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Abstract: Mining of association rules is of interest to data miners.Typically, before association rules are mined, a user needs to determine a 

support threshold in order to obtain only the frequent item sets. Having users to determine a support threshold attracts a number of issues. We 

propose an association rule mining framework that does not require a pre-set support threshold. The framework is developed based on 

implication of propositional logic. The experiments show that our approach is able to identify meaningful association rules within an acceptable 

execution time. In this paper, we present, a new Pattern mining algorithm will be proposed to discover domain knowledge report as coherent 

rules, where coherent rules would be discovered based on the coherent rule search algorithm. 
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I. INTRODUCTION 

Data mining is an Artificial Intelligence (AI) powered 

tool that can discover useful information within a database 

that can then be used to improve the action. Data Mining 

[1], also called as data archeology, data dredging, data 

harvesting, is the process of extracting hidden knowledge 

from large volumes of raw data and using it to make crucial 

business decisions. The steps in the knowledge discovery 

process include pre mining task as data cleaning and data 

integration, as well as post mining task such as pattern 

evaluation and knowledge representation. Many types of 

“interesting patterns” have been identified in the various 

research literatures and association rule constitute one such 

type. Data mining tasks to find these various pattern include 

characterization, discrimination, association analysis, 

classification and regression, cluster analysis, outlier 

analysis and evolution analysis. 

Association Rule Mining (ARM) is a learning technique 

that has the advantage of discovering knowledge without the 

need to undergo a training process [1]. It is used to discover 

rules from a dataset, and each rule discovered has its 

importance measured against many interest measures [2] 

such as support and confidence. 

Although ARM technique does not involve model 

selection, it necessitates a cut-off support threshold to be 

predefined to separate frequent patterns from the infrequent 

ones. Two item sets are said to be associated if they occur 

together frequently above a minimum support threshold 

value. There are major disadvantages to having a predefined 

threshold. Firstly, some rules are inevitably lost if the 

support threshold is set inaccurately. In addition, it is usually 

not possible to remove the support threshold in order to find 

infrequent items because ARM relies on a downward 

closure property of support, which necessitates a threshold 

to search for frequent item sets. That is, if an item set passes 

a minimum support requirement then all its subsets also pass 

this requirement. This minimum support threshold value is 

used as the basis for pruning, without which mining rules 

becomes infeasible due to the exponential search space. In 

summary, in traditional association rule mining, a minimum 

support threshold is needed, and should be determined 

accurately in order to produce useful rules for users. 

To overcome the above limitation, we investigate the 

possibility of developing a new association rule mining 

framework that works without having to determine a support 

threshold. We base our framework on the notion of 

implication of propositional logic. We explain our proposed 

model in detail in section 3and 4 after a discussion of 

previous work is presented in section 2. Experiments based 

on an implementation of the framework and a discussion of 

the results is presented in section 5. Finally, conclusion is 

made in section 6. 

II. PREVIOUS WORK 

Recently, mining infrequent rules start to gain 

momentum as many have begun to accept that rules based 

on infrequently occurring items are also important because it 

represents knowledge not found infrequent rules, and these 

infrequent rules are often interesting [3], [4], [5]. 

Association among infrequent items have been relatively 

ignored by association mining algorithm mainly due to the  

problem of the large search space and the consequent 

explosion of total number of association rules  reported.  
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Some of these reported rules may in fact be based on 

noise in the data. However, there have been some attempts 

towards finding infrequent association rules, such as [6], 

where a generalized association framework using correlation 

is proposed. Correlation is measured by Pearson‟s Goodness 

of Fit Chi Square measure. However, this chi-square 

measure suffers from the limitation of measuring the 

association inaccurately at small expected values, if one of 

the expected values is lower than the value five [6]. In 

practice, this is often being observed. This limit the use of a 

Chi Square based framework. In addition, the authors‟ 

algorithm relies on a modified support hence, is not really 

suitable to find infrequent rules except the ones that are 

above a threshold. [7] Finds independent rules measured by 

interest (leverage) and below a minimum support threshold. 

Authors in [7] also use the measure in [8], which is derived 

from correlation, and necessitates a minimum confidence 

threshold. Mining below a minimum support threshold has 

the same problem as mining above a maximum support 

threshold in the sense that the threshold needs to be 

accurately pre-set. In addition, the measure used in [8] 

inherits the drawbacks of a correlation measure in [6]. [9] 

Filters uninteresting rules using leverage as a measure. [10], 

[11] finds rules using measure such as leverage or lift; these 

can be performed without other thresholds in place. Since 

rules are found independently from a minimum support 

threshold, theoretically all infrequent rules may be found.  

The measure of leverage, however, is non directional. A 

rule found using leverage does not indicate an implication 

that if a rule antecedent has an impact on the rule 

consequence vice versa. It denotes the number of co-

occurrences of both antecedent and consequence item set 

that is above the case if both are independent to each other 

[12]. 

There is relatively little research on finding association 

rules that are both infrequent and interesting. Two 

fundamental constraints are (i) the selection of the measure 

used and (ii) the use of this measure to search for infrequent 

and interesting rule directly without post-processing the 

found rules. The measure should justify the search time in 

discovering rules. Such a measure must possess properties 

that can be used to search for infrequent association rules 

directly. Otherwise, the measure might be theoretically 

interesting but of limited practical use. 

III. COHERENT RULES FRAMEWORK 

The current section discusses the proposed theoretical 

Frame work for coherent rules. The salient features of the 

framework are, informally, (i) a novel, strong definition of 

association based on the notion of implication from 

propositional logic, (ii) the taking into account of frequency-

based measures without requiring arbitrary thresholds and 

(iii) the use of mutually reinforcing rule pairs. These 

features are addressed in detail below. 

We study the frequency of occurrences between two 

item sets and rather than relying on a minimum support 

threshold, we propose to compare various support values 

based on our definition of association.  

In our study on the definition of an association, we found 

that association is defined in many ways of which can be 

referred to a number and different types of relationships 

among item sets. A typical definition of association is co-

occurrence (1). Association can also be generalized into 

correlation or dependence rule [13]. Each definition has 

their merits. For the purpose of our model, we define 

association using implication of propositional logic in that 

an implication must be supported by its inverse. Such 

association rules mined has implications stronger than the 

typical associations based on single co-occurrences. 

To illustrate our proposed framework, consider table 1 

that contains relations between a rule antecedent (LHS), A 

and a rule consequence (RHS), C as an association rule. The 

rule antecedent A consists of a combination of items, called 

an antecedent item set X. An antecedent item set X may 

exist, represented by X, or absence, represented by ¬X. 

Similarly, the rule consequence C may contain existence or 

absence of consequence item set Y. They are represented as 

Y and ¬Y. The frequency of occurrence of X and Y is 

represented by Q1, X and ¬Y by Q2, ¬X and Y by Q3, 

finally, ¬X and ¬Y by Q4.The total of occurrence of Y is 

represented by C1, the Occurrence of ¬Y is given by C2, 

where C2 = m-C1. The same representation applied to X and 

¬X with the statistics A1 and A2. 

Table 1: Frequency of occurrences among antecedent and consequence 

item set 

 A rule consequence (RHS), C 

 

Y ¬Y Total 

 

A rule 

Antecedent(L

HS), A 

 

X Q1 Q2 A1 

 

¬X Q3 Q4 A2 

 

Total C1 C2 m 

         

Association rules, 

a. X Y is mapped to propositional logic implication 

p  q if and only if Q1>Q2, Q1>Q3, and Q1>Q4. 

b. X ¬Y is mapped to propositional logic             

implication p ¬q if and only if Q2>Q1,  

Q2>Q3, and Q2>Q4. 

c. ¬X Y is mapped to propositional logic 

Implication ¬p q if and only if Q3>Q1, Q3>Q2,      

and Q3>Q4. 

d. ¬X ¬Y is mapped to propositional logic     

Implication ¬p ¬q if and only if Q4>Q1, 

Q4>Q2, and Q4>Q3. 

Having mapped each are called pseudo implication. By 

pseudo implication, we mean that it approximates a real 

implication (according to propositional logic). It is not a real 

implication yet because there are fundamental differences – 

pseudo implication is judged true or false based on 

comparison of supports, which has a range of integer values. 

On the contrary, an implication is based on binary values. 

The former still depends on the frequencies of co-

occurrences between item sets (supports) in a dataset, 

whereas the latter does not and is based on truth value. We 

again mapped pseudo implication into specific modes of 

implication called equivalents. Each equivalent would 

follow the same truth values of the respective relations in 

logic. For example, in equivalents, the negation and the 

inverse-negation of an implication is always false. That is, to 

map association rules X Y to logic equivalent X Y, we 

need to check if the support value on its negation X ¬Y 

and inverse-negation ¬X Y are lower than other support 

values. 
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Coherent rules are a pair of antecedent and consequence 

item sets, X and Y represented using a pair of rules 

following the truth table value for equivalents. For example, 

X Y, ¬X ¬Y, where, 

a. X Y is mapped to logic equivalent p  q if and  

only if, Q1>Q2, Q1>Q3, Q4>Q2, and Q4>Q3. 

b. X ¬Y is mapped to logic equivalent p  ¬q if  and  

only if, Q2>Q1, Q2>Q4, Q3>Q1, and Q3>Q4.    

¬X Y is mapped to logic equivalent ¬p  q if and      

only if, Q2>Q1, Q2>Q4, Q3>Q1, and Q3>Q4. 

c. ¬X ¬Y is mapped to logic equivalent ¬p ¬q if  

and only if, Q1>Q2, Q1>Q3, Q4>Q2, and   

Q4>Q3.(Having mapped, each rule is called pseudo 

implication of equivalent.) 

Suppose, I= {i1, i2… in} be a set of items. And, T= {t1, 

t2… tm} be a set of transaction records. A task-relevant 

transaction record tj holds a subset of items such that tj  I. 

Let IX and IY be two sets of items, where, IX  I, IY  I, and 

IX∩IY=Ø. And, let X be the antecedent item set of coherent 

rules, where, X  IX and X≠Ø, and let Y be the consequence 

item set of coherent rules, where, Y  IY and Y≠Ø. Between 

X and Y, there are two coherent rules pairs of either, 

a. X Y, ¬X ¬Y, and 

b. X ¬Y,¬X Y                                                   (1) 

Each coherent rules pair consists the same antecedent 

and consequence item set, X and Y. We called the first pair, 

positive coherent rules and the latter negative coherent rules 

because it involves absentee of an item set in each pseudo 

implication of equivalent. 

Coherent rules are only represented using two different 

representations following a rule antecedent A, and a rule 

consequence C as follows,  

a. A C, ¬A ¬C, and 

b. A ¬C, ¬A C 

The symbol „¬‟ comes from the representations, and 

when applied to an item set contained by A or C, it means 

the item is not observed in transaction records. And, since 

from two item sets we can write a coherent rules pair, we 

distinguish between coherent rules and a pair of rules that 

yet to be validated by calling the latter – candidate coherent 

rules. These can be represented differently from coherent 

rules using two item sets X and Y, before they are validated 

to be coherent rules. If the support values on these items met 

the binary condition of coherent rules, then they are written 

using one of the representations. Otherwise, they remain a 

pair of item sets. We use the symbol „....‟ and a following 

representation to denote this candidate coherent rules pair, 

X...Y                                                                        (2) 

IV. COHERENT RULES SEARCH ALGORITHM 

In this section, we present the internal details of the 

proposed algorithm to generate coherent rules. The 

algorithm does not require a minimum support threshold in 

advance. The only user-specified parameter is w, which is a 

percentage such that rules generated will have strength value 

within the top w% of the strongest strength value of 

coherent rules found. Typically, we are interested in a small 

subset of all possible rules which have the highest strength 

values of those that exist. We argue that nominating a 

desired percentage as above is much more conceptually 

appealing than requiring the user to nominate a support 

threshold. The disadvantages of pre-setting a support 

threshold have been highlighted in Section I. 

The algorithm, called generateNextCR, is presented as 

Algorithm 1. This is a recursive algorithm that is invoked 

after initially setting R to null, IY to the complete item set 

except for the consequent, PVx1 and PVx2 to zero, PVY to the 

index of the consequence item set, and PVMax to the 

cardinality of IY, T to the transaction records, RA to null, 

and a set of coherent rules found CR to null. The indexes 

PVx1 PVx2and the buffer for indexes RA is used to refer to 

an antecedent item set of coherent rules. The index   PVY 

refers to the index of consequence item set that is of 

cardinality „1‟. The index PVMax sets the termination criteria 

for the recursion, i.e. if the index PVx1 equals to PVMax. 

Support values are scanned from transaction records T, with 

coherent rules found are kept in CR. 

The algorithm proceeds to systematically explore the 

power set of IY, but does not need to generate the complete 

Power set as that would be infeasible. The feasibility of the 

algorithm is ensured in two ways. Firstly, if a candidate 

coherent rule pair does not meet the anti-monotone 

properties, then coherent rules containing a superset of its 

item set are not generated (see Lines 4.15 – 4.15.4 in 

Algorithm 1). Secondly, as a logical consequence, if the 

cardinality of the antecedent item set of a candidate coherent 

rule pair that does not meet the anti-monotone property 

consists only of a single item, then this item can be removed 

from IY ( see Lines 4.1.5.3.2 and 4.1.6.2 ). Clearly, such a 

removal cuts down the cardinality of the power set being 

explored by a factor of 2. 

The algorithm also articulates subset of all possible 

coherent rules, which have the highest w% strength values 

within those that exist (see Lines 4.1.5.2.3 and 4.1.5.2.4). 

Interestingly, it does not have to calculate the strength 

values of all possible coherent rules in order to find the 

highest w% strength values. The algorithm calculates and 

estimates the strongest possible strength value for a group of 

candidate coherent rules with super sets; if they are coherent 

rules (see Lines 4.1.4 and 4.1.5.1). Since the strength values 

of coherent rules with supersets are lower than the strongest 

possible strength values, maxPossible_s, and   

maxEstPossible_s, if either one is lower than the required 

strength value, then we do not have to generate these 

candidate coherent rules. Finally, strength values are 

computed for those candidate coherent rules that pass the 

conditions (see Line 5.1.5.2.1). Based on the real strength 

values, the top w% of coherent rules is maintained in line 

4.1.5.2.2. 

A. Algorithm generateNextCR : 

(candidateCoherentRules R, items IY, itemIndex PVx1, 

itemIndex PVx2, itemIndex PVY, itemIndex PVMax, subItems 

T, ordered Set<index> RA, RuleSet CR) 

//Initial// 

1. If PVx1 > 1 

1.1 PVx2:= PVx1, PVx1:= 1 

2. Else 

2.1 PVx2:= PVMax, 

3. End if 

//Generating candidate coherent rules by enumerating 

Antecedent item set X// 

4. While (PVx1< PVx2) 

4.1 If (PVx1! = PVY) 

4.1.1 RA concatenate (PVx1, RA) 
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4.1.2 X {iL: L RA} 

4.1.3 Let Y be the set of candidate coherent rules 

Corresponding to (X, Y) such that R=   (X Y, 

¬X ¬Y) 

 //START of Conditions for Efficient Generations// 

4.1.4 Compute maxEstPossible_s, Q1F, Q3F     based on 

single scan 

4.1.5 If (Q1F>Q3F) and (maxEstPossible_s         min_s) 

4.1.5.1 Compute maxPossible_s, Q1, Q2, Q3,          Q4 

using another scan 

4.1.5.2 If (Q1>Q3) and (maxPossible_s     min_s) 

4.1.5.2.1  r  R compute Hr and store it 

4.1.5.2.2 Update >min_s based on user- specified _ and the 

strongest, [found 

4.1.5.2.3 If (Hr > min_s) 

4.1.5.2.3.1 CR= CR  R 

4.1.5.2.3.2 toRemove = {cr: cr CR and Hcr <min_s} 

4.1.5.2.3.3 CR = CR – toRemove 

4.1.5.2.4 End 

4.1.5.3 Else 

4.1.5.3.1 itemToRemove = {X: X is the antecedent tem set 

of some r R and |x| = 1} 

4.1.5.3.2 I = I − itemToRemove 

4.1.5.4 End 

4.1.6 Else 

4.1.6.1 itemToRemove = {X: X is the antecedent item set of 

some r  R and |x|= 1} 

4.1.6.2 I = I− itemToRemove 

4.1.7 End 

//End of Conditions for Efficient Generations// 

4.1.8 If (PVx1 > 1) 

4.1.8.1 (R, I, PVx1, PVx2,PVY, PVMax, RA) = 

generateNextCR(R, I, PVx1, PVx2, PVY,  PVMax, 

RA) 

4.1.9 End 

4.1.10 RA (RA – PVx1) //remove an item from       the 

buffer of ant. Item set// 

4.2 End 

4.3 PVx1  PVx1+ 1 //increase the first pointer value// 

5. End 

Algorithm 1: Generate Coherent Rules 

V. EXPERIMENTS AND DISCUSSIONS 

We have conducted a number of experiments. In this 

paper, we report the results of two main categories of 

experiment. In the first category, we want to show that our 

association rule mining framework can find infrequent 

association that may be difficult to find in traditional 

association rule mining. The zoo data set is used in this 

experiment. Our proposed framework requires less post-

processing in generating the rule compared to the traditional 

association mining algorithm. That is, instead of finding too 

many rules, our algorithm finds smaller number of rules. 

Lastly, we measure the performance of our framework by 

testing its scalability. For this performance test, we created 

three sparse artificial datasets, and another three dense 

artificial datasets. In  zoo  dataset, we use the classes as the 

consequences in order to find association rules directly from 

data. On artificially generated datasets we use the last items 

as consequences. 

 

 

A. Zoo dataset: 

       Zoo dataset [14] is a collection of animal characteristics 

and their categories in a zoo. This dataset is chosen because 

animal characteristics in each category are very well known. 

As a result, it is easier to verify the correctness and 

interestingness of rules mined. Zoo dataset contains seven 

categories of animals including mammal and amphibian. 

While mammal type of animal such as elephants, buffalos, 

and goats are frequently observed in this zoo, amphibian 

type of animal such as frog and toad are relatively rare.  

We run our search algorithm without setting a minimum 

support threshold to obtain all rules within a window of a 

top 5%, and each rule contains not more than five items. We 

report the results as follows.  

A total of 16 rules are found on mammal type of 

animals. All rules have strength of 1.0 out of 1.0. We verify 

the correctness of these rules based on known knowledge on 

this category of animal. For example, all mammal such as 

goat has no feathers but has milk and backbone therefore 

feathers(0), milk(1), and backbone(1) are reported 

associated with mammal(1). We list all rules contains not 

more than four items in table 2. 

We found these rules describe mammal correctly. In fact, 

the first and the shortest rule milk  mammal describe a 

fundamental characteristic of a mammalian explicitly. From 

literature review, the second rule may be deemed redundant 

in comparison with the first rule because inclusion of an 

additional item set feathers (0), which cannot further 

increase the strength of rule. The strength of the first rule is 

already at its maximum at 1.0; any further inclusion of items 

may be redundant. Such a consideration however is 

application dependent. We could use both items, feathers (0) 

and milk (1) to describe mammalian more comprehensively 

at the same strength of 1.0. That is, an animal of mammal 

does not have feather but milk. If we discard feather (0), we 

loss this item as a descriptive. 

Table 2: Rules describe mammal 

Antecedent Item Set  Consequent 

Item Set 

milk(1)  mammal(1) 

feathers(0),milk(1)  mammal(1) 

milk(1),backbone(1)  mammal(1) 

feathers(0),milk(1),backbone(1)  mammal(1) 

milk(1),breathes(1)  mammal(1) 

feathers(0),milk(1),breathes(1)  mammal(1) 

milk(1),backbone(1),breathes(1)  mammal(1) 

milk(1),venomous(0)  mammal(1) 

feathers(0),milk(1),venomous(0)  mammal(1) 

milk(1),backbone(1),venomous(0)  mammal(1) 

milk(1),breathes(1),venomous(0)  mammal(1) 

                

        We run the search for amphibian, and found a total of 

136 rules. Again, we could not find any incorrect rules. 

These rules have strength 1.0. While studying at these rules, 

we are surprised by the fact that amphibian like frog is 

toothed! We confirm this via answer.com, and this is indeed 

correct. That is, frog in this zoo is toothed.  

        Comparing the two experiments, there is a large 

difference in their total number of occurrence in the overall 

transaction records. 41% of transaction records contain 
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mammal, in comparison, only 4% of transaction records 

contains amphibian. That is, search for amphibian is a 

search for infrequent association rules, which is often 

missed by most association rule mining technique that 

demands a minimum support threshold. If we set minimum 

support threshold to be higher than 4% and use a typical 

association rule mining technique, we loss rules describing 

amphibian. In comparison, our technique does not 

necessitate a minimum support threshold, it finds all 

necessary rules. 

On execution time wise, each running time takes less 

than 3 seconds on a Desktop Intel Core 2 Duo at 2 GHz and 

4 GB of physical memory running Windows XP. Zoo 

dataset contains 101 transactions and 43 item sets. The 

search space on a target is 22(n-1) - (2(n-1) - 1) where     22(n-1) is 

the total number of both positive and negative rules, and 

(2(n-1) - 1) is the total number of positive rules using a single 

consequence item set as a target. In this case, zoo dataset 

contains 2E+25 combinations of item sets. We use an 

optimistic assumption to grasp the size of the search space; 

we assume only one computation cycle time (1 / 1GHz) is 

needed to form and to validate a combination of item set in a 

single transaction. Based on this optimistic assumption, it 

follows that a search without pruning would require at least 

6E+10 years to complete. In comparison, our search time is 

feasible. From these two experiments, we conclude that 

association rule pairs are useful to discover knowledge (both 

frequent and infrequent) from dataset. 

B. Artificial Datasets: 

We follow to generate a following three dense artificial 

datasets with an increase in complexity using the IBM 

synthetic data generator [16]. The symbols used in 

representing a dataset are explained below,  

 

D: number of transactions in 000s 

T: average items per transaction 

N: number of items 

L: number of patterns 

I: average length of maxima pattern 

The dense datasets have an average length of maxima 

pattern (I) close to average items per transaction (T), besides 

having a low number of patterns (L). These dense datasets 

have an increase number of items as follows, 

 

a. D100T10N100L50I9, 

b. D100T10N500L50I9, 

c. D100T10N1000L50I9 

We generate also sparse dataset with an increase in its 

number of items hence complexity, 

 

a. D100T10N100L10000I4, 

b. D100T10N500L10000I4, 

c. D100T10N1000L10000I4 

The results from experiments suggest that our search for 

association rule pairs is feasible within a linear or 

polynomial search time over an increase of complexity or 

items. 

 

Figure 1: Search time on an increase complexity on dense and sparse 

dataset 

VI. CONCLUSION 

We have presented a framework to mine association 

rules without minimum support threshold. The framework 

employs a novel, strong definition of association based on 

logical equivalence from propositional logic to avoid using a 

cut-off support threshold. The experimental results show 

that implication of propositional logic is a good alternative 

for the definition on association. 

The stronger definition of association also results in the 

discovery of knowledge that is vital from transaction records 

represented by coherent rules. These are a pair of rules that 

can be mapped to a pair of logical equivalents of the 

propositional logic, which means that the rules reinforce 

each other. While coherent rules found are important, the 

interest of these rule pairs is further quantified using 

coherent rules measure of interest. Coherent rules have 

positive values for the interest measure and imply that the 

antecedent item set of a coherent rule pair is needed in 

predicting its consequence item set, and is better than a 

guess without the former. 

Rules based on this definition may be searched and 

discovered within feasible time. This can be done by our 

proposed strategy of finding the strongest possible strength 

value of a group of candidate coherent rules and comparing 

it to the minimum strength value required, which is 

constantly updated based on a parameter specified by a user. 

The experimental results show that it is feasible to search for 

coherent rules when the size of transaction records 

increases. 
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