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1. INTRODUCTION  

After Zadeh’s Pioneering  paper [7], where the 

theory of Fuzzy Sets was introduced, hundreds of examples 

have been supplied where the nature of uncertainty in the 

behavior of a given system possesses fuzzy rather than 

stochastic nature non-stationary fuzzy system described by 

fuzzy possesses look as their natural extension into the time 

domina. Since then to use concept of fuzzy in topology and 

analysis, many authors have expansively developed the 

theory of fuzzy sets and its applications. Notable are Wang, 

Gao, Isekey [6], Popa [5], Jain and Jain [4], worked on 

expansion mappings in metric space. Recently, Agrawal and 

Chouhan [1] & [2], Bhardwaj, Rajput and Yadava [3] did lot 

of worke for common fixed point for expansion mapping. 

 

Our object in this paper is, to obtain some result on common 

fixed point theorems of expansion type’s maps on fuzzy 

metric space, which generalized the result of Wang, Gao, 

Isekey [6] for metric space.  

 

 

2. PRILIMINARIES 

 

Definition 2.1:  A binary operation ∗ ∶ [0,1] × [0,1] → [0,1] 
is called a continuous         𝑡-norm if ([0,1],∗) is an abelian 

Topological monodies with unit 1 such that 

 𝑎 ∗  𝑏 ≥  𝑐 ∗  𝑑 whenever  𝑎 ≥ 𝑐 and 𝑏 ≥ 𝑑    for all 

𝑎, 𝑏, 𝑐, 𝑑, ∈ [0, 1]  
 Example of 𝑡-norm are 𝑎 ∗  𝑏 = 𝑎 𝑏 and 𝑎 ∗  𝑏 =
 𝑚𝑖𝑛 {𝑎, 𝑏} 
Definition 2.2: The 3-tuple (𝑋,𝑀,∗) is called a fuzzy metric 

space if 𝑋 is an arbitrary set,∗ is a continuous 𝑡-norm and 𝑀 

is a fuzzy set in 𝑋2 ×[0,) satisfying the following 

conditions for all 𝑥, 𝑦, 𝑧 ∈  𝑋 and 𝑠, 𝑡 >  0,  
(𝐹𝑀 − 1): 𝑀(𝑥, 𝑦, 0) = 0  
(𝐹𝑀 − 2): 𝑀(𝑥, 𝑦, 𝑡) = 1, ∀ 𝑡 ≻ 0, ⟺ 𝑥 = 𝑦  

(𝐹𝑀 − 3): 𝑀(𝑥, 𝑦, 𝑡) = 𝑀(𝑦, 𝑥, 𝑡)  

(𝐹𝑀 − 4):𝑀(𝑥, 𝑧, 𝑡 + 𝑠) ≥ 𝑀(𝑥, 𝑦. 𝑡) ∗ 𝑀(𝑧, 𝑦, 𝑠)   
(𝐹𝑀 − 5):𝑀(𝑥, 𝑦, 𝑎): [0,1] is left continuous 

(𝐹𝑀 − 6): lim
𝑡→∞

𝑀(𝑥, 𝑦, 𝑡) = 1   

In what follows (𝑋,𝑀,∗) will denote a fuzzy metric space.  

Note   that 𝑀(𝑥, 𝑦, 𝑡) can bet thought of as the degree of 

nearness between 𝑥 and 𝑦 with respect to 𝑡. We identify 

𝑥 = 𝑦 with 𝑀 (𝑥, 𝑦, 𝑡)  =  1 for all 𝑡 >  0 and 

𝑀 (𝑥, 𝑦, 𝑡)  =  0 with ∞.  
Example: Let (𝑋, 𝑑) be a metric space. 

 Define 𝑎 ∗ 𝑏 =  𝑎 𝑏, 𝑜𝑟 𝑎 ∗ 𝑏 = 𝑚𝑖𝑛 {𝑎, 𝑏} and for all 

𝑥, 𝑦, 𝑋 and  𝑡 > 0, 

                           𝑀(𝑥, 𝑦, 𝑡) =
𝑡

𝑡+𝑑(𝑥,𝑦)
 

 

Then (𝑋,𝑀,∗) is a fuzzy metric space. We call this fuzzy 

metric 𝑀 induced by the metric 𝑑 the standard fuzzy metric.   

Definition 2.3: Let (𝑋,𝑀,∗) is a fuzzy metric space.  

(i) A sequence {𝑥𝑛} in 𝑋 is said to be convergent 

to a point 𝑥 ∈ 𝑋, 
           lim

𝑛→∞
𝑀(𝑥𝑛 , 𝑥, 𝑡) = 1  

(ii) A sequence {xn} in X is called a Cauchy 

sequence if  

           lim
𝑛→∞

𝑀(𝑥𝑛+𝑝, 𝑥𝑛 , 𝑡) = 1 ∀ 𝑡 ≻ 0 and 𝑝 ≻ 0 

(iii) A fuzzy metric space in which every Cauchy 

sequence is convergent is  said 

                 to be Complete.    

Definition 2.4:  A function M is continuous in fuzzy metric 

space iff whenever 

𝑥𝑛 → 𝑥, 𝑦𝑛 → 𝑦 ⟹ lim
𝑛→∞

𝑀(𝑥𝑛+𝑝, 𝑥𝑛 , 𝑡) → 𝑀(𝑥, 𝑦, 𝑡)  

3. MAIN RESULS 

THEOREM (3.1):  Let (𝑋,𝑀,∗) is a complete fuzzy metric 

space and 𝐹 be a self-map of 𝑋. The mapping 𝐹 satisfying 

the condition; 

𝑀(𝐹𝑥, 𝐹𝑦, 𝑡) ≥

𝑚𝑖𝑛 [

𝑀(𝑥,𝐹(𝑥),𝑡)𝑀(𝑦,𝐹(𝑦),𝑡)

𝑀(𝑥,𝑦,𝑡)
,
𝑀(𝑥,𝐹(𝑦),𝑡)𝑀(𝑦,𝐹(𝑥),𝑡)

𝑀(𝑥,𝑦,𝑡)

𝑀(𝑥, 𝐹(𝑥), 𝑡)𝑀(𝑦, 𝐹(𝑦), 𝑡)𝑀(𝑥, 𝑦, 𝑡)
]  

for, all 𝑥, 𝑦 ∈ 𝑋 with 𝑥 ≠ 𝑦 and 𝐹 is onto. Then 𝐹 has a 

fixed point in 𝑋. 
PROOF: Let 𝑥0 ∈ 𝑋 since 𝐹 is onto there is an element  𝑥1 

satisfying 𝑥1 ∈ 𝐹−1(𝑥0). By the same way we can choose, 

𝑥𝑛 ∈ 𝐹−1𝑥𝑛−1, where (𝑛 = 2, 3, 4 − − − − − − − −). 
If 𝑥𝑚−1 = 𝑥𝑚 for some m, then 𝑥𝑚 is a fixed point of 𝐹. 
Without loss of generality we can suppose 𝑥𝑛−1 ≠ 𝑥𝑛  for 

every 𝑛. So,  

𝑀(𝑥𝑛−1,𝑥𝑛 , 𝑡) = 𝑀(𝐹(𝑥𝑛), 𝐹(𝑥𝑛+1), 𝑡)  
 𝑀(𝐹(𝑥𝑛), 𝐹(𝑥𝑛+1), 𝑡) ≥

𝑚𝑖𝑛 [

𝑀(𝑥𝑛,𝐹(𝑥𝑛),𝑡)𝑀(𝑥𝑛+1,𝐹(𝑥𝑛+1),𝑡)

𝑀(𝑥𝑛 ,𝑥𝑛+1,𝑡)
,
𝑀(𝑥𝑛,𝐹(𝑥𝑛+1),𝑡)𝑀(𝑦,𝐹(𝑥𝑛),𝑡)

𝑀(𝑥𝑛 ,𝑥𝑛+1,𝑡)
,

𝑀(𝑥𝑛 , 𝐹(𝑥𝑛), 𝑡),𝑀(𝑥𝑛+1, 𝐹(𝑥𝑛+1), 𝑡),𝑀(𝑥𝑛, 𝑥𝑛+1,𝑡)
]  
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𝑀(𝑥𝑛−1,𝑥𝑛 , 𝑡) = 𝑀(𝑥𝑛 , 𝑥𝑛+1,𝑡)  

Therefore by well known way {𝑥𝑛} is a Cauchy square in 

𝑋. Since 𝑋 is complete {𝑥𝑛} , converges to x, for some 𝑥 ∈
𝑋. since F is onto there exists 𝑦 ∈ 𝑋 such that 𝑦 ∈
𝐹−1(𝑥) and for infinitely many 𝑛, 𝑥𝑛 ≠ 𝑥, for such 𝑛  

𝑀(𝑥𝑛,𝑥, 𝑡) = 𝑀(𝐹(𝑥𝑛−1), 𝐹(𝑦), 𝑡) 
≥

𝑚𝑖𝑛 [

𝑀(𝑥𝑛+1,𝐹(𝑥𝑛+1),𝑡)𝑀(𝑦,𝐹(𝑦),𝑡)

𝑀(𝑥𝑛+1,𝑦,𝑡)
,
𝑀(𝑥𝑛+1,𝐹(𝑦),𝑡)𝑀(𝑦,𝐹(𝑥𝑛+1),𝑡)

𝑀(𝑥𝑛+1,𝑦,𝑡)
,

𝑀(𝑥𝑛+1, 𝐹(𝑥𝑛+1), 𝑡),𝑀(𝑦, 𝐹(𝑦), 𝑡),𝑀(𝑥𝑛+1, 𝐹(𝑥𝑛+1), 𝑡),𝑀(𝑥𝑛+1, 𝑦, 𝑡)
]  

= 𝑚𝑖𝑛 [

𝑀(𝑥𝑛+1,𝑥𝑛,𝑡)𝑀(𝑦,𝐹𝑦,𝑡)

𝑀(𝑥𝑛+1,𝑦,𝑡)
,
𝑀(𝑥𝑛+1,𝑥,𝑡)𝑀(𝑦,𝑥𝑛,𝑡)

𝑀(𝑥𝑛+1,𝑦,𝑡)
,

𝑀(𝑥𝑛+1, 𝑥𝑛 , 𝑡),𝑀(𝑦, 𝑥, 𝑡),𝑀(𝑥𝑛+1, 𝑦, 𝑡)
]  

On taking limit as, 𝑛 → ∞  

0 ≥  𝑀(𝑦, 𝑥, 𝑡) or 0 ≥ lim
𝑛→∞

𝑀(𝑥𝑛+1, 𝑦, 𝑡)  

So 𝑀(𝑦, 𝑥, 𝑡) = 0. And lim
𝑛→∞

𝑀(𝑥𝑛+1, 𝑦, 𝑡) = 0   

So, in both cases we get 𝑥 = 𝑦. Thus F has a fixed point in 

𝑋. 
This completes the proof. 

THEOREM (3.2):  Let (𝑋,𝑀,∗) is a complete fuzzy metric 

space and 𝐹 be a self-map of 𝑋. The mapping F satisfying 

the condition; 

𝑀(𝐹𝑥, 𝐹𝑦, 𝑡) ≥

[
 
 
 
 

𝑀(𝑥,𝐹(𝑥),𝑡)𝑀(𝑦,𝐹(𝑦),𝑡)+𝑀(𝑥,𝐹(𝑦),𝑡)𝑀(𝑦,𝐹(𝑥),𝑡)

𝑀(𝑥,𝑦,𝑡)

[𝑀(𝑦,𝐹(𝑦),𝑡)]2+𝑀(𝑥,𝐹(𝑦),𝑡)𝑀(𝑦,𝐹(𝑥),𝑡)

𝑀(𝑥,𝑦,𝑡)
, 𝑀(𝑥, 𝐹(𝑥), 𝑡)

𝑀(𝑦, 𝐹(𝑦), 𝑡) ]
 
 
 
 

  

   for, all 𝑥, 𝑦 ∈ 𝑋 with 𝑥 ≠ 𝑦 and 𝐹 is onto. Then 𝐹 has a 

fixed point in 𝑋. 
PROOF: Let 𝑥0 ∈ 𝑋 since 𝐹 is onto there is an element 𝑥1 

satisfying 𝑥1 ∈ 𝐹−1(𝑥0).. By the same way we can choose, 

𝑥𝑛 ∈ 𝐹−1(𝑥𝑛−1),  where (𝑛 = 2, 3, 4 − − − − − − − −). 
If 𝑥𝑚−1 = 𝑥𝑚  for some m, then 𝑥𝑚  is a fixed point of 𝐹. 
Without loss of generality we can suppose 𝑥𝑛−1 ≠ 𝑥𝑛 for 

every 𝑛. So,  

𝑀(𝑥𝑛−1,𝑥𝑛 , 𝑡) = 𝑀(𝐹(𝑥𝑛), 𝐹(𝑥𝑛+1), 𝑡) 

𝑀(𝐹(𝑥𝑛), 𝐹(𝑥𝑛+1), 𝑡) 

≥

∅

[
 
 
 
 
𝑀(𝑥𝑛 ,𝐹(𝑥𝑛),𝑡)𝑀(𝑥𝑛+1,𝐹(𝑥𝑛+1),𝑡)+𝑀(𝑥𝑛 ,𝐹(𝑥𝑛+1),𝑡)𝑀(𝑥𝑛+1,𝐹(𝑥𝑛),𝑡)

𝑀(𝑥𝑛,𝑥𝑛+1,𝑡)
,

𝑀(𝑥𝑛,𝐹(𝑥𝑛+1),𝑡)𝑀(𝐹(𝑥𝑛),𝑥𝑛+1,𝑡)+[𝑀(𝑥𝑛+1,𝐹(𝑥𝑛),𝑡)]2

𝑀(𝑥𝑛,𝑥𝑛+1,𝑡)

𝑀(𝑥𝑛 , 𝐹(𝑥𝑛+1), 𝑡),𝑀(𝑥𝑛−1, 𝐹(𝑥𝑛+1), 𝑡),𝑀(𝑥𝑛 , 𝑥𝑛+1,𝑡) ]
 
 
 
 

  

𝑀(𝑥𝑛 , 𝑥𝑛−1,𝑡) ≥ ∅{𝑀(𝑥𝑛 , 𝑥𝑛+1,𝑡),𝑀(𝑥𝑛 , 𝑥𝑛+1,𝑡)}  

𝑀(𝑥𝑛 , 𝑥𝑛−1,𝑡) ≥ {𝑀(𝑥𝑛 , 𝑥𝑛+1,𝑡)}  

𝑀(𝑥𝑛 , 𝑥𝑛+1,𝑡) ≤ {𝑀(𝑥𝑛 , 𝑥𝑛−1,𝑡)}  

Therefore {𝑥𝑛} is a Cauchy square in 𝑋 and 𝑋 is complete 

therefore {𝑥𝑛} Converge to 𝑥 for some 𝑥 in 𝑋. So by 

continuity of 𝐹, we can write 

𝐹(𝑥𝑛) =  𝑥𝑛−1 →  𝐹(𝑥), as 𝑛 → ∞ 

Hence 𝐹(𝑥)  =  𝑥 
This completes the proof.   

THEOREM (3.3):  Let (𝑋,𝑀,∗) is a complete fuzzy metric 

space and 𝐹 be a self-map of 𝑋. The mapping 𝐹 satisfying 

the condition; 

𝑀(𝐹𝑥, 𝐹𝑦, 𝑡) ≥

𝑚𝑖𝑛 [

𝑀(𝑥,𝐹(𝑥),𝑡)𝑀(𝑦,𝐹(𝑦),𝑡)

𝑀(𝑥,𝑦,𝑡)
,
𝑀(𝑥,𝐹(𝑦),𝑡)𝑀(𝑦,𝐹(𝑥),𝑡)

𝑀(𝑥,𝑦,𝑡)

𝑀(𝑥, 𝐹(𝑥), 𝑡), . 𝑀(𝑦, 𝐹(𝑦), 𝑡),𝑀(𝑥, 𝑦, 𝑡)
]  

for, all 𝑥, 𝑦 ∈ 𝑋 with 𝑥 ≠ 𝑦 and 𝐹 is onto, there exists a 

point w in 𝑋 such that 

𝑇 (𝑤)  =  𝑆𝑢𝑝 {𝑇(𝑥): 𝑇(𝑥)  =  𝑀(𝑥, 𝐹(𝑥), 𝑡), 𝑥 ∈ 𝑋}  

Then 𝐹 has a fixed point in 𝑋. 

PROOF: Let 𝑤 ≠  𝐹 (𝑤), otherwise 𝑤 is a fixed point of 𝐹.  
Put 𝑥 = 𝑤 and 𝑦 = 𝐹 (𝑤) 

𝑀(𝐹(𝑤), 𝐹2(𝑤), 𝑡) ≥

𝑚𝑖𝑛 [

𝑀(𝑤,𝐹(𝑤),𝑡)𝑀(𝐹(𝑤),𝐹(𝐹(𝑤)),𝑡)

𝑀(𝑤,𝐹(𝑤),𝑡)
,
𝑀(𝑤,𝐹(𝐹(𝑤)),𝑡)𝑀(𝐹(𝑤),𝐹(𝑤),𝑡)

𝑀(𝑤,𝐹(𝑤),𝑡)

𝑀(𝑤, 𝐹(𝑤), 𝑡),𝑀(𝐹(𝑤), 𝐹(𝐹(𝑤)), 𝑡),𝑀(𝑤, 𝐹(𝑤), 𝑡)
]  

= [(𝐹(𝑤), 𝐹(𝐹(𝑤)), 𝑡)] or 𝑀[𝑤, 𝐹(𝑤), 𝑡]  

𝑀(𝐹(𝑤), 𝐹2(𝑤), 𝑡) ≥ (𝐹(𝑤), 𝐹(𝐹(𝑤)), 𝑡) which is not 

possible 

𝑆𝑜 𝑀(𝐹(𝑤), 𝐹2(𝑤), 𝑡) ≥ 𝑀(𝑤, 𝐹(𝑤), 𝑡) − − − − − (3.3.1)  

Similarly on putting 𝑥 = 𝐹(𝑤) and 𝑦 =  𝑤, we get  

𝑀(𝐹2(𝑤), 𝐹(𝑤), 𝑡) 

≥

𝑚𝑖𝑛 [

𝑀(𝑤,𝐹(𝑤),𝑡)𝑀(𝐹(𝑤),𝐹(𝐹(𝑤)),𝑡)

𝑀(𝑤,𝐹(𝑤),𝑡)
,
𝑀(𝑤,𝐹(𝐹(𝑤)),𝑡)𝑀(𝐹(𝑤),𝐹(𝑤),𝑡)

𝑀(𝑤,𝐹(𝑤),𝑡)

𝑀(𝐹(𝑤), 𝐹(𝐹(𝑤)), 𝑡),𝑀(𝑤, 𝐹(𝑤), 𝑡),𝑀(𝑤, 𝐹(𝑤), 𝑡)
]  

= [(𝐹(𝑤), 𝐹(𝐹(𝑤)), 𝑡)] or 𝑀[𝑤, 𝐹(𝑤), 𝑡] 

               𝑀(𝐹2(𝑤), 𝐹(𝑤), 𝑡) ≥ 𝑀(𝑤, 𝐹(𝑤), 𝑡) − − − − −
(3.3.2)  

By (3.3.1) and (3.3.2) 

𝑀(𝐹(𝑤), 𝐹2(𝑤), 𝑡) ≥ 𝑑(𝑤, 𝐹(𝑤), 𝑡)  

𝑀(𝐹(𝑤), 𝐹2(𝑤), 𝑡) ≥ 𝑀(𝑤, 𝐹(𝑤), 𝑡)  

This implies that  

𝑇(𝐹(𝑤)) > 𝑇(𝑤), giving a contraction.  

Hence we must have 𝐹 (𝑤)  =  𝑤,  that is w is a fixed point 

of 𝐹 in 𝑋. 
THEOREM (3.4):  Let (𝑋,𝑀,∗) is a fuzzy metric space and 

𝐹 be a self-map of 𝑋.The mapping 𝐹 satisfying the 

condition; 

𝑀(𝐹𝑥, 𝐹𝑦, 𝑡) ≥ ∅ {

𝑀(𝑥,𝐹(𝑥),𝑡)𝑀(𝑦,𝐹(𝑦),𝑡)+𝑀(𝑥,𝐹(𝑦),𝑡)𝑀(𝑦,𝐹(𝑥),𝑡)

𝑀(𝑥,𝑦,𝑡)

𝑀(𝑥, 𝐹(𝑥), 𝑡),𝑀(𝑦, 𝐹(𝑦), 𝑡),𝑀(𝑥, 𝑦, 𝑡)
}  

For, all 𝑥, 𝑦 ∈ 𝑋 with 𝑥 ≠ 𝑦 and 𝐹 is onto, there exists a 

point 𝑤 in 𝑋 such that 

𝑇 (𝑤)  =  𝑆𝑢𝑝 {𝑇(𝑥): 𝑇(𝑥)  =  𝑑(𝑥, 𝐹(𝑥)), 𝑥 ∈ 𝑋}  
Then 𝐹 has a unique fixed point in 𝑋. 
PROOF: Let 𝑤 ≠  𝐹 (𝑤), otherwise 𝑤 is a fixed point of 

𝐹. Put 𝑥 = 𝑤 and 𝑦 = 𝐹 (𝑤) 

𝑀(𝐹(𝑤), 𝐹2(𝑤), 𝑡) ≥

∅ [

𝑀(𝑤,𝐹(𝑤),𝑡)𝑀(𝐹(𝑤),𝐹(𝐹(𝑤)),𝑡)+𝑀(𝑤,𝐹(𝐹(𝑤)),𝑡)𝑀(𝐹(𝑤),𝐹(𝑤),𝑡)

𝑀(𝑤,𝐹(𝑤),𝑡)

𝑀(𝑤, 𝐹(𝑤), 𝑡),𝑀(𝐹(𝑤), 𝐹(𝐹(𝑤)), 𝑡),𝑀(𝑤, 𝐹(𝑤), 𝑡)
]  

𝑀(𝐹(𝑤), 𝐹2(𝑤), 𝑡) ≥
∅{𝑀(𝐹(𝑤), 𝐹2(𝑤), 𝑡),𝑀(𝑤, 𝐹(𝑤), 𝑡)}  
𝑀(𝐹(𝑤), 𝐹2(𝑤), 𝑡) ≥ {𝑀(𝑤, 𝐹(𝑤), 𝑡)} − − − − −
−(3.4.1)  

Similarly on putting 𝑥 =  𝐹(𝑤) and 𝑦 =  𝑤, we get  

𝑀(𝐹(𝑤), 𝐹2(𝑤), 𝑡) ≥

∅ [

𝑀(𝑤,𝐹(𝑤),𝑡)𝑀(𝐹(𝑤),𝐹(𝐹(𝑤)),𝑡)+𝑀(𝑤,𝐹(𝐹(𝑤)),𝑡)𝑀(𝐹(𝑤),𝐹(𝑤),𝑡)

𝑀(𝑤,𝐹(𝑤),𝑡)

𝑀(𝐹((𝑤))𝐹(𝐹(𝑤)), 𝑡),𝑀(𝑤, 𝐹(𝑤), 𝑡),𝑀(𝑤, 𝐹(𝑤), 𝑡)
]  

𝑀(𝐹(𝑤), 𝐹2(𝑤), 𝑡) ≥
∅{𝑀(𝐹(𝑤), 𝐹2(𝑤), 𝑡),𝑀(𝑤, 𝐹(𝑤), 𝑡)}  
𝑀(𝐹(𝑤), 𝐹2(𝑤), 𝑡) ≥ {𝑀(𝑤, 𝐹(𝑤), 𝑡)} − − − − −
−(3.4.2)    

It is clear by (3.4 .1) and (3.4.2) that 

𝑇(𝐹(𝑤)) > 𝑇(𝑤), giving a contraction  

Hence we must have 𝐹 (𝑤)  =  𝑤, that is 𝑤 is a fixed point 

of 𝐹 in 𝑋.  
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THEOREM (3.5): Let (𝑋,𝑀,∗) is a complete fuzzy metric 

space and 𝐹 be a self-map of 𝑋. The mapping 𝐹 satisfying 

the condition; 
𝑀(𝐹(𝑥), 𝐹(𝑦), 𝑡) ≥

𝑚𝑖𝑛 [
𝑀(𝑥, 𝐹(𝑥), 𝑡)𝑀(𝑦, 𝐹(𝑦), 𝑡),𝑀(𝑥, 𝐹(𝑦), 𝑡),𝑀(𝑦, 𝐹(𝑥), 𝑡),

𝑀(𝑥, 𝐹(𝑥), 𝑡)𝑀(𝑥, 𝑦, 𝑡),𝑀(𝑥, 𝐹(𝑦), 𝑡)𝑀(𝑥, 𝑦, 𝑡)
]

1

2

   

For each 𝑥 ≠  𝑦 and 𝑥, 𝑦 ∈ 𝑋 and 𝐹 is onto and then F has 

a fixed point. 

PROOF: Let 𝑥0 ∈ 𝑋 since 𝐹 is onto there is an element 𝑥1 

satisfying 𝑥1 ∈ 𝐹−1(𝑥0).  By the same way we can choose, 

𝑥𝑛 ∈ 𝐹−1𝑥𝑛−1,  where (𝑛 = 2, 3, 4 − − − − − − − −). 
If 𝑥𝑚−1 = 𝑥𝑚 for some m, the 𝑥𝑚  is a fixed point of 𝐹. 
Without loss of generality we can suppose 𝑥𝑛−1 ≠ 𝑥𝑛 for 

every 𝑛. So,  

𝑀(𝑥𝑛−1,𝑥𝑛 , 𝑡) = 𝑀(𝐹(𝑥𝑛), 𝐹(𝑥𝑛+1), 𝑡) 

𝑀(𝑥𝑛−1,𝑥𝑛, 𝑡) ≥

𝑚𝑖𝑛 [
𝑀(𝑥𝑛, 𝐹(𝑥𝑛), 𝑡)𝑀(𝑥𝑛+1, 𝐹(𝑥𝑛+1), 𝑡),𝑀(𝑥𝑛, 𝐹(𝑥𝑛+1), 𝑡)𝑀(𝑥𝑛+1, 𝐹(𝑥𝑛), 𝑡)

𝑀(𝑥𝑛, 𝐹(𝑥𝑛), 𝑡)𝑀(𝑥𝑛, 𝑥𝑛+1, 𝑡), 𝑀(𝑥𝑛, 𝐹(𝑥𝑛+1), 𝑡)𝑀(𝑥𝑛, 𝑥𝑛+1, 𝑡)
]

1
2

   

𝑀(𝑥𝑛−1,𝑥𝑛 , 𝑡) ≥ [𝑀(𝑥𝑛 , 𝑥𝑛−1, 𝑡)𝑀(𝑥𝑛+1, 𝑥𝑛 , 𝑡)]
1

2 

𝑀(𝑥𝑛−1,𝑥𝑛 , 𝑡) ≥ [𝑀(𝑥𝑛+1, 𝑥𝑛 , 𝑡)]  
[𝑀(𝑥𝑛+1, 𝑥𝑛 , 𝑡)] ≤ 𝑀(𝑥𝑛−1, 𝑥𝑛, 𝑡)  

Therefore by well known way {𝑥𝑛} is a Cauchy square in 𝑋. 
Since 𝑋 is complete {𝑥𝑛} converges to 𝑥, for some 𝑥 ∈ 𝑋. 
since 𝐹 is onto there exists 𝑦 ∈ 𝑋 such that 𝑦 ∈ 𝐹−1(𝑥) and 

for infinitely many 𝑛, 𝑥𝑛 ≠ 𝑥, for such 𝑛    
𝑀(𝑥𝑛,𝑥, 𝑡) = 𝑀(𝐹(𝑥𝑛+1), 𝐹(𝑦), 𝑡)  

≥ [
𝑀(𝑥𝑛+1, 𝐹(𝑥𝑛+1), 𝑡)𝑀(𝑦, 𝐹(𝑦), 𝑡),𝑀(𝑥𝑛+1, 𝐹(𝑦), 𝑡)𝑀(𝑦, 𝐹(𝑥𝑛+1), 𝑡)

𝑀(𝑥𝑛+1, 𝐹(𝑥𝑛+1), 𝑡)𝑀(𝑥𝑛+1, 𝑦, 𝑡),𝑀(𝑥𝑛+1, 𝐹(𝑦), 𝑡)𝑀(𝑥𝑛, 𝑦, 𝑡)
]

1

2

  

𝑀(𝑥𝑛,𝑥, 𝑡) ≥

𝑚𝑖𝑛 [
𝑀(𝑥𝑛+1, 𝑥𝑛 , 𝑡)𝑀(𝑦, 𝑥, 𝑡),𝑀(𝑥𝑛+1, 𝑥, 𝑡)𝑀(𝑦, 𝑥𝑛 , 𝑡),

𝑀(𝑥𝑛+1, 𝑥𝑛 , 𝑡)𝑀(𝑥𝑛+1, 𝑦, 𝑡),𝑀(𝑥𝑛 , 𝑥, 𝑡)𝑀(𝑥𝑛+1, 𝑦, 𝑡)
]

1

2

  

On taking limit as, 𝑛 → ∞, 𝑀(𝑥𝑛,𝑥, 𝑡) → 0.  
So we have 𝑀(𝑥, 𝑦, 𝑡)  = 0 , which implies that 𝑥 =  𝑦. 

Hence 𝐹 has a fixed point.  

THEOREM (3.6): Let (𝑋,𝑀,∗) is a complete fuzzy metric 

space, 𝑓: 𝑋𝑋, satisfy the conditions:, 

𝑀(𝑓(𝑥), 𝑓)(𝑦), 𝑡) ≥

2 𝑚𝑖𝑛 [

𝑀(𝑥,𝑓(𝑥),𝑡)𝑀(𝑥,𝑓(𝑦),𝑡)

𝑀(𝑥,𝑓(𝑥),𝑡)+𝑀(𝑦,𝑓(𝑦),𝑡)+𝑀(𝑥,𝑓(𝑦),𝑡)𝑀(𝑦,𝑓(𝑥),𝑡)

+
𝑀(𝑥,𝑓(𝑦),𝑡)𝑀(𝑦,𝑓(𝑥),𝑡)

𝑀(𝑥,𝑓(𝑥),𝑡)+𝑀(𝑦,𝑓(𝑦),𝑡)+𝑀(𝑥,𝑓(𝑦),𝑡)𝑀(𝑦,𝑓(𝑥),𝑡)

]                                                                                                                                                    

for all 𝑥, 𝑦 ∈ 𝑋, with 𝑥 ≠ 𝑦, Then 𝐹 has a fixed point.  

PROOF: Let 𝑥0 ∈ 𝑋 since 𝐹 is onto there is an element 𝑥1 

satisfying 𝑥1 ∈ 𝐹−1(𝑥0).  By the same way we can choose, 

𝑥𝑛 ∈ 𝐹−1𝑥𝑛−1,  where (𝑛 = 2, 3, 4 − − − − − − − −).  
If 𝑥𝑚−1 = 𝑥𝑚 for some m, the 𝑥𝑚  is a fixed point of 𝐹. 
Without loss of generality we can suppose 𝑥𝑛−1 ≠ 𝑥𝑛for 

every 𝑛.  

𝑀(𝑥𝑛−1,𝑥𝑛 , 𝑡) = 𝑀(𝐹(𝑥𝑛), 𝐹(𝑥𝑛+1), 𝑡) 

≥

2 𝑚𝑖𝑛 [

𝑀(𝑥𝑛−1,𝑥𝑛,𝑡)𝑀(𝑥𝑛,𝑥𝑛+1,𝑡)

𝑀(𝑥𝑛−1,𝑥𝑛,𝑡)+𝑀(𝑥𝑛,𝑥𝑛+1,𝑡)+𝑀(𝑥𝑛−1,𝑓𝑥𝑛+1,𝑡)𝑀(𝑥𝑛+1,𝑓𝑥𝑛,𝑡)
+

𝑀(𝑥𝑛−1,𝑥𝑛 ,𝑡)𝑀(𝑥𝑛,𝑥𝑛+1,𝑡)

𝑀(𝑥𝑛−1,𝑥𝑛,𝑡)+𝑀(𝑥𝑛,𝑥𝑛+1,𝑡)+𝑀(𝑥𝑛−1,𝑓𝑥𝑛+1,𝑡)𝑀(𝑥𝑛+1,𝑓𝑥𝑛,𝑡)

]  

𝑀(𝑥𝑛−1, 𝑥𝑛, 𝑡)𝑀(𝑥𝑛 , 𝑥𝑛+1, 𝑡) ≥ 2𝑀(𝑥𝑛 , 𝑥𝑛+1, 𝑡)  

Therefore {𝑥𝑛} converge to some 𝑥 ∈ 𝑋. 
Since 𝑓 is onto there exists 𝑦 ∈ 𝑋 such that 𝑦 ∈ 𝐹−1(𝑥)  and 

for infinitely many 𝑛, 𝑥𝑛 ≠ 𝑥, for such    

𝑀(𝑥𝑛+1, 𝑥𝑛, 𝑡) ≤ 𝑀(𝑥𝑛 , 𝑥𝑛−1, 𝑡)  

𝑀(𝑥𝑛, 𝑥, 𝑡) = 𝑚(𝑓(𝑥𝑛−1), 𝑓(𝑦), 𝑡)  

≥ 2 𝑚𝑖𝑛 [

𝑀(𝑥,𝑦,𝑡)𝑇(𝑥𝑛,𝑥𝑛+1,𝑡)

𝑀(𝑥,𝑦,𝑡)+𝑀(𝑥𝑛,𝑥𝑛+1,𝑡)+𝑀(𝑥𝑛+1,𝑓(𝑦),𝑡)𝑀(𝑦,𝑓𝑥𝑛+1,𝑡)
+

𝑀(𝑥𝑛+1,𝑓(𝑦),𝑡)𝑀(𝑦,𝑓𝑥𝑛+1,𝑡)

𝑀(𝑥,𝑦,𝑡)+𝑀(𝑥𝑛,𝑥𝑛+1,𝑡)+𝑀(𝑥𝑛+1,𝑓(𝑦),𝑡)𝑀(𝑦,𝑓𝑥𝑛+1,𝑡)

]        

And  

𝑀(𝑥𝑛, 𝑥, 𝑡)[𝑀(𝑥, 𝑦, 𝑡) + 𝑀(𝑥𝑛 , 𝑥𝑛+1, 𝑡) +
𝑀(𝑥𝑛+1, 𝑓(𝑦), 𝑡)𝑀(𝑦, 𝑓𝑥𝑛+1, 𝑡)]  
≥ 2[𝑀(𝑥, 𝑦, 𝑡)𝑀(𝑥𝑛 , 𝑥𝑛+1, 𝑡) +
𝑀(𝑥𝑛+1, 𝑓(𝑦), 𝑡)𝑀(𝑦, 𝑓𝑥𝑛+1, 𝑡)]  
Since,  𝑀(𝑥𝑛 , 𝑥, 𝑡) → 1 as 𝑛 → ∞, we have 𝑀(𝑥, 𝑦, 𝑡) = 1 

as 𝑥𝑛 ≠ 𝑥𝑛+1  

Therefore 𝑥 =  𝑦, so f has a fixed point. 

Now we find a common fixed point theorem for expansion 

mappings. 

THEOREM (3.7):  Let (𝑋,𝑀,∗) is a complete fuzzy metric 

space, if the mapping 𝐺, 𝐹: 𝑋 → 𝑋, satisfy the conditions: 

𝑀(𝐺𝑥, 𝐺𝑦, 𝑡) ≥ 𝑚𝑖𝑛 [

𝑀(𝑥,𝐺𝑥,𝑡)𝑀(𝑦,𝑓𝑦,𝑡)

𝑀(𝑥,𝑦,𝑡)
,
𝑀(𝑥,𝑓𝑦,𝑡)𝑀(𝑦,𝐺𝑥,𝑡)

𝑀(𝑥,𝑦,𝑡)
,

𝑀(𝑥, 𝐺𝑥, 𝑡),𝑀(𝑦, 𝑓𝑦, 𝑡),𝑀(𝑥, 𝑦, 𝑡)
]  

 

for all 𝑥, 𝑦 ∈ 𝑋, with 𝑥 ≠ 𝑦 and   𝐺 (𝑋) ⊆ 𝑋, 𝑇 (𝑋) ⊆ 𝑋  

Then 𝐺 and 𝐹 have a common fixed point. 

PROOF:  Let 𝑥0 be any point of 𝑋, we define a sequence 

{𝑥𝑛} recurrently as follows: 

𝑥0 = 𝐺𝑥1, 𝑥1 = 𝐹𝑥2, 𝑋2𝑛 = 𝐺𝑥2𝑛+1, 𝑥2𝑛+1 = 𝐹𝑥2𝑛+1,  
Now for same,  𝑛 ≥ 0, if 𝑥2𝑛+1 = 𝑥2𝑛   

Since, 𝑀(𝑥2𝑛 , 𝑥2𝑛+1, 𝑡) = 𝑀(𝑥2𝑛+1, 𝑥2𝑛+2, 𝑡)     
If 𝑥2𝑛+1 ≠ 𝑥2𝑛+2, Then we can write by the definition. 

𝑀(𝐺𝑥2𝑛+1, 𝐹𝑥2𝑛+2, 𝑡) ≥

𝑚𝑖𝑛

[
 
 
 
 

𝑀(𝑥2𝑛+1,𝐺𝑥2𝑛+1,𝑡)𝑀(𝑥2𝑛+2,𝐹𝑥2𝑛+2,𝑡)

𝑀(𝑥2𝑛+1,𝑥2𝑛+2,𝑡)
,

𝑀(𝑥2𝑛+1,𝐹𝑥2𝑛+2,𝑡)𝑀(𝑥2𝑛+2,𝐺𝑥2𝑛+1,𝑡)

𝑀(𝑥2𝑛+1,𝑥2𝑛+2,𝑡)
,

𝑀(𝑥2𝑛+1, 𝐺𝑥2𝑛+1, 𝑡)𝑀(𝑥2𝑛+2, 𝐹𝑥2𝑛+2, 𝑡),𝑀(𝑥2𝑛+1, 𝑥2𝑛+2, 𝑡)]
 
 
 
 

  

= 𝑚𝑖𝑛 [

𝑀(𝑥2𝑛+1,𝑥2𝑛,𝑡)𝑀(𝑥2𝑛+2,𝑥2𝑛+1,𝑡)

𝑑(𝑥2𝑛+1,𝑥2𝑛+2,𝑡)
, 𝑀(𝑥2𝑛+1, 𝑥2𝑛 , 𝑡),

𝑀(𝑥2𝑛+2, 𝑥2𝑛+1, 𝑡),𝑀(𝑥2𝑛+1, 𝑥2𝑛+2, 𝑡)
]  

𝑀(𝑥2𝑛, 𝑥2𝑛+1, 𝑡) ≥ 𝑀(𝑥2𝑛+1, 𝑥2𝑛+2, 𝑡)  

Then we must have 𝑀(𝐹𝑥2𝑛+2, 𝑥2𝑛+1, 𝑡) = 1.  
This implies, 𝑥2𝑛+1 = 𝑥2𝑛+2 a contradiction. 

Thus we have 𝑥2𝑛 = 𝑥2𝑛+2 

Similarly, if 𝑥2𝑘+1 = 𝑥2𝑘+2, (𝑘 ≥ 0). 
We get that 𝑥2𝑘 = 𝑥2𝑘+2 = 𝑥2𝑘+2 = 𝑥2𝑘+3 = ⋯… …   

If follow that 𝐺 and 𝐹 have common fixed point. 

Next suppose 𝑥2𝑛+1 ≠ 𝑥2𝑛+2 and 𝑥2𝑛+2 ≠ 𝑥2𝑛+3 for all 𝑛 ≥
0, 
So, by the given definition 

𝑀(𝑥2𝑛, 𝑥2𝑛+1, 𝑡) ≥ 𝑀(𝑥2𝑛+1, 𝑥2𝑛+2, 𝑡) ≥
𝑀(𝑥2𝑛+1, 𝑥2𝑛+3, 𝑡)  

If follow that {𝑥𝑛} is a Cauchy sequence. By completeness 

of 𝑋 there is some point 𝑧 in 𝑋 which {𝑥𝑛} converges to 𝑧 

By the condition there is a point w in 𝑋 such that 𝐺𝑤 = 𝑧 
Since we can suppose 𝑤 ≠ 𝑥2𝑛+2  for infinitely many 𝑛 we 

can write, 

𝑀(𝑧, 𝑥2𝑛+1, 𝑡) = 𝑀(𝐺𝑤, F𝑥𝑛+2, 𝑡)  
≥

𝑚𝑖𝑛 [
𝑀(𝑤,𝐺𝑤,𝑡)𝑀(𝑥2𝑛+2,F𝑥2𝑛+2,𝑡)

𝑀(𝑧,𝑥2𝑛+2,𝑡)
, 𝑀(𝑤, 𝐺𝑤, 𝑡)𝑀(𝑥2𝑛+2, F𝑥2𝑛+2, 𝑡),𝑀(𝑤, 𝑥2𝑛+2, 𝑡)]  

As 𝑛 → ∞ we obtain  

0 ≥  𝑀(𝑤, 𝑧, 𝑡) 
Therefore it implies that 𝑧 = 𝑤 = 𝐺𝑧    𝑖. 𝑒. 𝐺𝑧 = 𝑧. 
Similarly, 𝐹𝑧 =  𝑧. 
This completes the proof. 
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