
Volume 2, No. 4, July-August 2011

International Journal of Advanced Research in Computer Science

RESEARCH PAPER

Available Online at www.ijarcs.info

© 2010, IJARCS All Rights Reserved 273

Simulator to Calculate Test Efforts by Using Reusability of Code

Princy Garg
dept. of Computer Science & Application

Kaithal, India
garg.princy9@gmail.com

Abstract: In computer science reusability is segment of source code that can be used again to add new functionalities with slight or no
modification in a software. Software Testing is the process of executing a program or system with the intent of finding error. So,Software testing
is any activity aimed at evaluating an attribute or capability of a program or system and determining that it meets its required results vIn This
paper we use the concept of estimation of software testing efforts based on test case point analysis [TPA] as a fundamental project estimation
measure. We also discuss The concept of function point analysis[FPA]technique.In this paper, simulator will calculate the testing efforts with
and without reusability. To achieve all these goal ,we implement the simulator in high level language. Our results show that the software testing
efforts becomes less in case of using TPA technique with reusability as compared to TPA technique without reusing the software.

Keywords: FPA, TPA, White Box, Black Box

I. INTRODUCTION

Development of software has initiated the new role of
software testing. At the beginning of software products
development the majority of the testing was performed by
the developer himself due to the simplicity of the product.
As the complexity of software products has increased, the
role of all parts in the software development process has
been modified including with the role and importance of the
testing process[5]. Besides code, other technical artifacts
(design, requirements, testing) and management artifacts
(such as plans and processes) have also been reused. Reuse
in software engineering resulted in reduction of
development and maintenance time, effort, and in improved
software quality.

II. TESTING TECHNIQUES

There are basically two techniques of testing
A. White Box testing
B. Black Box testing

Black Box testing::It is also known as functional
testing. In this testing technique, the internal workings of the
item being tested are not known by the tester. The tester
only knows the inputs and what the expected outcomes
should be and not how the program arrives at those outputs.
The tester does not ever examine the programming code and
does not need any further knowledge of the program other
than its specifications.

 White Box Testing: It is also known as glass
box, structural testing .In this testing technique, explicit
knowledge of the internal workings of the item being tested
are used to select the test data. white box testing uses
specific knowledge of programming code to examine
outputs. The test is accurate only if the tester knows what
the program is supposed to do.. White box testing does not
account for errors caused by omission, and all visible code
must also be readable.

III. TEST EFFORTS SCHEMES

There are basically two Types of Test Effort Schemes
A. Function Point Analysis (FPA): white-box test

activities are included in the size calculation produced
by FPA.

B. Test Point Analysis (TPA): TPA is one such method
which can be applied for estimating test effort in black-
box testing

IV. BASIC CONCEPT OF FPA TECHNIQUE

The FPA technique estimates the development function
points, which also include white-box testing effort. FPA is a
method for measuring the size of the software on the
customer’s point of view and describes a unit of work
suitable for measuring the size of business application
software. FPA can be used to measure productivity across
various tools and environments. A basic knowledge of the
FPA method is necessary to understand test point and
maintenance analysis. The white box testing includes unit
testing and integration testing. While white-box test
activities are included in the size calculation produced by
FPA, the black box testing activities are not included in size
computation of FPA.

V. BASIC CONCEPT OF TPA TECHNIQUE

TPA is one such method which can be applied for
estimating test effort in black-box testing. The goal of this
technique is to outline all major factors that affect testing
projects and to ultimately do accurate test effort estimation.
If one has a predetermined estimate of test hours As per
TPA method, there are two kinds of test points-Dynamic
and Static. As FPA is doing white box testing only, we need
the TPA model to find the black box testing. The FP count
we use to calculate the TPA is estimated earlier in the FPA
technique. As per the FPA technique, there are two sets of
elementary processes-transaction function points (data in
motion), data function points (data in rest).TPA is one such

http://www.webopedia.com/TERM/C/code.html�

Princy Garg, International Journal of Advanced Research in Computer Science, 2 (4), July-August, 2011,273-276

© 2010, IJARCS All Rights Reserved 274

method which can be applied for estimating test effort in
black box testing. It is a 6-step approach to test estimation
and planning.[2].

Figure 1-TPA Technique

Figure 2- Parametres of TPA Technique[1].

A. Tpa Technique For Estimating Efforts:

a. Computing Dynamic Test Points (Tps):
Dynamic test points are related to individual function

and are based on FPA transaction function points. Dynamic
test points are computed by summing the product of
Transaction Function points (FPt), Dependency Factor (Df),
and Dynamic Quality Characteristics (Qd) for individual
function points.

b. Dependency factor (Df):
A rating is assigned for the individual functions points.

A useful heuristics is to have 25% functions in low, 50% in
medium and 25% in high category.

i. User Importance of the functions: Rating—3-low, 6-
medium, 12-high.[1].

ii. Intensity of the functions: Rating— Usage 2-low, 4-
medium, 12-high.

iii. Interfacing with other functions: Rating—2-low, 4-
medium, 8-high.

iv. Complexity of function: Rating—3-low, 6-medium, 12-
high.
These ratings are added and divided by 20 (sum of

medium rating) to arrive at weighted rating, and uniformity
factor could be 0.6 or 1. The uniformity is taken at 0.6 in
case of second occurrence of unique function, where test
specs can be reused else, uniformity factor is taken at 1.
Dependency factor is calculated by multiplying weighted
rating with uniformity factor.

c. Dynamic Quality Characteristics (Qd):
This calculation is based on rating and weighing factor

for the variables-suitability, security, usability, efficiency.
Weighing factors for these four variables are 0.75, 0.05,
0.10, and 0.10 respectively. For each of these variables the
rating is (0-not important, 3-relatively unimportant, 4-
medium importance, 5- very important, 6- extremely
important).

Total dynamic test points equal sum of FPt* Df*Qd for
individual functions.

d. Computing Static Test Points:
Test points are related to overall FP of the system and

static quality characteristics of the system. Overall FP of the
system is assumed at minimum 500(in case it is below
500)recommends functionality, usability, reliability,
efficiency, portability and maintainability as quality
characteristics and several sub- characteristics within these
as desirable. For each quality characteristics statistically
tested, a value of 16 is added to Qi.

B. Total Test Points:
 Total test points are equal to sum of Dynamic and
Static test points.
TP = (Sum of FPt* Df *Qd for individual functions) + (Total
FP* Qi/500)[1].

C. Productivity Factor (P) :
Indicates tests hours required per test point. It ranges

from 0.7(if test team is highly skilled) to 2(if test team has
insufficient skills) hours per test point. Productivity factor
requires historical data of the projects and it can very from
one organization to another organization. So, this factor can
be called organization dependent factor.

D. Environmental Factor (E):
The number of test hours required for each test point is

not only influenced by productivity factor but also by the
environmental factor.[1] The following environmental
factor might affect the testing effort: test tools, development
testing, test basis, test ware, development environment, and
test environment. Environmental factor is calculated by
adding the rating on all the above environmental factors and
divided by value 21(the sum of nominal ratings).

E. Primary Test Hours:
The number of primary test hours is obtained by

multiplying the number of test points by productivity factor
(P) and environment factor (E).

Princy Garg, International Journal of Advanced Research in Computer Science, 2 (4), July-August, 2011,273-276

© 2010, IJARCS All Rights Reserved 275

Primary test hours = Test points (TP)*P*E

F. Planning and Control Allowance :
The standard value of this is 10%.this value may be

increased or decreased depending on two factors

a. Team Size:
The bigger the team, the more effort it will take to

manage the project. The ratings for this value are: 3- if team
consists of up to 4 persons, 6- if team consists of up to 5 and
10 persons, 12- if team consists of more than 10 persons.

b. Management Tools:
More the number of tools used to automate

management and planning less are the amount of effort
required. The ratings for this value are: 2-both an automated
time registration system and automated defect tracking
system are available, 4- either an automated time
registration system or automated defect tracking system is
available, 8- no automated systems are available.

Planning and control allowance =Team size factor
+Management tools factor

G. Total Test Hours:
The total number of test hours is obtained by adding

primary test hours and the planning and control allowance.
Total test hours= Primary test hours+ Planning and control
allowance In the many approaches to test effort estimation,
the use of stubs and drivers may be one. This could become
a robust method of estimation over a period of time. The
estimation technique is not claimed to be rigorous, but the
approach offers practical advantages over techniques
currently in use.

VI. PROPOSED ALGORITHM OF TPA
TECHNIQUE

A. Dynamic test point: Dt = FPf* Df * Qd
Where, FPf =Transaction FP
Df = Dependency Factor = Weighted rating on Importance
to user, usage intensity, interfacing of functions, complexity
of functions.
Rating on user importance(Up):

Up= 3*20%+6*60%+12*20%
 =0.6+3.6+2.4 =6.6

Rating on usage intensity(Ui):
 Ui=2*10%+4*70%+12*20%
 = 0.2+2.8+2.4 =5.4
Rating on interfacing (I):
 I= 2*50%+8*50% =5
Rating on Complexity (C):
 C= 6(nominal complexity)
Df = (Up + Ui + I + C)/ 20* U

U =Uniformity Factor= 60%*1+40%*0.6
 = 0.6+ 0.24 =0.84

Df = (Up + Ui + I + C)/ 20* U
Qd = Dynamic quality characteristics = weighted score on
following 4 quality characteristics:
Suitability
(weight=0.75, medium importance—rate =4)
Security
(weight=0.05, extremely importance—rate =6)
Usability
(weight=0.10, highly importance—rate =5)

Efficiency
(weight=0.10, medium importance—rate=4)
weighted score = (0.75*4+0.05*6+0.10*5+0.10*4) Qd =
3+0.3+0.5+0.4= 4.2
Hence, Dt =FPt *Df*Qd
B. Static test point

St=total FP * Qi/500
 Total FP = Data FP+ Transaction FP
St=total FP * Qi/500

C. Total test point
 TP= Dt+ St

D. Productivity Factor (PF) = 1.4 tests hours per test point
Rating on test tools=1
Rating on development testing =4
Rating on test basis = 6
Rating on development environment =2
Rating on test environment =2
Rating on test ware =2

E. Environmental Factor
EF =1+4+6+2+2+2/21 =0.81

F. Primary test hours
P=TP* PF *EF
Planning control allowance =6%+2% = 8%

G. Total test hours = P+ 8% of P

H. Experimental Results:
All these calculations are done by simulator.

Output:

a. Calculated Test Efforts Without Reuse:
value of Transaction count 696.000000
value of Data Count 480.000000
Dt = Fp * Df * Qd
Dynamic test point is 2823.811035
Static Test point is 57.088001
Toatal Test Point is(tp) = Dynamic test point(dt) +Static test
point(st)
Total Test Point is 2880.898926
Primary Test Hours(P) = tp*pf*ef
Primary Test Hours(P) is 3266.939453
Total Test Hours = Primary test hours(p) + 8% of Primary
test hours(p)
Total Test Hours is 3528.294678

b. Calculated Test Efforts with Reuse:
value of Transaction count 696.000000
value of Data Count 480.000000
Dt = Fp * Df * Qd
Dynamic test point is 2734.723145
Static Test point is 57.088001
Toatal Test Point is(tp) = Dynamic test point(dt) +Static test
point(st)
Total Test Point is 2791.811035
Primary Test Hours(P) = tp*pf*ef
Primary Test Hours(P) is 3165.913574
Total Test Hours = Primary test hours(p) + 8% of Primary
test hours(p)
Total Test Hours is 3419.186768

Princy Garg, International Journal of Advanced Research in Computer Science, 2 (4), July-August, 2011,273-276

© 2010, IJARCS All Rights Reserved 276

Figure: 3

VII. CONCLUSION

Testing effort is the number of hours that is required for
the testing process of software that is being developed.
Effective test effort estimation is one of the most
challenging and important activity in software testing. There
are many popular models for test effort estimation in vogue
today. Ineffective test effort estimation leads to schedule and
cost overruns. This is due to lack of understanding of
development process and constraints faced in the process.
But we believe that our approach overcomes all these
limitations. In this paper we find out that how effectively we
can minimize the test effort for a project. We used the TPA
method for our proposed work. Test Case Point Analysis is a
tool to estimate the effort required to test a software project,
based on the number of use cases and the other features of
object-orientation used in software development. Testing is
an important activity that ensures the quality of the software.

Here is an area where further work is necessary,
obviously. However, there are methods that make it possible
to estimate effort required for executing Testing projects.
Test Points are slowly emerging for sizing Software Testing
projects. In the many approaches to test effort estimation,
the use of stubs and drivers may be one. Drivers and stubs
can be reused so the constant changes that occur during the
development cycle can be retested frequently without
writing large amounts of additional test code. In effect, this
reduces the cost of writing the drivers and stubs on a per-use
basis and the cost of retesting is better controlled. We are
using this approach as the stubs and drivers are reused then

the less coding is to be done, and less will be the test effort
for test the code. Either it takes more code writing for stubs
or drivers but the reusability of these minimizes the overall
coding and the test effort also. So using the stubs and drivers
approach is more beneficial than without them. This could
become a robust method of estimation over a period of time.
It leads to accurate estimation of test effort by this
estimation we can easily calculate the test effort for the each
phases of a testing life cycle. We can apply this estimation
to find the estimated test plan and it is also a very powerful
method to generate realistic test cases.

VIII. REFRENCES

[1] Raghuvirkamath, “ TPA – Test Point Analysis – A method of
Test Estimation”.
http://raghuvirkamath.wordpress.com/2010/06/08/tpa-test-
point-analysis-a-method-of-test-estimation/

[2] Rajiv Chopra, (2009), Second Edition ,“Software Testing-
Test Point Analysis” (TPA), (pp 309-321), S.K Kataria &
Sons, New Delhi

[3] Renu Rajani, Pradeep Oak, (2004) “Software Testing-
Software Test Effort Estimation Techniques”,Tata McGraw
Hill, New Delhi

[4] William E,(1999), “Effective Method For Software Testing”,
Perry, (pp-177-205), Wiley

[5] Nick Jenkins,“A Software Testing Primer”,An Introduction to
Software Testing,2008.

[6] Suresh Nageswaran, “Test Effort Estimation Using Use Case
Points”, (Cognizant Technology Solutions). Quality Week
2001, San Francisco, California, USA.
http://www.testexpert.com.br/files/Test%20Effort%20Estimat
ion%20Using%20Use%20Case%20Points.pdf

[7] Sudip Misra, “An Empirical Framework For Choosing An
Effective Testing Technique For Software Test Process
Management”, Journal of Information Technology
Management ISSN #1042-1319,A Publication of the
Association of Management

[8] Silverpath technologies inc, “Increasing Test Effort Estimate
Effectiveness”, trevor.atkins@silverpath.com, may 29,2008

[9] Willie L. Brown, “Function Point Analysis”, Software Project
Management, SE 510- Spring 2009

[10] Drs Erik P.W.M. Van Veenendaal CISA, Ton Dekkers, “Test
Point Analysis: A Method for Test Estimation”,1999.

[11] Pressman, “An approach to Software Engineering” 6th
Edition, 1991.

mailto:trevor.atkins@silverpath.com�

	Raghuvirkamath, “ TPA – Test Point Analysis – A method of Test Estimation”. http://raghuvirkamath.wordpress.com/2010/06/08/tpa-test-point-analysis-a-method-of-test-estimation/

