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1. INTRODUCTION AND PRILIMINARIES

It was shown by S. Kashara [4] & [5] in 1975 that
several known generalization of the Banach contraction
theorem can be derived easily from a fixed point theorem in
an L-space. Iseki [2] has used the fundamental idea of
Kashara to investigate the generalization of some known
fixed point theorem in L —space.

Many other mathematicians Yeh [13], Singh [10],
Pachpatte [6], Pathak and Dubey [7], Jain, R. K and Sahu,
H. K [3], Patel, Sahu and Sao [8], Patel and Patel [9], Som
[11], Sao [12] did lot of work in L — spaces. Recently
Bhardwaj, Rajpoot and Yadava [1] also worked on L-
spaces. and produced some fixed point and common fixed
point theorems. In this present paper a similar investigation
for the study of fixed point and common fixed point
theorems in L —spaces are worked out. We find some fixed
point and common fixed point theorems in L —spaces.
Definition 1.1: L — Space: Let N be a set of all non
negative integers and X is a non-empty set. A pair (X,—) of
a setX and a subset — of the set XV x X, is called an L —

space if

(i) If x,=x, where x € X, for all n€ N, then
. ({xn}neN 'x) S

(i) ({xn}nen ,X) €=, then  ({xn;}ien ,x) €=, for

every {xni}ieN of (X Inen

in what follows, we shall write {x,,},en — X,
Or x, — x instead of ({x,}nen ,x) €— and read
{x}nen converges to x .
Definition 1.2: An L —space (X,—) is said to be separated
if each sequence in X converges to at most one point of X.
Definition 1.3: A mapping T of an L — space (X,—) into
an L —space (X,—) is said to be continuous if x, - x =
Tx,, — Tx, for some sub sequence {xni}ieN, X nen-

Definition 1.4: Let d be non-negative extended real valued
function on XxX, 0<d(x,y) <
o forall x,y € X, an L —space (X,—) is said to be
d —complete if each sequence, {x, },en, IN X with
Y d(x;, v;+1) < o converges to at most one point of X.

Definition 1.5: Let (X,—) be an L —space which is
d —complete for a non-negative real valued function d on
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X x X, if (X,-) is separated, then d(x,y) = d(y,x) =0,
implies x = y for every x,y in X

2. Main Results
Theorem 2.1: Let (X, —) be a separated L — space which is
d —complete for a non-negative real valued function d on
X xX, with d(x,x)=0 for all xinX. Let E be a
continuous self map of X satisfying the conditions:

) d(x,Ex)d(y,Ey),d(x, Ex)d(y, Ex), }

idl((E;‘ ENP = 0{ 40y Eyrd Gy £ s ) 9

A

V x,y € X. Then E has a unique fixed point.

Proof: Letx, be an arbitrary point in X, define sequence

{x,} recurrently,

Exy =x1,EX{ = Xp, v vev vev ve e

0,1,2,3,...

Now by 2.1(a) we have
[d(xy, %)% = [d(Exo, Ex;)]?
< Q){d(xo,Exo)d(xl,Exl),d(xo,Exo),d(xl,Exo),}
- d(xy, Ex;)d (xq, Exg), d(xo, Ex;)d (x4, Exg)

Ex, = x4, Where,n =

<
{d(xo» x1)d(xq, %), (X0, %1), d (x4, X1), }
d(xq, x5)d (x4, x1), d (X, X5)d (X1, X1)
<
h.d(xo,x1)d(x;, x3)
d(xy,x5) < h.d(xg,%q)

Similarly d(xy,x3) < h.d(xq,%;)
< h. h.d(xy,x,)
d(xp, Xp1) < h™.d(x0,x1),
where h < 1

for every natural number we can say that Y.d(x,, x,+1) <
oo
By d —completeness of the space, the sequence
{E™x,},n € N converges to some u in X. By continuity of
E, the sub sequence {E™x,} also converges to u.
lim EM*lx, = E,
1—00
lim E™x, = u
1—00
E (lim E™x,) = Eu
i—oo
lim E™M*1x, = Eu

>0
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= E, =u,sou isa fixed point of E.
Uniqueness: In order to prove thatu is the unique fixed
point of E, if possible let v be any other fixed point of E
(v # u). Then
d(u,v) = d(Eu, Ev)
5 d(u, Euw)d (v, Ev),d(u, Eu)d(v, Eu),
[d(Ew, Ev)]* < 0 { d(v, Ev)d(v, Eu),d(u, Ev)d (v, Eu) }
[d(u, v)]? < hld(u,v)]?
This is a contradiction because h < 1. So E has a unique
fixed point in X.
Now we will prove another fixed point theorem which is
stronger than theorem 2.1.
Theorem 2.2: Let (X,—) be a separated L —space which is
d —complete for a non-negative real valued function d on
XxX, with d(x,x)=0 for all xinX. Let E be a
continuous self map of X satisfying the conditions:
d(Ex,Ey) <

1
{d(x, Ex)d(y,Ey),d(x, Ex)d(y, Ex), }5
“1d@, Ey)d(y, Ex), d(x, Ey)d(y, Ex)

V x,y € X. Then E has a unique fixed point.
Proof: Letx, be an arbitrary point in X, define sequence

{x,} recurrently,
Exqg = x1,Exy = Xg, wu. ...
wheren = 0,1,2,3, ...
Now by 2.2(a) we have
d(xy,x,) = d(Exg, Ex;) <

{d(xm Exo)d(xy, Exy), d(xg, Exo)d (x1, Exo), }
x d(xy, Ex)d(xq, Exg),d(xg, Ex{)d(xq, Exg)
<

1
ma {d(xo: x1)d (%1, x3), d(Xg, x1)d (X1, X1), }2
d(xq, x5)d(x1, x1), d (x, x5)d (X1, X1)
<

2.2(a)

TR Exn = xn+1

N =

1

{d(xo, x)d(x1, %) 2
d(xy, %) < d(x, %)
Similarly d(xy,x3) < d(xq, %) <

d(x,%1)

A(xp, Xpgr1) <eeeeenen. < d(xg,x1),
for every natural number we can say that
Yd(xn, Xpy1) <
By d —completeness of the space, the sequence {E™x,},
n € N converges to some u in X. By continuity of E, the
sub sequence {E™x,} also converges to u.
lim EM*lx, = E,

{—oo
lim E™x, = u
[—o0
E(lim E™x,) = Eu
i—o00
lim E™*1lx, = Eu
[—o0
= E, =u,sou isa fixed point of E.
Uniqueness: Now to prove the uniqueness of the fixed
point u of E, contrarily assume that there is another possible
fixed point v of E and v # u. Then

d(u,v) = d(Eu,Ev)
1
d(u, Euw)d(v, Ev), d(u, Eu)d (v, Eu), }5
d(v, Ev)d(v, Eu), d(u, Ev)d (v, Eu)
d(u,v) <d(u,v)
This is a contradiction. So E has a unique fixed point in X.

d(Eu,Ev) < {
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Theorem 2.3: Let (X, —) be a separated L —space which is
d — complete for a non-negative real valued function d on
X x X, with d(x,x) = 0 for all xinX. Let E and T be two
continuous self map of X satisfying the conditions:

ET = TE, E(X) € T(X)
2.3(a)

[d(Ex, Ey)]? <
d(Tx, Ex)d(Ty,Ey),d(Tx, Ex)d(Ty, Ex),
0 { d(Ty,Ey)d(Ty,Ex),d(Tx, Ey)d(Ty, Ex) }
2.3(b)
Vx,y € X. Then E and T has a uniqgue common

fixed point.
Proof: Letx, be an arbitrary point in X, since E(X) <
T(X), we can choose x; € X suchthat Ex, = Tx;, Ex; =
Txy, oo vieven e Exyy = Ty Form =1,2,3, ...
[A(TXn41, TXp42)]* = [d(Exp, EXpiq)]?
<®{ d(Txn'Exn)d(Txn+1rExn+1)'d(Txn'Exn)d(Txn+1vExn)v
- d(Txn+1'Exn+1)d(Txn+1rExn)rd(Tx<n'Exn+1)d(Txn+1vExn)
@ { A(Txn, Txn41)A(Txn 41, Txn42), A(TXn, T 41), d(T;n+1‘ Txn+1), }

d(Txn+1z Txn+2)d(Txn+1t Txn+1): d(Txn: EXrH—l)d(TXrH-lt TXn-H)
d(Txp41, TXny2) < hod(Txy, TXpeq)

Hence, d(Tx,11, Txpyp) < h™.d(Txy, Tx,)

For every natural number m ,we can write the
Z?ﬁd(xm'xm+1) <

By d —completeness of x, the sequence {T™xg}nen
converges to some u € X.Since E(x) < T(x), therefore the
subsequence t of {T™x,} such that, E(T(u)) - Eu, and
T(E(w)) » Tu,Sowe have, Eu = Tu

Since lim T"X, =u, T(rlli_r)rolo T"Xy) = Tu--------------m-----

n—oo
-(2.3.1)
This impliesthat Tu = u . Hence Tu = Eu = u
Thus u is common fixed point of E and T.
Uniqueness: For the uniqueness of the common fixed point,
if possible let v be any other common fixed point of Eand T.
Then from 2.3(b)
d(u,v) = d(Eu, Ev)
[d(Eu, Ev)]? <
d(Tu, Eu)d(Tv, Ev),d(Tu, Euw)d(Tv, Eu),
{ d(Tv,Ev)d(Tv,Eu),d(Tu, Ev)d(Tv, Eu) }
[d(u, v)]? < h.[d(u, v)]?
Which is a contradiction because h < 1. Hence E andT
have a unique common fixed point in X.
Theorem 2.4: Let(X, —)be a separated L-Space which is d-
complete for a non negative real valued function d on X x X
with d(x,x) =0for all xin X. Let Eand T be two
continuous self mappings of X. Satisfying the conditions:
ET =TE,E(X) € T(X) 2.4(a)
d(Ex,Ey) <
1
d(Tx,Ex)d(Ty,Ey),d(Tx,Ex)d(Ty, Ex),)2
{ d(Ty, Ey)d(Ty,Ex),d(Tx,Ey)d(Ty, Ex) }
2.4(b)
Vx,y€X. Then E and T has a unique common fixed
point.
Proof: Letx, be an arbitrary point in X, since E(X) <
T(X), we can choose x; € X suchthat Ex, = Tx;, Ex; =
Txg) e vewvewvee e Exyy = Txp g FOrn = 1,23, ...
A(Txp41, Txnyp) = d(Exy, Expyq)
AT, Exp) (T3 Exy1), (T, Exy)A(T s E), }%

< max {
A(Txn1, Exny 1) d(Txp 1, Exn), d(Tx, Expy1)d (Txpy1, EXy)
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<

1
max { d(Txn' TX"+1)d(TX"+1, Txn+2)' d(Txn' Txn+1)d(Txn+1' Txn+1)' }2
d(Txrwlr TX"+2)d(TX"+1, Txn+1)' d(Tlxw Txn+2)d(Txn+1' Txn+1)

< {d(Txn' Txn+1) }E

d(Txni1, Txnyz) < d(Txy, Txy),
for every natural number m, we can say that
Z?‘Z d(xm'xm+1) <
By d —completeness of X, the sequence {T"xg}nen,
converges to some u in X. Since E(X
T(X),50 E(T(u)) - Eu,and T(E(u)) - Tu we have Eu -
Tu,

Since limT"x, =u
n—-oo
TimT™xg) = Tu -------------=--=-
n—oo
---------- (2.4.1)
>Tu=u,

Hence Tu=Eu=wu .So u is common fixed point of
EandT.
Uniqueness: In order to prove thatu is the unique fixed
point of E, if possible let v be any other fixed point of
EandT, (v # w). Then from (2.4) (b)

d(u,v) = d(Eu, Ev)
d(Eu,Ev) <

{d(Tu, Ew)d(Tv, Ev), d(Tu, Eu)d(Tv, Ew), f
x d(Tv, Ev)d(Tv, Eu),d(Tu, Ev)d(Tv, Eu)
1

d(u,v) < [d(w,v)]z
Which is a contradiction. Hence E and T have a unique
common fixed point in X.
In next theorems we will prove the common fixed point
theorems for three mappings.
Theorem 2.5: Let(X, —) be a separated L-Space which is d-
complete for a non-negative real valued function d on X x X
with d(x,x) =0for all xin X. Let E,F,T be three
continuous self mappings of X. Satisfying the conditions:
ET = TE,FT =TF,E(X) c¢ T(X)And F(X) c
T(X) 2.5(a)
[d(Ex, Fy)]* <
d(Tx,Ex)d(Ty,Fy),d(Tx, Ex)d(Ty, Ex),
{ d(Ty, Fy)d(Ty, Ex),d(Tx,Fy)d(Ty, Ex) }

2.5(b)

Vx,y €X. Then
common fixed point.
Proof: Letx, be an arbitrary point in X, since E(X) c
T(X),we can choose x; € X such that Tx, = Ex,,also
F(x) c T(X).We can choose a point x, in Xsuch that

E,F,T has a unigue

Tx, = Fx;,.

In general we can choose the point
Tx2n+1 = Exzn, """"""""" (2.5.1)
Txypip = FXppyq, —--------=- (2-5-2)

For every n € N, we have

[d(Tx2n+1,Tx2n+2)]2 = [d(ExZn!Fx2n+1)]2
[d(Ex,Fy)]* <

o { A(Tx 0, Expn )d(TX 2041, FXop41), d(T X0, EX0)A(TX 50011, EXo),
A(Txn41) FX2n41)A(T X040, EXpp), A(TX g, FX 500 11)d(TX 5011, B a3t

d(Tx2n+1' Tx2n+2) <h d(TxZn: Tx2n+1)

Similarly

Forn =1,2,3,

(Tx2n41, TXpn42) < R™d(Tx1,Txg)
Zfﬁo d(Txzi41, TXpp4,) < 00
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Thus the d —completeness of the space implies the sequence
{T"xg}nen CONverges to some u € X. So by (2.5.1) and
(2.5.2), (E™"xy)n € N, and (F"x,)n € N also converges to
the some point u respectively.

Since E, Tand F are continuous, there is a subsequence t of
{T"x,},n €N such that E(T®)) - Eu, T(E()) -
Tu, F(T(t)) » Fuand T(F(t)) - Tu

Hence we have, Eu = Fu =Tu ---------
(2.5.3)

Thus T(Tu) = T(Eu) = E(Fu) = T(Fu) = F(Tu) =

E(Tu) = F(Ew) = F(Fu)--------- (2.5.4)

Now if Eu # F(Eu)
[d(Eu, F(Ew))]?
< ®{ d(Tu, Euw)d(T (Eu), F(Euw)), d(Tu, Ew)d(T(Euw), Eu), }
= P d(T (Ew), F(Ew))d(T (Ew), Eu), d(Tu, F (Eu))d(T(Ew), Ew)
[d(Eu, F(Ew))]? < hd (Tu, F(Ew)d (Tu, F (Eu))
[d(Eu, F(Ew))] < h[d(Eu, F(Ew))]
Which is a contradiction. Hence Eu = F(Eu) -----------------
(2.5.5)
From (2.5.4) and (2.5.5) we have
Eu = F(Eu) = T(Eu) = E(Eu)

Hence Eu is a common fixed point of E, Fand T.
Uniqueness: For the uniqueness of the common fixed point,
if possible let w and v ,(v # u) be two common fixed
point of E,FandT.Then from (2.5)(b) d(u,v)=
d(Eu, Fv)
[d(Eu, Fv)]? <

ad(Tu, Ew)d(Tv, Fv), fd(Tu, Euw)d(Tv, Eu),

{ d(Tv, Fv)d(Tv, Ew), d(Tu, Fv)d(Tv, Eu) }

[d(u, v)]? < h.[d(u,v)]?
Which is a contradiction. Hence u = v.
So E,Fand T have a unique common fixed point.
Theorem 2.6: Let (X,—) be a separated L-Space which is
d-complete for a non-negative real valued function d on
X x X with d(x,x) =0for all xin X. Let E,Fand T be
three continuous self mappings of X. Satisfying the
conditions:

ET = TE,FT =TF,E(X) € T(X)And F(X) c
T(X) 2.6(a)
d(Ex,Fy) <

1
d(Tx,Ex)d(Ty, Fy),d(Tx,Ex)d(Ty, Ex),)2
x{d(Ty, Fy)d(Ty, Ex),d(Tx, Fy)d(Ty,Ex)}

2.6(b)

Vx,y €X. Then E,FandT has a unigue common fixed
point.

Proof: Letx, be an arbitrary point in X, since E(X) c
T(X), we can choose x; € X such that  Tx; = Ex,,also
F(x) € T(X).We can choose a point x, in X such that

TXZ = Fxl.

In general we can choose the point
TX2n+1 = EXZn, """"""""" (2.6.1)
TXxyni2 = FXppiq, - (2-6-2)

For every n € N, we have
d(Txpn41, TXop42) = A(EXop, EXpps)
}{ AT, B ) (T3, F ) AT, B AT
d(Tx2n11, FXon41)d(TX2n11, EX2n), A(TXop, FXon41)d(Tx:
d(Txzn41, Txopna2) < d(Txop, Txop41) Forn =

d(Txz2n11, TXone2) < d(Txy, TXo),
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Z d(Txzi41) Txpi4,) < 00

i=0
Thus the d —completeness of the space implies the
sequence {T"xy},ey cCONverges to some u€X. So
(E™xo)n € N, and (F™xy)n € N also converges to the some
point u respectively.
Since E, Tand F are continuous, there is a subsequence t of
{T™x,},n € N such that E(T(t)) - Eu,T(E(t)) -
Tu,F(T(t)) » Fuand T(F(t)) » Tu
Hence we have Eu = Fu =Tu
(2.6.3)
Thus T(Tu) = T(Eu) = E(Fu) = T(Fu) = F(Tu) =
E(Tu) = F(Eu) = F(Fu)------ (2.6.4)
Now if Eu # F(Eu)
d(Eu, F(Eu)) <

1

{ d(Tu, Eu)d(T (Eu), F(Eu)),d(Tu, Eu)d(T (Eu), Eu), }5

d(T(Ew), F(Ew))d(T (Ew), Ew), d(Tu, F(Ew))d(T (Ew), Eu)
d(Eu, F(Ew)) <

1
{[d(Tu, F(Eu))d(Tu, F(Euw))] }2
d(Ew, F(Ew)] < [d(Ew, F(Ew))]
Which is a contradiction. Hence Eu = F(Eu) -----------------
(2.6.5)
so Eu = F(Eu) = T(Eu) = E(Eu)
Hence Eu is a common fixed point of E, F and T.
Uniqueness: In order to prove that u is the unique common
fixed point of E,Fand T. If possible let v be any other
common fixed pointof F and T (v # u). Then we have

d(u,v) = d(Eu, Fv)

d(Eu,Fv) <

1
d(Tu, Ew)d(Tv, Fv),d(Tu, Eu)d(Tv, Eu),)?
max { d(Tv, Fv)d(Tv, Evw), d(Tu, Fv)d(Tv, Eu) }
d(u,v) < d(u,v)
Which is a contradiction. Hence u = v. So E, F and T have
a unique common fixed point in .
Theorem 2.7: Let (X,—) be a separated L-Space which is
d-complete for a non-negative real valued function d on
X x X with d(x,x) =0for all xin X. Let E,Fand T be
three continuous self mappings of X. satisfying the
conditions:
ET = TE,FT =TF,E(X) € T(X) and F(X) c
TX) 2.7(a)
[d(EPx, F1y)]? <
d(Tx,EPx)d(Ty,Fy),d(Tx, EPx)d(Ty, E?x),
0 { d(Ty, Fly)d(Ty, EPx),d(Tx, Fiy)d(Ty, E?x) }
2.7(b)
Vx,y €X. Tx # Ty. If some positive integer p,q exists
such that EP,Feand T are continuous. Then E,FandT
have a unique fixed point in X.
Proof: It follows from 2.6(a)
EPT = TEP,FiT = TF9,EP(X) C T(X)--------mmmmmmmm-
2.7.1)
and
(2.7.2)
i.e. u is the fixed point of T, EPand F1.
NowT (Eu) = E(Tu) = E(u) = E(EPu) = EP(Eu)----—--
(2.7.3) T(Fu) = F(Tu) =
F(u) = F(F9u) = F1(Fu)------ (2.7.4)

10O Y= [0'¢ —
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Hence it follows that Eu is common fixed point of
T,EP and Fuis a common fixed point of T and F?.The
uniqueness of u, can be proved easily.

Theorem 2.8: Let (X,—) be a separated L-Space which is
d-complete for a non-negative real valued function d on
X x X with d(x,x) =0for all xin X. Let E,Fand T be
three continuous self mappings of X, satisfying the
conditions:

d(EPx,Fly) <

1

2 {d(Tx, EPx)d(Ty,Fly),d(Tx, EPx)d(Ty, EPx), }5

d(Ty,Fiy)d(Ty,EPx),d(Tx, Fiy)d(Ty, EPx)
2.8(a)
Vx,y €X. Tx # Ty .If some positive integer p,q exists
such that E?, Fland T are continuous. Then E,F,T have a
unique fixed point in X.
Proof: The proof is similar as the Theorem (2.7).
Now we will prove some common fixed point theorem for
four mappings, which contains rational expressions.
Theorem 2.9: Let (X,—) be a separated L-Space which is
d-complete for a non-negative real valued function d on
X x X with d(x,x) = 0for all xin X. Let E,F,Tand S be
four continuous self mappings of X. Satisfying the
conditions:
ES = SE,FT =TF,E(X) € T(X) and F(X) c S(X)
2.9(a)

d(Ex,Fy) <
d(Ex,Ty)+d(Sx,Fx) d(Fy,Ty)+d(Ex,Ty)
a max [d (Sx' Ty)' {d(Sx,Ty)+d(Ex,Ty)} ! d(Sx, Ex)' {d(Sx,Ty)+d(Ex,Ty)}]
2.9(b)

V x,y € X with [d(Sx, Ty) + d(Ex, Ty)] # 0.
Then E,F, T and S have a unique fixed point.
Proof: Let x, € X, there exists a point x; € X,such that
Tx, = Ex, and for this point x,we can choose a point x, €
X,such that Fx; = Sx, and so on inductively,we can define
a sequence {y,,} in X such that
Yan = TXn41 = Expp and
wheren =0,1,2,— — —
We have, d(¥zn, Y2n+1) = d(EXan, FX2n14)

Yon+1 = SXonsz = FXopgq

<

N d(Exyn,TX )+d(Sx21,FX20)
d(szn, Tx2n+1),{ 21N 2n+1 2N 2N ,
A(Sx2n,TX2n+1)+A(EX2n,TX2n+1)

d(Fx ,Tx )+d(Exyn,Tx )
d(SxZn:ExZn)’{ 2n+1.TX2n+1 2T X2n+1
A(SxX2n,TX2n+1)+A(EX2n,TX2n+1)

amax

<

d(SXZn, Tx2n+1)l {d(Tx2n+1:Tx2n+1)+d(szn+1»Tx2n+1)} )
d(Sx2n,TX2n+1)+d(TX2n41,TX2n+1)

d (szn’ Tx2n+1)l {d(Fx2n+1:Tx2n+1)+d(szn+1»Tx2n+1)}
A(Sx2n,TX2n+1)+A(TX2n41,TX2n+1)

amax

<
d(SXZnI Tx2n+1), 0'

amax d(Sxan,Fxan+1)
d(stn'Tx2n+1)z { BEY
A(Sx2n,TX2n+1)

Case I: AdV2n Yan+1) = Ad(Expn, FXpniq) <

a {d(stn' Tx2n+1)}

Hence d(Yan Y2ns1) < d(Van-1,Y2n)
For every integer p > 0, we get

d(yn’yn+p) S d(yn'yn+1) + d(yn+1;yn+2) + ------
+d(yn+p—1: yn+p)
p

a
1—a

Ad(VnsYn+p) < { Y Vn Yns1)
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Letting n — co, we have d(yy, Yn4+p) — 0. Therefore {y,} is
a Cauchy sequence inX. By d —completeness of X,
{V}nen IS converges to some u € X. So subsequence
{Exon} AFXon 413, {T 2011 tand {Sxyp 2}of {vn} also
converges to same pointu. Since E,F,TandS are
continuous, such that
E[S(x,)] = Eu,S[E(x,)] = Su, F[T(x,,)]
- Fuand T[F(x,)] =» Tu

So, by weak compatibility Eu = Su, Fu = Tu. Now from
2.9(a) and 2.9(b) d(E%x3p, FXppi1) =
d(E(ExZn)'Fx2n+1)

<

N A(E(EX2n) T X2m41)+d(S(Ex ), E(EX2r)
Ex,), T A
d(S( Xon) x2n+1) A(S(Ex2n),Txzn+1)+d(E(EX2n),TX2n+1)

a max

<
d(Eu,u)+d(Su,Eu)}
d(Suu)+d(Euu) )’

d(Su,u),{

amax M}

d(Su, Ew), {d(Su,u)+d(Eu,u)
d(Eu,u) < d(Su,u) = a d(Eu,u)
This is a contradiction, because ¢ < 1.
SO0 Eu = Su =wu, that is u is common fixed point of
EandS. Similarly we can prove Fu=Tu=u. So
E,F,T and S have common fixed point.
Uniqueness: In order to prove thatu is the unique
common fixed point of E, F,Tand S. If possible let v be any
other common fixed point of ,F,Tand S (v # u). Then
we have

d(u,v) = d(Eu, Fv)

d(Eu,Fv) <

d(Eu,Tv)+d (Su,Eu)} ’

d (Su' TU), {d (Su,Tv)+d(Eu,Tv)

amax

d(Su, Eu), {w}

d(Su,Tv)+d(Eu,Tv)
d(u,v) < ad(u,v)

© 2015-19, IJARCS All Rights Reserved

d(Fxan+1,T%2n+1)+d(E(Ex2n),TX2n+1)
A(S(Exzn), E(Exzn)) A(S(Ex2n),Tx2n+1)+d(E(EX2n),TX2n+1)

Which is a contradiction because <1 . Henceu is the a
unique common fixed pointof E,F,T and S.
This completes the proof.
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