearance to a program. 

A. Future Work: 
An estimation of the s/w quality is done based on the 

concept of s/w modularization .In this research extension in 
term to test individual component used in an application, 
and use of the component based testing when different 
component are being used to get the code and object 
reusability can also be applied.  

VII. REFERENCES: 

[1] Santonu Sarkar, Girish Maskeri Rama, and Avinash C.kak 
“API-Based and Information-Theoretic metrics for Measuring 
the Quality of Software Modularization”, IEEE Trans.on 
Software Eng., Vol.33, No.1 January 2007. 

[2] Kaner Cem, Senior Member, IEEE, and Walter P. Bond, 
“Software Engineering Metrics: What Do They Measure and 
How Do We Know?”10th International Software Metrics 
Symposium, 2004. 

[3] E.B. Allen, T.M. Khoshgoftaar, and Y. Chen, “Measuring 
Coupling and Cohesion of Software Modules: An 
Information- Theory Approach,” Proc. Seventh Int’l Software 
Metrics Symp. (METRICS ’01), pp. 124-134, 2001. 

[4] Abreu, F. B. and R. Carapuca, 'Candidate Metrics for Object-
Oriented Software within a Taxonomy Framework', J. of 
Systems & Software,  26, pp87-96,  

[5] Abreu, F. B. and W. Melo. 'Evaluating the impact of object-
oriented design on software quality', in Proc. 3rd International 
Software Metrics symposium.  Berlin, Germany: IEEE 
Computer Society Press,  

[6] Achee, B. L. and D. L. Carver. 'Evaluating the quality of 
reverse engineered object-oriented designs', in Proc. 2006 
IEEE Aerospace Conference. Proceedings.  IEEE, New York, 
USA. 

[7] Ammann, M. H. and R. D. Cameron. 'Measuring program 
structure with inter-module metrics', in Proc. Eighteenth 
Annual International Computer Software and Applications 
Conference (Compsac 94).  IEEE Comput. Soc. Press, Los 
Alamitos, CA, USA, 1994. 

[8] Jasmine K.S., and Vasandha R., “DRE - A Quality Metric For 
Component Based Software Products”, World Academy Of 
Science, Engineering And Technology 34, 2007, Pages 48-51. 

[9] Kaner Cem, Senior Member, IEEE, and Walter P. Bond, 
“Software Engineering Metrics: What Do They Measure and 
How Do We Know?”10th International Software Metrics 
Symposium, 2004. 

[10] Ammann, M. H. and R. D. Cameron. 'Measuring program 
structure with inter-module metrics', in Proc. Eighteenth 
Annual International Computer Software and Applications 
Conference (Compsac 94).  IEEE Comput. Soc. Press, Los 
Alamitos, CA, USA, 1994. 

 

 

 

 


