
Volume 2, No. 4, July-August 2011

International Journal of Advanced Research in Computer Science

RESEARCH PAPER

Available Online at www.ijarcs.info

© 2010, IJARCS All Rights Reserved 404

Request Forwarding in Peer to Peer Network

Pravin U. Malve
Student, (M.E.) SCOET,

SGBAU University,
Amravati, Maharashtra, India
pravin.malve29@gmail.com

Prof. V.S. Gulhane*
Associate Professor, SCOET,

SGBAU University,
Amravati, Maharashtra, India
v_gulhane@rediffmail.com

Abstract: Peer to Peer Systems distributes the responsibility of providing services among all peers on the network; this eliminates service
outages due to a single point of failure, Peer-to-Peer systems provide open access making the resources available to any user. A device in a P2P
network can provide access to any type of resource that it has at its disposal, whether documents, storage capacity, computing power, or even its
own human operator. Resource providers receive the tasks, compute them, and send the results back to the consumer node (the job holder). This
paper demonstrates the concept of request forwarding in peer to peer network.

Keywords: Resource Scheduling, Peer to Peer Network, Network Simulation, Network Animator.

I. INTRODUCTION

Peer-to-Peer systems are characterized by their ability
to function, scale, and self-organize in the presence of
highly transient population of failure-prone nodes. The great
advantage of this approach over other models is the no
dependence on centralized servers, which suffer from
problems such as bottlenecks, single points of failure,
among other.

Peer-to-Peer (P2P) technology enables any network-
connected device to provide services to another network-
connected device. A device in a P2P network can provide
access to any type of resource that it has at its disposal,
whether documents, storage capacity, computing power, or
even its own human operator. The device in a P2P network
could be anything ranging from a super computer to simple
PDA. P2P technology is a robust and impressive extension
of the Internet’s philosophy of robustness through
decentralization. The main advantage of P2P networks is
that it distributes the responsibility of providing services
among all peers on the network; this eliminates service
outages due to a single point of failure and provides a more
scalable solution for offering services.

In addition, P2P networks exploit available bandwidth
across the entire network by using a variety of
communication channels and by filling bandwidth up to the
brim of the Internet. Unlike traditional client/server
communications, in which specific routes to popular
destinations can become overloaded (for example, the route
to google.com), P2P enables communication via a variety of
network routes, thereby reducing network overloading. P2P
has the capability of serving resources with high availability
at a much lower cost while maximizing the use of resources
from every peer connected to the P2P network. Client/server
solutions rely on the addition of costly bandwidth,
equipment, and co-location facilities to maintain a robust
solution. P2P can offer a similar level of robustness by
spreading network and resource demands across the P2P
network. Several different P2P architectures have been
proposed so far, a comprehensive survey is provided in [1].

The job distribution and management in network is

carried out as shown in Figure 1 where a machine, acting as
a resource consumer, distributes tasks among available
machines, resource providers, in order to perform a CPU-
intensive job demanded by a user. Resource providers
receive the tasks, compute them, and send the results back to
the consumer node (the job holder). All machines are
connected through an overlay network, which is built on top
of another network (i.e. Internet) and provides services of
routing and lookup

Figure. 1: Resource Management Model

II. LITERATURE REVIEW

Peer-to-Peer has been gaining a huge success across the
Internet. Such architectures are designed for the direct
sharing of computer resources (CPU cycles, storage, and

V.S. Gulhane et al, International Journal of Advanced Research in Computer Science, 2 (4), July-August, 2011,404-407

© 2010, IJARCS All Rights Reserved 405

content) rather than requiring the intermediation of a
centralized server or authority [2].

Currently, not only scientists, but also typical non-
expert computer users are willing to perform intensive tasks
on their computers. However, these tasks could be quite
different, like: compressing a movie file, generating a
complex image from a specification, compacting large files,
among other. More precisely, these tasks consume a
relatively large amount of time and memory, delaying other
processes that are running at the same time. Along the way,
one becomes bored and impatient. From another point of
view, there are many Internet connected computers around
the world whose resources are not fully utilized. Most of the
time, non-expert users have just some low CPU-intensive
processes running on their machines, therefore giving a
sense of waste.

Given the current context, we intend to deploy a
platform where any ordinary user may consume and provide
resources, namely idle CPU cycles, over a dynamic network
that could be local or wide (e.g. Internet), in order to speed
up common, and widely used, applications which are CPU-
intensive. There are two fundamental requirements: first is
while we intend to exploit parallel execution in desktop
applications, the system must ensure a fine-grained control
over the shared resources, and second applications should be
kept unmodified in order to take advantage of all the
software already existing.

Deeds [3, 11] is a history-based access control system
whose policies must be written in Java. It is useful to
provide security in P2P network. For resource discovery
Iamnitchi et al [4] have compared different searching
methods. Cheema et al [2] proposed a solution for exploiting
the single keyword lookup for CPU cycle sharing systems.
Globus [5] is an enabling technology for grid deployment. It
provides mechanisms for communication, authentication,
network information, data access, amongst other. Condor [7]
allows the integration and use of remote workstations. It
maximizes the utilization of workstations and expands the
resources available to users, by functioning well in an
environment of distributed ownership. BOINC [3] is a
platform for volunteer distributed cycle sharing based on the
client-server model. It relies on an asymmetric relationship
where users, acting as clients, may donate their idle CPU
cycles to a server, but cannot use spare cycles, from other
clients, for themselves. CCOF [12] is an open peer-to-peer
system seeking to harvest idle CPU cycles from its
connected users. OurGrid [8] is a peer-to-peer network of
sites which tries to facilitate the inter-domain access to
resources in a equitably manner.

III. IMPLEMENTATION

There are various tools available for simulating
different network models. Ns2/ns3, OPNET and NetSim are
some of the tools that can be used for the simulation of the
various network architectures and models. The ns-2
simulator is a discrete-event network simulator targeted
primarily for research and educational use. The ns-2 is
written in C++. ns-2 is open-source, and the project strives
to maintain an open environment for researchers to
contribute and share their software.

Ns-2 is scripted in OTcl and results of simulations can
be visualized using the Network Animator nam. It is not
possible to run a simulation in ns-2 purely from C++ (i.e., as

a main() program without any OTcl). Moreover, some
components of ns-2 are written in C++ and others in OTcl.
Considering these features of ns-2 ns-allinone-2.34 is used
for the implementation of the proposed dissertation work.
NS-2 is designed to run from on most UNIX based
operating systems. It is possible to run NS-2 on Windows
machines using Cygwin. If you don't have a UNIX install,
you can also use a virtual linux machine and run that under
Windows. In the dissertation work the Fedora core 13
operating system is used for installation and configuration of
the ns-2.34. The ns-2.34 is configured on the path
/home/project/Desktop/project/. For configuring the ns the
following commands are executed in the terminal. Before
configuration we should make sure that we have standard
development packages like 'make' and 'gcc'.
tar -xzf ns-allinone-2.34.tar.gz cd ns-allinone-2.34./install

After the execution of the above commands on terminal
if everything is fine without any errors then we will get
following messages on the terminal. Ns-allinone package
has been installed successfully.

After the successful configuration of ns environment for
the implementation of the proposed dissertation work
initially we have created rc (resource consumer) package
inside ns-2.34 which defines various properties of the data
in terms of packet which are transferred to and from various
node which can be identified as packets which are using
implemented resource consumer protocol for intrusion
detection in the network. The implemented algorithm which
is written inside rc.cc is situated inside the router through
which packets are transferred and filtered. It also includes
different parameters which are defined for the
implementation of the resource scheduling system which
includes different types of packet which is transferred
between different nodes. There may be number of resources
which are present inside the network providing different
services. Scheduling of various requests on the particular
resource service provider is handled through this code.
Inside rc we have defined four files rc.cc, rcPacket.cc, rc.h
and rcPacket.h. After adding rc into ns-2.34 we need to
modify some of the files of ns environment which are ns-
2.34/common/packet.h, ns-2.34/tcl/lib/ns-packet.tcl and ns-
2.34/Makefile. After these changes we need to again execute
make command on the terminal to reflect the changes in the
ns environment. We have demonstrated the result of
implemented work through various simulations
implemented in terms of tcl script simgrid.tcl demonstrates
request forwarding in the network with single resource
consumer and three resource provider.

IV. EXPERIMENTATION AND RESULTS

Simgrid.tcl is implemented to demonstrate request
forwarding in network where there are three types of
resource nodes and one resource consumer node. For the
execution of this tcl script initially all the environment
variables are set and the following command is executed on
the terminal

A. ns simgrid.tcl
After the execution out.nam file is created inside the

current working directory and we get the following output
on the terminal.
Sending request: 1

V.S. Gulhane et al, International Journal of Advanced Research in Computer Science, 2 (4), July-August, 2011,404-407

© 2010, IJARCS All Rights Reserved 406

Node 2: Request received... Now forwarding to grid node 3
for execution
Node 2: Request received... Now forwarding to grid node 3
for execution
Node 3: Serving request of type 1
It took 0.223400 seconds to service request.
Average time taken 0.127412.
Sending request:2
Node 2: Request received... Now forwarding to grid node 4
for execution
Node 4: Serving request of type 2
It took 0.346800 seconds to service request.
Average time taken 0.124610.
Sending request: 3
Node 2: Grid serving request of type 3
It took 0.470200 seconds to service request.
Average time taken 0.123400.

It can be observed from the output various request has
been generated from resource consumer. These requests are
for different types of resources in the network. The initial
request is forwarded to node 2 but this request is for type 1
resource, this type of resource is not available at node 2,
hence the request is forwarded to node 3 as resource of type
1 is available at this node the request get serviced. The result
also shows the actual time required servicing the request and
the total time required to process the request from its
initialization. If any of the resource is not available then
request is continuously transferred in the network till that
type of resource doesn’t available.

We can run the simulation by executing the following
command on the terminal.

B. nam out.nam
After execution the output is generated inside the

network animator. The results are shown below.

Figureg 2: Initial state of network with single resource consumer and three

resource provider.

As shown in the following figure 2 the request is
initialized from the resource consumer and it is forwarded to
node 2 as shown in figure 3. But the requested resource is
not available at this node thus the request is forwarded to
node 3 as type 1 resource is available at this node as shown
in figure 4.

Figure 3: Request initialize by the resource consumer node.

Figure 4: Request sent to node 2 by the resource consumer node

Figure 5: Request forwarded to node 3 as resource is not available at node

2.

V.S. Gulhane et al, International Journal of Advanced Research in Computer Science, 2 (4), July-August, 2011,404-407

© 2010, IJARCS All Rights Reserved 407

V. CONCLUSION

This paper gives various aspects of implementing the
system for request forwarding in peer to peer network. The
algorithm is implemented for request forwarding when a
particular type of resource is not available on the requested
node. The nodes actually process less number of requests as
compared to the number of request received. but as the
number requests send at a heavy node increases the number
of request processed increases.

VI. REFERENCES

[1] Iamnitchi and I. Foster. A peer-to-peer approach to resource

location in grid environments. In Grid resource management:
state of the art and future trends, pages 413–429, Norwell,
MA, USA, 2004. Kluwer Academic Publishers.

[2] A. S. Cheema, M. Muhammad, and I. Gupta. Peer-to-peer
discovery of computational resources for grid applications. In
GRID ’05: Proceedings of the 6th IEEE/ACM International
Workshop on Grid Computing, pages 179–185, Washington,
DC, USA, 2005. IEEE Computer Society.

[3] D. P. Anderson. Boinc: A system for public-resource
computing and storage. In GRID ’04: Proceedings of the 5th
IEEE/ACM International Workshop on Grid Computing,
pages 4–10, Washington, DC, USA, 2004. IEEE Computer
Society.

[4] G. Edjlali, A. Acharya, and V. Chaudhary. History-based
access control for mobile code. In CCS ’98: Proceedings of

the 5th ACM conference on Computer and communications
security, pages 38–48, New York, NY, USA, 1998. ACM.

[5] I. Foster and C. Kesselman. Globus: A metacomputing
infrastructure toolkit. International Journal of Supercomputer
Applications, 11:115–128, 1997.

[6] M. Litzkow, M. Livny, and M. Mutka. Condor - a hunter of
idle workstations. In Proceedings of the 8th International
Conference of Distributed Computing Systems, June 1988.

[7] N. Andrade, W. Cirne, F. Brasileiro, and P. Roisenberg.
Ourgrid: An approach to easily assemble grids with equitable
resource sharing. In Proceedings of the 9th Workshop on Job
Scheduling Strategies for Parallel Processing, Seattle, WA,
USA, June 2003.

[8] S´ergio Esteves, Lu´ıs Veiga and Paulo Ferreira GridP2P:
Resource Usage in Grids and peer-to-Peer Systems. INESC-
ID/IST, Distributed Systems Group, Rua Alves Redol, 9,
1000-029 Lisboa, Portugal 2010 IEEE.

[9] S. Androutsellis-Theotokis and D. Spinellis. A survey of peer-
to-peer content distribution technologies. ACM Computing
Surveys (CSUR), 36(4):335–371, December 2004.

[10] Pourebrahimi B., Bertels K., Vassiliadis S. A Survey of Peer-
to-Peer Networks. Technical Report, Computer Engineering
Laboratory, ITS, TU Delft, The Netherlands. 2004.

[11] V. Lo, D. Zhou, Y. Liu, and S. Zhao. Cluster computingon the
fly: P2p scheduling of idle cycles in the internet. In the
internet, 3rd International Workshop on Peer-to-Peer Systmes
(IPTPS 2004), pages 227–236, 2004.

