
Volume 2, No. 5, Sept-Oct 2011

International Journal of Advanced Research in Computer Science

CASE STUDY AND REPORT

Available Online at www.ijarcs.info

© 2010, IJARCS All Rights Reserved 541

ISSN No. 0976-5697

Comparison of Metamoprhic Testing and Special Value Testing using the properties of
SUT

Sandeep Kang
Assistant professor of CSE Dept.
CEC, Landran. Mohali, INDIA

Amanjot Singh*
M.tech Student of CSE Dept.

CEC, Landran. Mohali, INDIA
amanjotmundi@gmail.com Cecm.cse.skang@gmail.com

Parminder Singh
Assistant professor of IT Dept
CEC, Landran, Mohali, INDIA
Singh.parminder06@gmail.com

Abstract: When testing a program, correctly executed test cases are seldom explored further, even though they may carry useful information.
Metamorphic testing proposes to use special test cases to check important properties of the target function. It does not need a human oracle to verify,
compare or predict output . An “oracle” in software testing is a procedure by which testers can decide whether the output of the program under
testing is correct. In some situations, however, the oracle is not available or too difficult to apply. This is known as the “oracle problem”. The manual
prediction and verification of program output greatly decreases the efficiency and increases the cost of testing. A metamorphic testing method has
been proposed to test programs without the involvement of an oracle. It employs properties of the target function, known as metamorphic relations, to
generate follow-up test cases and verify the outputs automatically.

Keywords: Metamorphic testing, Metamorphic relation, software under test(SUT), oracle, successful test cases

I. INTRODUCTION

It is impractical, if not impossible, to test a program with
all conceivable inputs we should aim at selecting test cases
with higher probabilities of revealing program failures. A
successful test case is one on which the program computes
correctly. Since successful test cases do not reveal any failure,
they are conventionally considered useless and thus discarded
by testers or merely retained for reuse in regression testing
later, but in Metamorphic testing only these successful test
cases are taken ton generate the follow up test cases. Another
limitation of software testing is the oracle problem .An oracle
is a mechanism against which people can decide whether the
outcome of the program on test cases is correct. In some
situations, the oracle is not available or is too expensive to be
applied, even when manual prediction and comparison of
testing results are possible, they are often time consuming and
error prone A metamorphic testing (MT) method has been
proposed with a view to making use of the valuable
information in successful test cases. It does not depend on the
availability of an oracle.

It proposes to generate follow up test cases based on
metamorphic relations, or properties among inputs and outputs
of the target function. Metamorphic relation (MR) is a relation
over a series of distinct inputs and their corresponding results
for multiple evaluations of a target function [20]. Consider, for
instance, the sine function. We have the following relation: If
x2 = π – x1, then sin x2 = –sin x1. We note from this example
that a metamorphic relation consists of two parts. The first part
(denoted by r in the definition below) relates x2 to x1. The

second part (denoted by r') relates the results of the function.
If the MR above is not satisfied for some input, we deem that
a failure is revealed.

II. THE CONCEPT OF METAMORPHIC
TESTING

Metamorphic testing (MT) is a technique to generate
follow-up test cases based on existing test cases that have not
revealed any failure. MT should be applied in conjunction
with other test case selection strategies that generate the initial
set of test cases. Let us consider a program p implementing
function f on domain D. Let S be the test case selection
strategy adopted by the tester, such as data flow testing or
branch coverage. According to S, a test set T = {t1, t2, . . . , tn}
⊂ D, where n ≥ 1, can be generated. Running the program on
T yields the outputs p(t1), p(t2), . . . , p(tn). When there is an
oracle, these test results can be verified against f (t1), f (t2), . .
. , f (tn); Otherwise the tester may still have some way to
identify some outcomes that are obviously wrong. For
example, an execution that runs too long can be considered a
failure; when a trigonometric function computing cos x returns
a value greater than 1, a failure can also be found immediately.

When a failure has been detected, testing can stop and the
program will be debugged; otherwise T is a set of successful
test cases. In the latter case, MT can be applied to
automatically generate follow-up test cases T′ = {t′1, t′2 , . . . ,
t′n } ⊂ D based on the initial successful test set T, so that the
program can be further verified against some necessary
properties. MT is useful because the vast majority of test cases
are successful ones, although they have not revealed any

Amanjot Singh et al, International Journal of Advanced Research in Computer Science, 2 (5), Sept –Oct, 2011,541-543

© 2010, IJARCS All Rights Reserved 542

failure, these test cases do carry useful information ignored in
conventional testing. MT generates follow-up test cases by
making MT generates follow-up test cases by making
reference to “metamorphic relations” (MR). For program p, an
MR is a property of its target function f . For a successful test
case ti and a chosen MR, we can construct follow-up test
case(s), say t′I , and run the program again. Let p denote the
program under test. We check ti, p(ti), t′i , and p(t′i) against
the MR.

If MR cannot be satisfied, the program must have failed.
Consider, for instance, a program that computes the sine
function. The property sin x = sin(180−x) can be used as a
metamorphic relation. Let t = 57.3 be one of the test cases
chosen according to a selection strategy such as branch
coverage. Suppose the output is 0.8415. This output may not
be verified easily if an oracle is not available. On the other
hand, regardless of whether an oracle exists, MT suggests
testing the program with a follow-up test case 180−57.3. The
program is run on this test case to produce a second output,
say 0.8402. The two outputs are then compared. Obviously,
they do not satisfy the expected MR and hence a failure is
detected before MT is applied, a test case selection strategy S
and a set of test cases T corresponding to S must exist in the
first place. If no failure is revealed by T, then MT can be
applied to generate a new set of test cases as a partner
accompanying T, so that the program can be further verified
against some necessary metamorphic relations.

This is regardless of whether an oracle is available.
Another characteristic of MT is that Metamorphic relations are
not limited to identity relations. Any expected relation
involving inputs and outputs of two or more executions of the
program can be taken as an MR. MT does not check the
correctness of individual outputs. Instead, it checks the
relations among several executions. Since no manual output
predictions and comparisons are required, MT can be efficient
and fully automated.

III. APPLICATION OF METAMORPHIC TESTING

A. Computer Graphics:
When the outputs of a program involve a large amount of

data, they are expensive to verify. For example, computer
graphics software generates graphics and prints them on the
screen. It is, however, practically impossible for the tester to
manually check whether each and every pixel is displayed
properly. In this situation, a practical approach is that after
checking the correctness of certain amount of individual
outputs, we apply MT to verify all the outputs in a more cost
effective way. For the tester, it is not easy to verify whether all
the pixels in the screen are displayed properly because the
generation of realistic graphics involves complicated
computation and there is a huge amount of pixels.

Nevertheless, some metamorphic relations can be
identified. For example, if the position of the light source for
an image changes, then the brightness of all the points that
become closer to the light source will increase according to a
certain formula; similarly, all the points that become farther

will become darker. This is an easy approach to check all the
displayed pixels quickly and automatically.
Following this way, many other metamorphic relations can be
identified as well.

B. Other Areas of Application:
Many applications in the field of scientific computing -

such as computational biology, computational linguistics, and
others - depend on Machine Learning algorithms to provide
important core functionality to support solutions in the
particular problem domains. However, it is difficult to test
such applications because often there is no “test oracle” to
indicate what the correct output should be for arbitrary input.
In such cases also metamorphic testing is efficient for
validating the system. Many applications in the field of
scientific computing -such as computational physics,
bioinformatics, etc. depend on supervised Machine Learning
(ML) algorithms to provide important core functionality to
support solutions in the particular problem domains. For
instance, lists over fifty different real-world computational
science applications, ranging from facial recognition to
computational biology, that use the Support Vector Machines
classification algorithm alone. As these types of applications
become more and more prevalent in society, ensuring their
quality becomes more and more crucial.

Quality assurance of such applications presents a challenge
because conventional software testing processes do not always
apply: in particular, it is difficult to detect subtle errors, faults,
defects or anomalies in many applications in these domains
because there is no reliable “test oracle” to indicate what the
correct output should be for arbitrary input. The general class
of software systems with no reliable test oracle available is
sometimes known as “non-testable programs”; the fact that
such programs exist is often referred to as “the oracle
problem”.

IV. CASE STUDY

In our case study we take a matrix operation function
which performs the multiplication of matrices, this function is
our target function which is being tested. We have particularly
chosen this function is because , it has been largely used in
scientific and engineering problems, it has a large number of
universal properties associated, which we can use as
metamorphic relations and for operations on large order
matrices oracles are not available.

Now, we will use the universal properties of matrices as
metamorphic relations against which we verify the system, the
more is number of metamorphic relations the better results we
will get, but it still depends on the quality of the metamorphic
relations used as strong MR’s are more effective in revealing
the faults than weak MR’s.

The proposed methodology for conducting the test is as
followed:

a. Creating a function for matrix operation i.e matrix
multiplication

b. Creating the mutants
c. Creating the special test cases
d. Identifying the metamorphic relations

Amanjot Singh et al, International Journal of Advanced Research in Computer Science, 2 (5), Sept –Oct, 2011,541-543

© 2010, IJARCS All Rights Reserved 543

e. Performing the test
f. Comparing the results of test

The following mutants are used in the testing process and
the results are evaluated on the basis of fault detection ratio
with them.

MUTANT 1 Replacing the operator * with +
MUTANT 2 Replacing the operator * with -
MUTANT 3 Replacing the operator + with *
MUTANT 4 Replacing the line of code 18 with C(i,j) = C(i,j) *

A(i,k)

In the next step after inducing the mutant and identifying
the metamorphic relations we perform the testing with random
test cases as well as specially designed test cases. The
specially designed test cases are those for which we already
know the expected output or it is very easy to calculate,
basically eliminating the need for oracle to verify the output of
system.

Test
case

Initial
test

MR1 MR2 MR3 MR4 MR5

T1 T T T F F F
T2 T T T T T F
T3 T T T F F T
T4 T T T F F F

Results with Mutant 1
Test
case

Initial
test

MR1 MR2 MR3 MR4 MR5

T1 T T F F F F
T2 T T F F T F
T3 T T T T F F
T4 T F F F F F

Results with Mutant 2
Test
case

Initial
test

MR1 MR2 MR3 MR4 MR5

T1 T T T T T T
T2 T T T T T T
T3 T T T T T T
T4 T T T T T T

Results with Mutant 3

V. RESULTS AND CONCLUSION

Metamorphic testing is capable of exposing the errors in
the system, where other testing techniques fail. This is because
of the use of metamorphic relations in the testing procedure,
many testing techniques which use oracles to verify the result
may not detect a minor fault in the program which may or may
not affect the outcome of the system for most cases. In such
cases the metamorphic testing will detect the fault by testing
the system with different relations. This is proved by
comparing the metamorphic testing with other random and
special value testing using a mathematical function ‘matrix’ in
the above case study.

VI. FUTURE WORK

There is a lot of work to be done in this field, such as
identifying the strong metamorphic relations among all the
available relations to get better results by using less number of

relations, optimization of test data with respect to the
properties of the target function for metamorphic testing also
have a lot of scope for future work. Metamorphic testing is
now widely used in mathematical and scientific applications, it
also have a lot of scope in the field of bioinformatics.
Moreover a special type of metamorphic testing called n-
iterative testing have a great scope for future work.

VII. REFERENCES

[1]. Beizer, B. Software Testing Techniques, Van Nostrand
Reinhold, New York, ‘1990’.

[2]. T. J. Cheatham, J. P. Yoo, and N. J. Wahl. Software testing: a
machine learning experiment. In Proc. of the ACM 23rd

[3]. T. Y. Chen, S. C. Cheung, and S. Yiu. Metamorphic testing: a
new approach for generating next test cases. Technical Report
HKUST-CS98-01, Department of Computer Science, Hong
Kong University of Science and Technology, ‘1998’.

 Annual
Conference on Computer Science, ‘1995’.

[4]. Chen, T.Y., Cheung, S.C., and Yiu, S.M. Metamorphic testing:
a new approach for generating next testcases, Technical Report
HKUST-CS98-01, Department of Computer Science, Hong
Kong University of Science and Technology, Hong Kong,
‘1998’.

[5]. Chen, T.Y., Feng, J., and Tse, T.H. Metamorphic testing of
programs on partial differential equations: a case study, In
Proceedings of the 26th Annual International Computer
Software and Applications Conference (COMPSAC 2002),
IEEE Computer Society Press, Los Alamitos, California,
‘2002’

[6]. Chen, T.Y., Kuo, F.-C., Liu, Y., and Tang, A. Metamorphic
testing and testing with special values, In Proceedings of the
5th International Conference on Software Engineering,
Artificial Intelligence, Networking, and Parallel /Distributed
Computing (SNPD 2004), International Association for
Computer and Information Science, Mt. Pleasant, Michigan,
‘2004’.

[7]. Chen, T.Y., Tse, T.H., and Zhou, Z.Q., Fault-based testing
without the need of oracles, Information and Software
Technology, 45 (1), ‘2003’.

[8]. Gotlieb, A. and Botella, B. Automated metamorphic testing, In
Proceedings of the 27th Annual International Computer
Software and Applications Conference(COMPSAC 2003),
IEEE Computer Society Press, Los Alamitos, California,
‘2003’

[9]. T.Y. Chen, F.-C. Kuo , T.H. Tse , Zhi Quan Zhou
Metamorphic Testing and Beyond Proceedings of the
International Workshop on Software Technology and
Engineering Practice (STEP 2003), IEEE Computer Society
Press, Los Alamitos, California (2004)

