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Abstract: F-Set Theory is a natural generalization of Goguen's L-Fuzzy Set Theory which itself is a generalization of Zadeh's, both Fuzzy and
Interval Valued Fuzzy Set Theories. It naturally and neatly extends several of the crisp (Sub)Set-Map-Properties to: L-valued f-(sub) sets, f-maps
between L-valued f-sets and M-valued f-sets, where the complete lattice L-may possibly different from the complete lattice M, M-valued f-
image of an L-valued f-subset of the domain L-valued f-set and L-valued f-inverse image of an M-valued f-subset of the co-domain M-valued f-
set. However, for several of the results in this theory, the complete homomorphisms are assumed to be one or a combination of: 0-preserving, 0-
reflecting, 1-preserving and 1-reflecting. Further, some of the results use the infinite meet distributivity of the underlying complete lattice of the
domain and/or range f-set.

Now the aim of this paper is: 1. to separate this (these) hypothesis (hypotheses) of preserving/reflecting from the results in F-Set Theory and
restate and prove the corresponding results and 2. to remove the hypothesis of infinite meet distributivity of the underlying complete lattice for

truth values via altogether new proofs and 3. to add several new results that are needed/developed in this process.
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. INTRODUCTION

Zadeh introduced the notion of fuzzy subset of a set in
his pioneering paper Zadeh[9] liberating mathematical logic
completely from the clasps of Boolean Values taking the
domain/range of applications of Mathematics to altogether
new fields that were unimagined even at the times of its
inception.

According to Zadeh[9], a fuzzy subset of a set X is any
function f from the set X itself to the closed interval

[0,1] of real numbers. An element X belonging to the set

X | belongs to the fuzzy subset f with the degree of

membership fX, a real number between 0 and 1 .

Goguen[1] generalized the Zadeh’ Fuzzy Set Theory to
even a higher level, introducing the notion of an L-fuzzy sub
set of a set, which takes its truth values in an arbitrary but
fixed complete lattice L.

According to Goguen[1], an L-fuzzy subset of a set X
is any function f from the set X itself to an arbitrary but

fixed complete lattice L. An element X , belonging to the set
X, belongs to the fuzzy subset f with the degree of
membership X, a lattice elemen L.

However, still the following are some lacunae that one
can easily observe with any of the above notions:

a. There is no such notion as fuzzy set (of course some
mathematicians observed that one can define the
notion of a fuzzy set to be the constant map assuming
the value 1, but it was not exploited further.)

b. It is predominant in Mathematics that, for a pair of

objects to be considered one as a sub object of the
other, they both must be of the same type, namely,
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both objects are sets, both objects are pairs, both
objects are triplets etc. and this type compatibility
between set and its fuzzy subset is absent in the sense
that fuzzy subset is a map while the set is not. (Of
course, one can make here two arguments namely, a
map is a particular type of relation which is a subset
and hence a set, and thus a fuzzy subset is also a set
and secondly one can identify a set with the map that
takes the constant value 1;but both of them are not
completely natural.)

There is no such notion as fuzzy map between fuzzy
sets with truth values in different lattices

It is not possible to accommodate the notions of fuzzy
weak-relative-sub algebra and fuzzy strong-relative-
subalgebra in the conventional way

The Axiom of Choice is not extendable to fuzzy
subsets without its dependence on the nature of the
complete lattice where the fuzzy subset takes its truth
values in. (Observe that the Axiom of Choice fails with
the existing definitions of L -fuzzy set and L -fuzzy

product as: For any pair of fuzzy sets AB: X —>L,
the fuzzy product Ax B is defined to be the fuzzy set

(AxB)(X) = AXABKX forall X€ X . Letting L to
be the four element diamond looking lattice with two

incomparable elements @ and £ and letting A and
B to be the constant fuzzy sets with values o and f

respectively, the fuzzy product Ax B tumns out to be
the empty fuzzy subset given by the constant map

assuming the value 0 of L while the fuzzy subsets A

and B are non-empty.
There is no transparent forgetful functor from the
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category of fuzzy topological spaces to the category of
topological spaces which forgets the fuzzy structure.

g. There is no transparent forgetful functor from the
category of fuzzy rings to the category of rings which
forgets the fuzzy structure.

h. Last but not least, in some L -fuzzy subsets of a set,

one must assign the value O for some elements of the
set when actually the membership value for them is
either not available or not relevant because for a fuzzy
subset of a set every member of the set must be
assigned a membership value.

Keeping these things in mind, Murthy[2] modified the
definition of an L -fuzzy subset of a set to that of an f-set,
addressing the first, second, fifth and the eighth issues
above, in such a way that each f-set carries along

a) its underlying set

b) its complete lattice where the fuzzy set takes its
truth values for members of its underlying set

c) its fuzzy map that specifies membership values for
all elements in its underlying set and this
modification resolves the above mentioned issues.

Thus an f-set is a triplet A = (A, A LA) where
(a). A is aset, called the underlying (crisp) set of A
(b). LA is a complete lattice, called the underlying
complete lattice for truth values of elements of A

(c). A:A—> LA is a map, called the underlying fuzzy map

that assigns a truth value for each element of A.

In the same paper Murthy[2] also introduced the notion
of an f-map between f-sets whose underlying complete
lattices for truth values are possibly, completely different,
addressing the third issue above, along with other notions
like f-image of an f-subset under an f-map and f-inverse
image of an f-subset under an f-map and studied the
standard (lattice) algebraic properties of, all f-subsets of an
f-set, all f-images of f-subsets of an f-set under an f~map and
of all f-inverse images of f-subsets of an f-set under an f-
map.

For a settlement of other issues and for elementary
studies of algebraic and topological (sub) structures on f-
sets, one can refer to Murthy[4,5,6] and Murthy and
Yogeswara[3].

For several of the results in Murthy[2], the complete
homomorphisms are assumed to be one or a combination of:
O-preserving, O-reflecting, 1-preserving and 1-reflecting
(Cf.3.3.6 and 3.3.18). Also, some of the results use the
infinite meet distributivity of the underlying complete lattice
of the domain and/or range f-set.

This (These) hypothesis (hypotheses) of preserving /
reflecting are separated from the results of Murthy[2] and
the corresponding results are restated and proved in this
paper. Further, in the proofs of some of the results in
Murthy[2], the use of infinite meet distributivity of the
underlying complete lattice for truth values is made and this
is avoided via altogether new proofs in this paper.

This paper is a part of the Ph.D. Thesis for which the
second author was awarded her doctoral degree in the month
of August, 2012.

In Section-1, Introduction, the goal of this paper together
with its lay out is described section wise.

In Section-2, Preliminaries, we recall some basic
definitions and some algebraic properties in the theory
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Lattices Theory like poset, least and greatest elements of a
poset, (least) upper bound, (greatest) lower bound, complete
lattice, complete ideal, complete homomorphisms etc., were
recalled along with some of their properties which are used
later.

In Section-3, Lattice Theory for f-Set Theory, results
about characterisation of complete ideals; complete ideals
generated by a set and a union of sets, and relations between
these complete ideals; lattice algebraic properties of
complete ideals; lattice algebraic properties of supremums
and infimums of images, inverse images and their
combinations; and lattice algebraic properties of images and
inverse images of ideals are recalled and several of them
will be used in the last two sections.

In Section-4, F-Set Theory, f-set, f-subsets of an f-set;
lattice algebraic properties of f-subsets of an f-set; lattice
theoretic relations between (crisp) subsets of the underlying
set of an f-set, Goguen-fuzzy and Zadeh-fuzzy subsets of
the underlying set of the f-set and the f-subsets of the f-set;
f-maps between f-sets; lattice algebraic properties of the f-
images and f-inverse images of f-subsets under f-maps; and
several other properties are restudied from Murthy[2].

1. PRELIMINARIES

Some basic notions in Lattice Theory like poset, least
and greatest elements of a poset, (least) upper bound,
(greatest) lower bound, complete lattice, complete ideal,
complete homomorphisms etc., along with some of their
properties are freely used and they can be glimpsed from
any standard text book on Lattice Theory. However, lattice
theoretic results that are used later are recalled in the next
section for a ready reference.

Here onwards, for notational convenience, for all posets
we always take < as the partial order in discussion.
However, we use a suffix of the underlying set for the <
whenever there is a possibility for confusion. Now that we
agreed to take uniformly < as the symbol for all partial
orders in a given discussion, we might as well drop it from
the pair (P, <) and simply write only P for a poset.

We adapt a similar practice even for the operations A,
Vv in additional structures on posets, like (meet/join)
(complete) (semi) lattices.

Always, the empty poset is a meet (join) semi lattice and
also a meet (join) complete semi lattice, a meet (join)
complete semi lattice is a meet (join) semi lattice and meet
(join) semi lattice is a poset.

(a) For any pair of posets P and Q and for any map

f : P — Q on the underlying sets of both P and Q, f
is an order preserving map or a monotone map or an
isotone, denoted again by f:P —Q iff a<b in P
implies fa < fb. (b) For any pair of meet (join) complete
semi lattices L and M and forany map f:L—> M on
the underlying sets of both L and M, f isa meet (join)

complete homomorphism from L to M , denoted again by
f:L—> M, iff for every non-empty subset A of L,

f(AA)=ATA (f(VA)=v fA), where fA is the
image of A under f (c) For any pair of complete lattices
L and M and for any map f:L—>M on the
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underlying sets of both L and M, f is a complete

homomorphism from L to M, denoted again by
f:L— M, iff it is both a meet complete and a join

complete homomorphism. In other words for every non
empty subset A of L, f(AA)=AfA and

f(vA)=v fA, where fA is the image of A under f .
(d) An ordering preserving map f of posets is an order
isomorphism iff the underlying map f is a bijection. (€) A
complete homomorphism f of (Complete) (Semi) Lattices

is an isomorphism iff the underlying map f is a bijection.

I11.  LATTICE THEORY FOR F-SET THEORY

In this section, results about characterization of complete
ideals; complete ideals generated by a set, a union of sets
and relations between these complete ideals; lattice
algebraic properties of complete ideals; lattice algebraic
properties of supremums and infimums of images, inverse
images and their combinations; and lattice algebraic
properties of images and inverse images of ideals are
recalled from Murthy[7]. For counter examples with regards
to the tightness of the hypotheses for various of these
results, one can refer to the same paper.

A. Elementary Properties Of Lattices:

The following are some of the frequently used
elementary results on complete lattices.
Theorem 1.1 In any complete lattice L, thefollowing

are true forall subsets (@,);, . (aj)jej, (bj)jEJ and
(@ )i jpeng Of L:

a. Whenever an index set | is contained in another
index set J, we have V,, @ SVJ-EJ a; and

Njes & SN &

b. ViaVia@ij = Via Via@ij =Vijexs & j

and  Nig N & Niea Nar &
N jeixs &ij
c. Agbra) = b A (A_3) and

i1 8;), where be L
d Vg (ajvbj) = (Viud)) v (vjEij) and
Njes (aj/\bj) = (/\je.]aj) A (/\jerj)

e. Vig(@Aab) < (viga) A (viuby)
and  Aj, (@jvh) = (A,3) v
(/\jstj)

. b v (ALa) < A, (bva) and b A
(Vi d) > v, (baa),where el

g (Aigd) A (/\jerj) = /\(i,j)e(IxJ)(ai/\bj)

he (Vi) v (Vigb)) = Vi (@ VD)

v, (bva) = b v (v
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L Vig (/\ielaij) < Aja (VjeJ a'ij)-
Theorem 1.2 In any complete lattice L, the following
are true, for any family (A );_, of subsets of L:

a. V(UigA) = vig (VA)

b A(Via A) = A (AA)

c. Vig(AA) < A(MgyA); in particular,
ANiet (ANA) = AN A)

d vy A) < A (VA). However, equality

IN

holds whenever A are complete ideals.

B. (Complete) Sub lattices, (Complete) Ideals:

In this section several results involving the notions of
(Complete) Sub lattices, (Complete) Ideals and complete
ideal generated by a subset, are recalled. Further, the
collection of all complete ideals of a complete lattice is
shown to be a complete lattice itself.

Let us recall that a subset S of a complete lattice L isa
complete sub lattice of L iff it is closed under both meet
and join for every non empty subset of S. Asubset | ofa
complete lattice L is a complete ideal of L iff it is closed
under the supremum for every non empty subset of | and
closed under all the elements of L that are smaller than
elements of | .

Let L be a complete sub lattice of M and bel.
Then the closed interval 0, D in L, denoted by [0,b], or
simply [0,b] when there is no ambiguity, is defined by
[0,b], = faeL|a<h}.

It is easy to see that in any complete lattice L for any

bel, [0,b], isalways a complete ideal.

Later on we see that any non empty complete ideal of a
complete lattice is precisely of this form.

Lemma 2.1: In any complete lattice, 1. arbitrary
intersection of complete ideals is a complete ideal.
Consequently 2. the intersection of all complete ideals
containing a given subset is a complete ideal which is
unique and smallest with respect to the containment of the
given subset.

Definition 2.2: In any complete lattice L, for any given
subset X , the unique smallest complete ideal containing
the given sub set defined as in the above Lemma is called
the complete ideal generated by X and is denoted by

(X)) orsimply (X ) when there is no ambiguity.

Theorem 2.3: In any complete lattice L the following
are true:

a. Foranysubset ¢ # X c L,
a)  (X) =[0,vX], and V(X) =VvX
b) (X)_ = X, whenever X itself is a complete

ideal consequently (@), = 4.

b. For any complete ideal ¢ = M of L,
M =[0,vM], .

c. Non empty complete ideals are precisely of the form

[0,b] for some DeL.
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d. For any pair of non empty subsets X,Y of L, we
have v X =vY iff (X) =(Y),.

e. For any family (X,);,, of sub sets of L, we have
(Ui X;)_ is the smallest complete ideal of L

iel
containing each complete ideal (X;), for all iel.
In particular for any family (| j ) jeg of complete ideals

of L, (U jed I j)L is the smallest complete ideal of L

containing each of the complete ideals | j» Jed.

f.  For any pair of non empty subsets X and Y of L
such that for each X € X there exists y €Y such

that X<Y we have v X <vY and (X)_ is a
complete ideal of (Y), .

g. For any pair of subsets X,Y of L suchthat X Y,
we have v X < VY and (X), is a complete ideal of
().

h. For any subset (,);., < L, the following are true:

@ Mg [0,&] = [0~ &]
®) (U, [0,8,]), = [0,v,,8;] whenever I is
non empty.

i. The collection of all complete ideals of the given

lattice L is itself a complete lattice with the least
element ¢ and the largest element L where, for any

famlly ([0’ a'i])iel
N [0,8] =0 [0,&]  and vy, [0,8]=
(Vi [0,8]),, (=[0,v;,,8;] whenever I is non

empty ) .
Lemma 2.4: The following are true in any complete sub
lattice N :

iel

of complete ideals of L,

(a). for any complete sub lattice M of N and for any
subset S of M, (S),, <(S),. However, the
equality holds whenever M is a complete ideal in

N .

(b). for any pair of subsets L,M of N such that L isa

complete ideal of M and M is a complete ideal of

N , we have L is a complete ideal of N .
(c). for any pair of complete ideals L, M of N such that
L is contained in M , we have L is a complete ideal

of M.

The containment in (a) above can be strict in the above if
M is not a complete ideal of N .

C. Complete Homomorphisms:

In this section, the generalized Lattice Theoretic results
in Murthy[2], involving a. the inverse of a complete
homomorphism b. the partial orders of the domain and co-
domain complete lattices and c. the meet and the join of
both the domain and co-domain complete lattices, for 0-
preserving, l-preserving, O-reflecting and 1-reflecting
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complete homomorphisms, are recalled from Murthy[7].
Definition 3.1: Let L, M be a pair of complete lattices,

Let ¥ < LxM bearelationand T be asubsetof L.
is said to be
a. (v,A) complete relation on T iff for any subset S

of T, vy (AesS) = Ags (VIS)

b. (A,v) complete relation on T iff for any subset S
of T, A (VsS) = Vi (AYS)

c. (V,Vv) complete relation on T iff for any subset S
of T, Vi (Ves$) = Vs (VYS)

d.  (A,A) complete relation on T iff for any subset S

of T > AW(ASES S) = /\SES (/\WS)
e. Vv-increasing on T iff for any a,beT such that

as<b, vya<vyb
f.  A-increasing on T iff for any a,beT such that
as<b, rya<apb

Lemma 3.2: For any complete homomorphism
n:L—> M and for any c,d € M such that d e7L
and C<d, vp'c < vp'd.

Corollary 3.3:  For any complete homomorphism
n:L—>M,n"is v-increasing on 7L .

The above Lemma is not true whenever d ¢ 7L .

Lemma 3.4 For any complete homomorphism
n:L— M andforany C,d € M such that C € 77L and
c<d, Ap’'c < Apd.

Corollary 3.5: For any complete homomorphism
n:L— M, 5" is A-increasing on 7L .

The above Lemma is not true whenever C & 7jL.

Definition 3.6: For any complete homomorphism
n:L—>M, 1) n is 0-p iff 70=0 or more clearly,
n0, =0,, orequivalently 0, € 7'0,,.(2) 7 is 1-p iff
nl=1 or more clearly, 71, =1,, or equivalently
1, en'l,.

For any map between complete lattices 7: L —> M ,
is (1) 0-p complete homomorphism iff 7(vS) = v (nS)
for each S such that ¢S <L (2) 1-p complete

homomorphism iff 7(AS) = A (%S) for each S such
that pc Sc L.

Lemma 3.7: For any 0-p complete homomorphism
n:L—>M and for any g DM, n(vn'D)

<vD.
The above Lemma is not true whenever 7 is not 0-p.

Lemma 3.8: For any 1-p complete homomorphism
n:L—>M and forany gc DM, n(an~'D) =

AD
The above Lemma is not true whenever 7 is not 1-p.

Lemma 3.9: For any complete homomorphism
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7:L—>M and for any gD cnlL, n(vy'D)=
v D . However, D canequal ¢ whenever 7 is 0-p.
In the above Lemma D cannot equal ¢ whenever 7 is

not 0-p.
Lemma 3.10: For any complete homomorphism

n:L—>M and for any ¢=Dcryl, n(an'D)=
A D . However, D canequal ¢ whenever 7 is 1-p.
In the above Lemma D cannot equal ¢ whenever 7 is

not 1-p.
Corollary 3.11: For any complete homomorphism
n:L—> M the following are true:

a. whenever 7 is 0-p, for all o= Dcl,

n(vp'D)=vD
b. whenever 7 is l-p, for all g DclL,
n(arn~'D)=AD

c. forall Benl, @ n(vp'B)=L and (b)
ninn ' B)=p
d. Forall feM, (a) n(vy 'B)< B whenever

7 is 0-p and (b) 7(An~' )= B whenever 7 is

1-p.
Lemma 3.12: For any O-p complete homomorphism
n:L—> M andforany g T L,

An_l(vbeT b) = VbeT (/\77_1b)-

Corollary 3.13: For any 0-p complete homomorphism
n:L—>M,n"is (Av)-complete on 7L .

The above Lemma is not true whenever 7 is not 0-p or
Tgnl.

Corollary 3.14: For any complete homomorphism
n:L—>M andforany ¢ =T < M,

/\77_1(\//35 p) < V per (/\77_1[5’)-

However, T canequal ¢ whenever 7 is 0-p.

In the above statement T cannot equal ¢ whenever 7
is not 0-p.

Lemma 3.15: For any 1-p complete homomorphism
n:L—>M andforany ¢ T 7L,

VI (Ao D) = Aper (Vi7'D).

Corollary 3.16: For any 1-p complete homomorphism
n:L—>M,n"is (v,A)-complete on 7L .

The above Lemma is not true whenever 77 is not 1-p or
Tgnl.

Corollary 3.17: For any complete homomorphism
n:L—>M andforany g 2T <M,

-1 —1
vn (/\beT b) 2 Nper (V77 b)
However, T canequal ¢ whenever 7 is 1-p.
In the above statement T cannot equal ¢ whenever 7

is not 1-p.
Definition 3.18: For any complete homomorphism
n:L>M, nis
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a.  O-reflecting or simply O-r iff n#a =0 implies a= 0
or equivalently 777'0 < {0} (Note that 77~'0 may be

empty).

b. 1l-reflecting or simply 1-r iff 7a =1 implies @=1 or
equivalently 77'1c {1} (Note that 77'1 may be
empty).

Lemma 3.19: For any O-r complete homomorphism
n:L—>M andforany T <L,

v (Vg D)=V, 1 (vi77'D) whenever M is a finite

chain.

Corollary 3.20: For any 0-r complete homomorphism
n:L—>M,n"is (v,v)-complete on 7L, whenever
M is a finite chain.

The above Lemma is not true whenever T & 7L, but
n is O-r.

Also, the above Lemma is not true whenever
n:L—> M isnotO-rbut T L.

The above Lemma is not true whenever 7 : L — M is
0-rbut M is not a finite chain.

Corollary 3.21: For any complete homomorphism
n:L>M and for any ¢<T <M such that

vT e 77L > vbeT (Vnilb) < vnil(vbeT b)
A strict inequality can hold in the above Corollary.
Lemma 3.22: For any 1-r complete homomorphism
n:L—>M andforany g T <L,

AT (Aper D)= Ay (A777'D) whenever M s a finite

chain.
Corollary 3.23: For any 1-r complete homomorphism

n:L—>M, n" is (A,A)-complete on 7L, whenever
M is a finite chain.
The above is not true whenever T ¢ 7L .

The above Lemma is not true whenever 7 : L — M s

not 1-r.

The above Lemma is not true whenever M is not a
finite chain.

Corollary 3.24: For any complete homomorphism
n:L—>M and for any ¢<T <M such that

—1 -1
AT enb, An (/\ﬂeTﬂ) < Aper (A~ B).
A strict inequality can hold in the above Corollary.

D. Complete Homomorphisms and Complete Ideals:

Complete ideals of a complete lattice play a major role
throughout the Theory of f-Sets, f-Maps, L -interval valued
f-sets and interval valued f-maps between L -interval valued
f-sets and M -interval valued f-sets.

In this section, results involving complete ideals,
complete ideals generated by subsets, complete
homomorphism, complete homomorphic images of a
complete ideal, complete homomorphic images of a
complete ideal generated by subsets, complete
homomorphic inverse images of a complete ideal and
complete homomorphic inverse images of a complete ideal
generated by subsets, are recalled and all these results are
used in the last two sections.
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Proposition 4.1: Let 7:L—> M be a complete
homomorphism. Then the following are true:
a. N is a complete sub lattice of L implies nN is a
complete sub lattice of both 7L and M .

b. N isa complete ideal of L implies 1N is a complete
ideal of 77L, but not necessarily of M .

In (b) above 7N is not necessarily a complete ideal of
M.

Proposition 4.2: Let 7: L—>M be a complete
homomorphism. Then the following are true:
(a) N is a complete sub lattice of M implies 7771 N is
a complete sub lattice of L.
() N is a complete ideal of M implies 77_1N is a

complete ideal of L.
Lemma 4.3: For any complete homomorphism

n:L—>M andforany @€ L, the following are true:
a. Always 7[0,a]c<[0,7a] for all @€ L. However
n[0,a] = [0,7a]nyL =([0,77a],.).
b. However, (7[0,a]),, =[0,7a],,
c. 7[0,a] =[0,na] whenever 7 is onto.
If 7 is not onto then the conclusion (3) of the above

lemma is not true.
Lemma 4.4: For any complete homomorphism 77:

L — M and for any subset X of L, we have

(X)) = @X)y -
Corollary 4.5: For any complete homomorphism 7:

L—>M such that 7 is onto, we have 7((X), ) =
(X)) -

Lemma 4.6: For any complete homomorphism
n:L — M, the following are true:
a. Always 17'[0,b] < [0,vn'([0,b]"7L)] for all
beM . However, Equality holds in the above, whenever
n is 0-p.
b. Always [0,v77'b] < #77'[0,b] for all beM,
whenever 77 is 0-p
c¢. However, [0,v77'b] = 17'[0,b] for each benlL,
whenever 77 is 0-p.

The conclusion (1) of the above lemma is not true if 7
is not 0-p.

The conclusion (2) of the above lemma is not true if 7
is not 0-p.

The conclusion (3) of the above lemma is not true if
b enlL but 5 is 0-p.

Lemma 4.7: Let n:L—>M be a complete
homomorphism. Then

-1 _ -1

@ 77~ _[0.6])=~ _77[0.5] where b, e rL.7
is 0-p and 1-p.
® v, m'0blcn oy b

whenever
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bj € 77|_ and 7 is 0-p equality holds when M is a finite

chain.
Lemma 4.8: For any pair of maps 7, : X &> M into

a complete lattice M and for any subset A of X such
that 7|A>w|A, we have APA>AWA and

v A= viyA.

E. Complete Lattice Of Complete ldeals Of a Complete
Lattice:

In this section relations between, modularity,
distributivity and the complete infinite (meet, join)
distributivity of, a. the complete lattice of complete ideals in
a base complete lattice and of, b. the base complete lattice
itself, are recalled.

Let us recall that a complete lattice is,

a. a complete infinite meet distributive lattice iff it
satisfies the complete infinite meet distributive law

o (@nb) =anav,, b

b. acomplete infinite join distributive lattice iff it satisfies
the complete infinite join distributive law namely,
ANig (@vh) =ava,, b and

c. a complete infinite distributive lattice iff it is both the
complete infinite meet distributive lattice and the
complete infinite join distributive lattice.

Further, for any complete lattice L, the collection of
complete ideals of L, is itself a complete lattice with the
least element ¢, the largest element L and the meet and

namely, v el

joined given by: For any non empty family of ([0, a;]);_,

of complete ideals of L, A, [0,8,] = [0,A,.,8] and

Vie [0,8;] = (Vi [0, &) = [O,vi, & ]

Definition 5.1: For any complete lattice L, the
complete lattice of all complete ideals of L whose meet and
join are defined as above is denoted by CI (L) .

Theorem 5.2: For any complete lattice L, then the
following are true

a. L is complete infinite meet distributive lattice iff
CI(L) isso

b. L is complete infinite join distributive lattice iff
CI(L) isso

c. L is complete infinite distributive lattice iff Cl (L) is

iel

iel

$0
d. L is distributive lattice iff CI (L) is so

e. L is modular lattice iff Cl (L) is so.

IV. F-SET THEORY

As mentioned earlier in the introduction, f-Set Theory
was developed in Murthy [2] as a natural generalization of
Goguen's L -Fuzzy Set Theory which itself is a
generalization of Zadeh's, both Fuzzy and Interval Valued
Fuzzy Set Theories.

For several of the results in this paper, the complete
homomorphisms are assumed to be one or a combination of:
0-preserving, O-reflecting, 1-preserving and 1-reflecting (Cf.
3.3.6). This (These) hypothesis (hypotheses) of
preserving/reflecting are separated from the results of
Murthy[2] and the corresponding results are reproved in this
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section.

Further, in the proofs of some of the results in this paper,
the use of infinite meet distributivity of the underlying
complete lattice for truth values, is avoided via altogether
new proofs in this section.

Thus in this section, f-set, f-subsets of an f-set; lattice
algebraic properties of f-sub- sets of an f-set; lattice
theoretic relations between (crisp) subsets of the underlying
set of an f-set, Goguen-fuzzy (and hence Zadeh-fuzzy)
subsets of the underlying set of the f-set and the f-subsets of
the f-set; f-maps between f-sets; lattice algebraic properties
of the f-images and f-inverse images of f-subsets under f-
maps; and several other properties are restudied.

All the results of this section are naturally and neatly
extended to: L -interval valued f-(sub) sets, interval valued
f-maps between L -interval valued f-sets and M -interval
valued f-sets, where the complete lattice L may possibly be
different from the complete lattice M , M -interval valued
f-image of an L -interval valued f-subset of the domain L -
interval valued f-set and L -interval valued f-inverse image
of an M -interval valued f-subset of the co-domain M -
interval valued f-set, in our next paper Murthy-Prasanna] ].
A. f-Sets and f-Subsets:

In this section the notions of f-set, (c-total, d-
total,total,strong)-f-subset, f-union and f-intersection for f-
subsets of an f-set are recalled from Murthy[2].

Definition 1.1: An f-set is a triplet A = (A,K, L)),

where A is a set, called the underlying set of/for A, L, is
a complete lattice, called the underlying complete lattice of

truth values of/ffor A and ZI A— LA is a map, called the
underlying fuzzy map offfor A .Inanfset A, AL, and
A are uniquely determined.

The f-set (A,K, L,), where A=¢, the empty set
with no elements, LA = ¢, the empty complete lattice with

no elements and A the empty map, is called the empty f-
set and is denoted by @.

For any pair of f-sets A = (A,Z, LA) and B =
(BBL,), A=Biff A=B,L,=Lgand A= B.

Through out this section the letters
A,B,C,D,E, X,Y,Z together with their suffixes always

denote the f-sets, unless otherwise stated. Also, any such
script P always denotes the triplet (P, P, LP) where P is
the underlying set for the f-set P, LP is the underlying
complete lattice of the truth values for the f-set P and
P:.P— LP is the underlying fuzzy map for the f-set P.
The letters F,G always denote the f-maps
(f, L;),(g, Lg) respectively.
Definition 1.2: Let A,B be a pair of f-sets.
a. A isan f-subset of B iff (1) A is asubsetof B
(2) L, is a complete ideal of Ly (3) A <

B|A.
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b. A isa d-total f-subset of B iff A is an f-subset
of Band A = B
c. A isa c-total f-subset of B iff A is an f-subset

of Band L, = L
d. A isa total f-subset of B iff A is both a c-total
and a d-total f-subset of B
e. A isa strong f-subset of B iff A is an f-subset
of Band A = B|A.
The Following are easy to see:
a) Always the f-set @ = (¢,0,¢) is an f-subset of

every f-set A.
b) A=B iff AcB and BC A iff A=B,
L,=Lg and A=B.
Definition 1.3: For any family of f-subsets (A,),_, of
A,
(a). the f-union of (A;)
by the f-set A, where

denoted by U, A, is defined

iel > iel

a. A = U, A is the usual set union of the collection

(A)icr of sets

b. LA =V LAi where v;_, LAi is the complete ideal

iel

generated by U LAi in L,

iel

c. A:A—L, is defined by Aa = v,

el Kia, where
I,={iecl|ac A} and

(b). the f-intersection of (A,)
defined by the f-set A, where

a. A = Nic Al is the usual set intersection of the

denoted by M, A,, is

iel > iel

collection (A)),_, of sets

b. LA = M, L, is the usual intersection of the complete

A
ideals of (L, ),,, in L,

c. Z:A—) LA by Ka = Al Z\ia.

B. Algebra of f-Subsets:

In this section some (lattice) algebraic properties of the
collection ofall f-subsets of an f-set are studied. Further
some lattice theoretic relations between the complete lattice
of all f-subsets of an f-set and the underlying complete
lattice for truth values are recalled from Murthy[2].

Proposition 2.1: The set F(X) of all f-subsets of an f-

set X is a complete lattice.

Proposition 2.2: For any f-set X the following are true:
a. The complete sub lattice of all c-total, strong f-subsets of
X is complete isomorphic to the complete lattice of all
(crisp) subsets of X.

b. Whenever X is the constant map from X assuming the
value 1 of LX the complete sub lattice of all total f-subsets
of X is complete isomorphic to the complete lattice of all
L, fuzzy subsets of X (in the sense of Goguen [5]).
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C. f-Maps:

In this section the notions of, an (increasing, decreasing,
preserving) f-map between an L -f-set and an M -f-set and
the f-composition of such f-maps were introduced.

Definition 3.1: For any pair of f-sets A and B, the pair

F = (f,L;) where f:A—>B is a map and
L; : L, = Lg is a complete homomorphism, is said to be

an f-map and is denoted by F: A—>B.
Definition 3.2: For any f-map F: A—B, F is

(a) increasing, denoted by F or (f,L;);, iff Bf >
L, A
(b) decreasing, denoted by F, or (f,L),. iff Bf <

L, A
(c) preserving, denoted by F, or (f,L),, iff Bf =
L A.

Definition 3.3: For any pair of f-maps

F=(f,L,):A—>B and G=(g,L,):B—>C, the-

composition of F by G, denoted by GF: A — C, is
defined by the f-map GF = (df,L,L,).

D. f-Images and f-Inverse Images under f-Maps:

In this section the notions of, the M -f-image of an L -
f-subset under an f-map and the L -f-inverse image of an
M -f-subset under an f-map were introduced and were
shown to be well defined.

As mentioned in the beginning of this paper, for several
of the results in Murthy[2], the complete homomorphisms
are assumed to be one or a combination of: 0-preserving, 0-
reflecting, 1-preserving and 1-reflecting (Cf.3.3.6 and
3.3.18). Also, some of the results use the infinite meet
distributivity of the underlying complete lattice of the
domain and/or range f-set.

Now in this section this (these) hypothesis (hypotheses)
of preserving/reflecting are separated from the results in this
paper and the corresponding results are restated and proved
here. Further, in the proofs of some of the results in the
same paper, the use of infinite meet distributivity of the
underlying complete lattice for truth values, is avoided via
altogether new proofs in this paper.

Definition 4.1: Let F: A—B be an f-map. Then
a. For any f-subset C of A, the f-image of C, denoted by
FC , is defined by D, where

(@ D=1C () Ly = (LLo), © D:D—Lyis

given by Dd - Ed/\vaE(f_ldﬁC) for all

deD.
b. For any f-subset D of B, the inverse f-image of D,

denoted by F'D, is defined by C, where
@C=1D@®mlL =LL @© C:CoL.is
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given by Cc = KC/\VL_lefC forall ce C .

The following example shows that without the term,
Bd , the f-set D need not be an f-subset of B:

Example 4.2: Let F: A — B,C < A be given by:
A=f{a}=C, B=¢{b, A={@a1)}=C, L, =
{0,1} = Lg = L, B = {(b,0)}, f:A—> B givenby
f = {(a,b)} and Ly = {(0,0), (1,1)} . Then F is a
decreasing f -map because Efa =0<L, Aa=1.
LetD=FC.Then D = fc = {b}; L = (Lile)y, =

{O,I}and[_)b:v LfE(f‘lme) = 1, implying
D = ({b},{(b,1)},{0,1}) . Clearly D is not an f -

subset of B because Db = 1 is not less than or equal to
Bb = 0.

E. F-Set Theory Revisited:

In this section some standard lattice algebraic properties
of the collections of, M -f-images of L -f-subsets under an
f-map and the L -f-inverse images of M -f-subsets under
an f-map are studied in detail.

Definition 5.1: Let F: A—>B be an f-map and let D
be an f-subset of B. Then D is said to be an L; -regular f-

subset of Biff Ly = L¢L,.
Definition 5.2: An f-map F=(f,L;) is

a. O-preserving, or simply 0-p iff L; is a 0-
preserving complete homomorphism (Cf.3.3.6)

b. 1-preserving or simply 1-p iff Lf is a 1-preserving
complete homomorphism (Cf.3.3.6)

c. O-reflecting or simply O-r iff Lf is a O-reflecting
complete homomorphism (Cf.3.3.6) and

d. 1-reflecting or simply 1-r iff Lf is a l-reflecting
complete homomorphism (Cf.3.3.6).

Proposition 5.3: For any f-map F: A—B and for

any pair of f-subsets A, and A, of A such that

FA, o FA

A1 C A2 we have 2 whenever * =1 or d

or p.
Pfoof : Let RA, = D, and KA, = D,. We show
that D, =D, or (1) D,cD, (2 LDI is a complete
ideal of Ly, (3) D/ <D:|D,.
Since A, CA,, wehave A C A, LAl is a complete
ideal of LA2 and Al <A |A.

a. Since AcA, D =1fA < fA =D,.
b First Ly = (LiLy)o s Lo = (LiLy),,-
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Next, since LAl c L, ,wehave LfLAl C LfL/_\2 cl;.

A

Therefore, by 3.2.3(7) we get v L, LAl < vl LAz and

LDl = (L LAI)LB is a complete ideal of
(LfLAz)LB - LD2'

c. Let deD,. Since AcA,
f_ldﬁAlgf_ldﬁAz. Since ZISZ2|A1,
LAISL A A

Therefore, by 3.4.8, we get that v L, Ai(f 'd N A)
<vL A(f'dnA) <vL Ax(f'dnA)  and
Bd AvL, A(f'dnA)
BdnvL, A(f'dnA) = Dxd or D <
D:|D,.

Lemma 5.4: Forany F: A —B, the set F.(B) of all

hence 51 d =

IN

Lf -regular f-subsets of B is a meet complete sub semi
lattice of the complete lattice F(B).

Proof : (1) B, B, and B, is L; -regular implies B,
is Ly -regular as follows:

B, is L -regular implies Ly, < L¢L, and B, cB,

implies LBl is a complete ideal of L in particular

B, °
LBl c LBz and hence LBl c L.L, or B, is L -regular.
(2)Let B, eF.(B) forall i€l and B = n,_, B;. Then
since B B, and B, is L; -regular, by (1) above B is
Lf -regular.

The following example shows that Fr (B) is not closed
under finite unions:

Example 55: Let F:A—>B be given by: A =
({a}, {(a,D},{0,a,8,1|0<a, B <Lia|| f}).

B = ({b}, {(b,1)}, {0, B, 7.1
0<a,B.y<Lial|lBllr}),. f=1{@b)},

Li = {(0,0), (@, @), (B, 8),(1,1)} ,B, = ({b},
{(b,a)},{0,a |0 < a})and

B,=({b},{(b, ) }.{0, 810 < B}).

Now B, is L;-regular because LBl = {0,a}
< {O,Q,ﬂ,l} = Lf LA'
B, is L; -regular  because Lg =

2

{O,ﬁ}g{O,a,ﬂ,l} = LfLA'
B = B,UB, = ({b},{(b.1)},{0,a, B,7.1}) . But
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Ly = {0,a.8,7.1} € {0,a,81 = LlL,.
implying that B1 U82 is not an Lf -regular subset of B.

Therefore F, (B) is not closed under even finite joins.

Proposition 5.6: For any f-map F: A —B and for any
B, cB
pair of f-subsets B1 and 82 of Bsuchthat '~ 2 and
-1 -1
BZ is | -regular, we have FB cF'B
=i or d or p.
Proof : Let F'B, = A,. Then A=f"B,

LAl = L_flLBl and Ala=AaAvL;'B fa forall ac A

2 whenever *

Let F'B, = A, . Then A = f 'B,, L, =L} LBz and

20 A,
A,a=AanvL]'B:fa forall a€ A, .

We show that A, C A, or (1) A CA (2 LAl is a

complete ideal of L A 3) Zl < A A.

Since B, < B,, wehave B, cB,, LBl is a complete
ideal of LBz and B < B> | B,.
a. Since B, B,,wehave A, = f'B, < f7'B, =
A, .
b. First, since LBl c LBz , we have LAl = L_flLBI c
Lile =L, -

Since LAl is a complete ideal of L,, LA2 is a

complete ideal of L, and L e L, ,wegetthat L

Ay a i

a complete ideal of L A -

c. Let ac A = f'B, be fixed. Then faeB, B,
Since  Aid=AaAv L}lgl fa  and Aa -
Aa AV L}lgz fa, itis enough to show that v L}lgl fa
< v L?Ez fa.

Since B1 < B> |B,, Bifa<B:fa.

Since B, fa e L;L, by L;-regularity of B,, by
join monotonicity of L}l asin3.3.2, we get that
vL'Bifa < vL/B:fa.

The following example shows that the above proposition

is not true if B, is not L; -regular:

Example 5.7: Let F: A —B be defined by: A =
({a}. {(a. D}, {0,a, 1[0 <a <1}) B =

(b}, {(b, D)}, {0,a, B,1|0<a < B<1}), f =
{@b)}, Lt = {(0,0), (@, @), (1,1}
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Then 1 - Bfa = L, Aa = L,(1) = 1 implies
F,:A—B is preserving.

Let B, = ({b},{(b,@)},{0,a|0<a}) and B, =
({b},{(b, £)}.{0,a, B|0<a < j}).

Then B, CB, because B, B,,Ly s a complete
ideal of Ly and Bib - @< =Bab.

Let A;=F'B/(i=12). Then A = {a} = A,
Lils = {0.a} = L, is a complete ideal of L, =
{0,a} = Li'Ly .

Aa - AaavLlBifa = lra = o ¢ A
AaAvL'B:fa = 1nvg = 1A0 =0, implying that

A & A, or F7151 o Flez.
Proposition 5.8: For any f-map F:A—B and for any f-
subset C of A, CF+'F«C, whenever * = i or p.

Proof: Let FC = D. Then D = fC, L, =
(LLc),, and Dd = Bd AvL C(f'dNC) forall
deD.

Let F'D = E. Then E = f'D, L = Lj'L, and
Ee = AeavL; Dfe forall e€E.
We will show that CCE or (1) CCE (2) L. isa

complete ideal of L and (3) C < E|C

a. Ccf'fC=f'D=E.

b Lo clilile < Li(Like)y, = Li'Ls = L.
Now, since both L. and L are complete ideals of L,

such that L. < L, we get that L is a complete

ideal of LE.

c. Let C€C be fixed. Then EC = AC A VL}IBfC

where Dfc = Bfc vaE (f'fcnC)

= ng AV LfEa.

act LicnC

Since F s increasing, Bfc>L,Ac. But
L, Ac> L, Cc because A|C>C and ceC.

Further, forall ae f 'fcAC, fa = fc and Bfa
- Bfc.so, Bfc =Bfa > L, Aa > L,Ca forall
aef'fcnC.

Therefore, ~ Bfc > v L,C(f 'fcnC),

implying, Dfc - EfC/\\/LfE(f_lfCﬁC) =
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vL,C(f'fcnC). But Dfc -
vL,C(f'fcnC) = L,(vC(f'fcnC)), where
the last equality is due to the facts that f ' fcC # ¢

and hence C(f71 fcnC) = ¢ and L; is a complete
homomorphism, implying that
vC(f'fcnC)eL, Dfc.

Now, since ce f 'fcNC, from the above it
follows that, Cc < vC(f'fcnC) < vL,'Dfc
implying EC = AcavL;'Dfc > AcaCc = Cc,
since Z\| C>C.

The following example shows that the above proposition
is not true for decreasing f-maps:

Example 5.9: Let F: A—B be defined by: A =
({a}’{aal}a{031|0<1}): B =

({b},{b,0},{0,1[0<1}), f = {ab)y}, L =
{(0,0), (1,1)} and C=A.

Then Bfa - Bb = 0<1=L,1=L, Aa implying
F is decreasing.
LetD=F,C.Then D = fC = {b}, L, = (LfLC)LB
= Ly and Db = BoavL,C(f'bnC)=0Al=0.
Let E=F,'D.Then E = f'D ={a}, L. = L/'L,
= 'Ly = L, and Ea = Aaavl;'Dfa= 1n0 =0,
Further, (a) C = {a} = E () L. = {0,1} = L but
© C@) =1 ¢ 0= E(),implying C £ E|C or
C ¢« F,'FC.

Proposition 5.10: For any 0-p f-map F: A —>B and
for any f-subset C of B, we have F.F.,'C = C, whenever

*=dorpori.
Proof: Let F,'C = D. Then D = f'C, Ly, =

L_flLC and Da = Ka/\vL}‘Efa forall aeD.
Let D = E. Then E = D, L; = (LfLD),_B and

Eb = BbAL,D(f 'bD) forall beE.

It is enough to show that (1) EcC (2) L; is a
complete ideal of L. and (3) E < E| E.
. E=fD=ff'C < C.
boLe = (L), = (L), < (Lo, = Le-
Further, since both L and L are complete ideals of Lg

such that Ly < L, we get that L. is a complete ideal of

L.
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c. Let beE be fixed Then Eb =
Bb AVL; 5( f'bnD), where Da =
Aaavl]Cfa.

Now for all ae f 'bnD, fa=b, aeD and
L,Da = L, AaAL,(vL;'Cfa) < L,AanCfa <

Cfa=Cb forall ac f b D , where the first < is
by 3.3.11(4) and the fact that F is 0-p.

Therefore, vaB(f_lbﬁD) < Cb and Eb
BbAvL,D(f'bnD) < BoaCb < Cb.

The following Example shows that if F is not 0-p then
the above proposition need not be true:

Example 5.11: Let F: A —B be givenby: A =
({a},{(a,1)},{0,1{0<1}),B=
({b},{(b,D},{0,a,1|0<ax <1}), C =
(b,{(b,0)},{0,x,1|0<ax<1}), f = {(a,b)} and

Lf = {(0,&),(1,1)}

Then Efa =1= sza implying F is preserving. If
F))C=D.then D= f'C={a}, L, = Li'Lc = L,
and Da = AaavL;Cfa=1avg =1A0=0.

If F.D =E, then E = fD = {b} = C, L =
(Lily), = L = L ad Eb -

BbAvL,D(f'bAD) = laa = « > 0= Cb,
implying FpF;C =g ¢ C.

Proposition 5.12: For any 0-p f-map F: A —B such
that ,L; are one-one and for any f-subset C of A, we
have C = F.'F.C whenever * =i or p.

Proof : Let FC =p. Then D = fC, Ly =
(LiLc),, and Dd = Bd AvL,C(f~'d NC) forall
deD.

However, since f is one-one, BfC =
BfcavL,C(f'fcnC) = BfcaL,Cc forall
ceC.

Let F'D =g. Then E = f'D, L. = L}ILD and
Ee = AeavL; Dfe forall e€E.

It is enough to show that E = C or (1) E = C (2)

L. =L, 3 E=C.
a. E= f7'D = f'fC = C where the last equality is

due to the fact that f is one-one.

b Le = Li'Lp = Ly'(Ly L)y, - Nowby 32303), L =
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[0,a] forsome a€L,.

By 343@2). (L;iLo), = (Li0,a], = [0,La].
Therefore L. = L;'(L; LC)LB = L/[0,L;a] =
[O,VL}lLfa] = [0,a] = L., where the 4th equality
follows from the fact that L is one-one and the 3rd
equality follows from 3.4.6(3), since LyaeL;L, and L;
is 0-p.

c. Let € € E be fixed. Then Bfe above, together with the
facts (i) L, Cee L,L, (i) L}l is join increasing (3.3.2)
and (iii) Bfe a LfEe < L Ce (iv) L; is one-one
implies that Ee = AeavL; ' Dfe =
AeavL;(BfeaL,Ce)< AeavL;(L,Ce) =
AenCe = Ce because ESZ\|C.

On the other hand, since Cc F'RC for * =1 or p by

4.5.8, we get that C<E or C =g
The following example shows that the proposition is not

true if, only f is one-one and not L :

Example 5.13: Let F: A —>B be defined by: A =
({a},{a,1},{0,a,1[0<a <1}),B =

({b}a{b71}5{0>1|0<1})’ f = {(a:b)}’ Lf:
{(0,0), (2,0), (1,1)} and C = ({a},
{a,0},{0,,1|0 < <1}).Then f isone-one; L is
not one-one because L;0 = L &, but 0# & and Efa
= Eb =1= sza = 1 implies F is preserving.
LetD=F,C Then D = fC = {b}, L, = (Lile)y,

= Ly and Db = BoavL,C(f'bnC)= 1A0=0.
Letg=F'D.Then E = f'D ={a} = C, Lg =
'L, = 'L, = L5'{0,1} = L. and Ea =
AarvLlDfa = lna =a = 0 = Ca, implying
F.'F,C =E=C.
The following example shows that the above Proposition

is not true if, only L; is one-one but f is not:

Example 5.14: Let F: A—B be defined by: A = ({a,,
a,}. {(@,1), (@D}, {0,1]0<1}),B = ({b},
{b,1}, {0,110<1}), f={(a,b).(a,,b)} L=
{(0,0), (1,1)} and C = ({&,},{a,,1},{0,1]0<1}).

Then f isnotone-one, L; is bijective. Further, Bfa1 =
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1= szal and Bfa, = 1 = szaz implying F is
preserving.

LetD = FpC.Then D= fC=¢{b}, L= (LfLC)LB
= L and Db=-Bb A vaE(f_lbﬂC) =
IAnl=1.

Let E = F’;ID. Then E=f'D={a,a,} = C,
implying FpF;IC =E # C.Notehere that L = L;'L,
~ 'Ly - L, - L. and Ea, - Aa AvL,'Dfa, -

Inl=1=Ca,.
The following example shows that the above proposition
is not true if F is decreasing and both f and L; are

bijections:
Example 5.15: Let F: A —B be defined by, A =
({a},{a,1},{0,1]0<1}),B =

({b}, {b,0},{0,1]0<1}), f = {(a,b)}, Ly
{(0,0), (1,1)} and C = A .Thenboth f and L; are

bijections. Further, Bfa = 0< L, Aa = 1, implying F
is decreasing.
Let D =F,C.Then D = fC = {b}, L = (LfLC)LB
= L, and Db=Bb vL,C(f'hnC)=
0Al=0.
Let E = Fd_lD.Then E-f'D={a =C, L =
'Ly =L, = L. and Ea - Ka/\vL}IBfa =
InO =0 = 1 = Ca, implying C = E or
C=F,'F,C.

Proposition 5.16: For any f-map F: A —B such that
both f and Lf are onto and for any f-subset C of B,
we have F.F.'C = C, whenever * =d or p.

Proof: Let p = F'C. Then D = f7'C, L, =
L;'L; and Da - AaAvL,Cfa forall aeD.
Let E = gp.Then E= fD,Lc=(L, LD)I_B and for all

beE, Eb=Bb A vL,D(f'bnD).

We will show that E= C or (1) C = E (2) L¢ = L.
and (3) 6 - E.
a. Since fisonto, C = ff 'C = fD = E.
b. Le = (L LD)LB = (L L_flLC)LB - (LC)LB = L,
since (i) Ly is onto and hence L, LfflLC = L. and

(1) complete ideal generated by a complete ideal is itself.
c. Let b€ E = C be fixed. Since F is decreasing and
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CcB, we have Bf SLfZ and C<B|C.
Consequently for all d e f'b, Cfd <Bfd < sz\d :

Further, since L is onto, Cfd e L. c Ly = LiL,, by

33.113), L, (vL;'Cfd) = Cfd and hence L, Dd
L (AdAvL;Cfd) = L,AdAL,(vL;'Cfd)
L AdrCfd - Cfd - Cb,
vL,D(f 'bnD) = Cb.
Now, Eb = BbavL,D(f 'bnD) = BbAChb =
Cb, because C < BJ|C.

The followingexample shows that theabove proposition

implying

is not true if F is increasing and both f and L; are

bijections:
Example 5.17: Let F: A—>B be defined by: A
({a},{a,0},{0,1/0<1}),B =

({b}7{b71}5 {071 | 0< 1}) ' f = {(a’b)} ' Lf
{(0,0), (1,1)} and C=B.
Then f is a bijection, Lf is identity and Efa =1

> L, Aa = 0, implying F is increasing.

Let D =F'C.Then D = f7'C = {a}. Ly=L{'L.=
L, and Da=AaAvL,Cfa =0Al=0.

Let E = FD. Then E = fD = {b} =C, L
= (LiLp), =L =L and Eb =

BoavL,D(f'bAD) = 1A0 = 0 = 1 = Cb,
implying FiFi_lC: gz C.

The following example shows that the above proposition

is not true if, only f is onto but L; is not:
Example 5.18: Let F: A—>B be defined by: o = ({a},
{a,1}, {0,,1|10<a <1}),B= ({b}, {b,1},
0,a,8110<a<p<1}), f ={@b)} L=
{(0,0). (@, @), (1,1)} and C = ({b},{b, B}, Lg).
Then f is a bijection, Ly is not onto and Bfa-=1-
L, Ka , implying F is preserving.
Let D = F:C. Then D = f7'C = {a}, L, = L;'L,
=L/'Ly =L, and Da - Ka/\vL_fIEfa: IAveg =
In0=0.
Let g = F.D. Then E = fD = {b} = C, L

(LfLD)LB - (LfLA)LB =Lg=Lc and
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Eb = BoavL,D(f b D) =
Cb, implying FpF;C =E=C.

The following example shows that the above proposition

INO=0 %« B =

is not true if, only L isontobut f isnot:
Example 5.19: Let F: A —B be givenby: A =
({a},{a,1},{0,1]0<1}) , B=
({b, b}, {(0,1),(b,,1)},{0,1]0<1}), f =
{@hb)}, Ly = {(0,0), (1,1)} and C =B.

Then f is not onto, L; is identity and Bfa-1-
L, Aa, implying F is preserving.
Let D =F'C.Then D = f7'C = {a}, L = L{'L¢

=L'Ly =L, and Da - Z\a/\vL}IEfa =
IAnl=1.

Let g = F,D. Then E = D = {b}#C, implying
FpF;C =g = C.

Proposition 5.20: For any 0-p f-map F: A —B and
for any family of f-subsets (C )JEJ of A R(U Cj):

Uia F C whenever * =1 or d or p and LB is a complete

jed

infinite meet distributive lattice.
Proof: Let C = U CJ- . Then C = Uies Cj, L.

= Via Lcj =

byEa:V

jeld
(UjeJ Lcj)LA and EIC — L is given

jelana’ I, = {j€J|a€Cj} for all

aeC.
Let D = FC .Then D= fC,L,= (LfLC)LB and for all

beD,Db=Bb A vL,C(f'bnC).
Let EJ- = FCJ-. Then Ej = ij, LEj = (L, LCj)'-B

and Ejb = gb/\vaEj(f_lbﬁC-),forall bEEJ—.

Letgp= U Ej.Then E=U E L LE_
J

jed jed jeJ

and Eb = Via,
allbeE.

Now we show that D=gor (1) D=E (2) L = L¢
3) D = E

a.D = f(uleJ j) = Yia fCJ = Yia EJ' -
E.

b. By 3.2.3(3), LCj

E b, where l,={jeJ |b€Ej},for

- [O,aj] for some @; € L, for each
jeld.

By 323®)b). Lo = Vigle = Viul0e] -
[0V, ]
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On the other hand,by 3.4.3(2),(Lf LCj)LB
= [OaLfaj] and Ly = (LfLC)LB =
[O L (VJEJ j)]:

[0,V jed L a; ] where the last equality is due to the fact

(Lf[oaaj])LB
(L{[0,v, a'])LB -

that Lf is 0-p (needed when J =¢) and is complete

homomorphism.

Again by 3.23@)(b). L = v, Le, =
= Via [O:Lfaj]:[ I—a]
Clearly, Ly = L¢.

@®: Lt yefCc = fLU,C), U, =
{jEJ |X€Cj} and Vy =

for all xe f'ynC, U,=¢, Vy¢¢, fx=1y and
xeC.

Futher, Dy - By A vL,C(f'ynC) - By

Vied (L Lcj)LB

jed

{jeJ|yefC;}. Then

4 LiCx-=
xef ynC
B v L. (v.., Cix =
y N xef lync f( IeUXC' )
By Av v, L Cix.
y xeflync iUy f Ci

On the other hand, since LB is a complete infinite meet
distributive lattice,

Ey :vjeVy Eiy T Vi, (Ey/\\/

L,Ciz) -

ZEf_lymC j
ByAv. ., Vv L.Ciz.

y Jevy ZGf*Iyij f

Therefore it is enough to show that

Viw LiCiXx =v, v L,Cjz.

xef’lymc X y zef’lymcj

Let Q = {LijZ]Zef_lyﬂCj,jeVy} and P

{LfEiX\Xe f'ynC,ieU,}. Then clearly, it is

enough to show that P = Q, because Vv P =
et lyne VieUX Lf Cix and vQ =
Viy V L, Cjz.
jevy zefﬁlymCj f)

Let @ €Q. Then a:LijZ, zEf‘lyij,
jeVv,. since C;cC, zef'ynC, jeU,.
Therefore ze f'ynC, jeU, or a:LijZEP,
implying Q c P.

Let feP. Then f = LfEiX, xe f'ynC,
ieU,. But then xef’'y and xeC, or

xe f'yNC; which implies y = fx e fCi or i€V,
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which in turn implies X € fﬁlyﬁci, I EVy or f =
LfEiX € Q,implying Pc Q.

Proposition 5.21: For any 1-p f-map F: A —B and
for any family of f-subsets (C f ) jeg of A,

(N, C) en
Proof: Let C=N

FCJ- , whenever * =1 or d or p.

C-. Then C:ﬁjd Cj, L.=

jed jed

jed
Njes LCJ_:mjeJ Lc]_ and Ca= /\Jdcja, for all
aeA.

Let p = FC .Then D= fC,LD=(LfLC)|_B and for
alheB, Db=Bb A vL,C(f'bnC).
Let E; = FC,. Then E; = fC;, LEj = (L, LC]_)LB

and Ejb = Eb/\vaEj(fflb(‘\C-),forall bEEj.

Let g = Njy E;. Then E = E,. L LEJ_

JEJ jeJ

= Nje LE and Eb = Ejb,foral beE.

Njes
Now we show that DCE or (1) DcE (2) Ly isa
complete ideal in L (3) 5SE| D

a D= fC = f(n,C))cn, fC, =N
E.

b. By 3.2.3(3), LC

each jeJ.

So, by 3.2.3(8)(@), Lo =Aje; [0,;] = [0A ;]

On the other hand, by 3.4.3(2), (L, LCJ‘)LB =
(Li[0,a;D), = [0,L¢a;] and

L = (L), (Li0A ]y, =
[O’Lf(/\jejaj)] = [0 JEJLOZ] where the last

E =

jed =i

[0,c; ] for some & € L, and for

equality is due to the fact that Lf is 1-p (needed when

J = ¢) and is complete homomorphism.
Now Lg = Ay, I-Ej Niey (L LCj)LB
N [0,La;] = [0 Ly ;] Therefore Ly = Lg.
c.Let ye fC = f(ﬂjGJCj) be fixed.

jed

Then By =

ByavL,C(f'ynC)

ByAv L, Cx.

xefﬁlyr\C
On  the  other  hand, Ey Ajes Eiy =
Aoy (BYAVLCi(f'ynC))).

But by 3.1.13), A, (ByavL,Ci(f'ynC))
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Ey/\/\jEJVLij(f_lyﬁCj),implying
Ey = Byaa,vLCi(flynC) =

Ey/\/\jEJv L, Cix.

xef™ ymC

Next, for all Xe f~ ymC, XEf‘lyij for all

jeJ and CXx<CjX, implying

L,Cx<L,C;x < v, LCjx <
xef ynC
4 L;CiX forall jeJ which in turn implies
xe f yij
LiCX< A, (VXEf_lyij L;CiXx) for all
_1 . . . ~

xe f7yNC which finally implies Y etlyne L, Cx
< Ao (VXEf*Iymcj L,Cix).
Therefore Dy = ByAv L, Cx <

xe f _1ymC

EyAAjEJ(va L,Cix) = Ey for all yeD,

7lyr\CJ—
implying DSE|D or DcE.

Proposition 5.22: For any O-p and O-r f-map
F: A —B and for any family of f-subsets (C ; )je.J of B

,we have F, (UJEJ i)=Y,k C , whenever

(a) LB is a finite chain, LA is a complete infinite meet
distributive lattice.

() C; is
p.

L; -regular foreach je J and*=i or d or

Proof: Let C = U;; C;. Then C = U, C;, L
Vel Lcj = (Y LCJ-)LB and
Cb=v = {jeJ|beC,}, forall
beC.
Let D =F'C.Then D=f'C, L = L'L; and Da
= AanvL;Cfa,forall aeD.
Let E; = F'C,. Then E; = f7'C;, L - Ly'Le

Cib, where I,

jelb

i
and Eja = Ka/\vL_lC_:'fa,forall ae E-.

Letg= U E;. Then E = U, B, L = vy, LEJ_
= (Y LEj) and Ea:\/jEla Eja, Where

= {jeJ|aek} forall acE.
We show that D = E or (1) D=E (2) LD LE and (3)

D=E.
a. D = f'C = f'(u,,C) =y, f'C, =

]
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Ui Ej =
b. By 3.2.3(3), LCJ_ = [0,5,] for some f3; € Ly and for
each jeJ.

By 323@®)b), Vi LCj Vial0,81 =
[0,V ﬁ]]

Next, since (i) F and hence Lf is 0-p and (ii) Cj is
Lf -regular and hence ﬁj S Lc C Lf LA, by 3.4.6(3),
j

L L, = [0,5,1=[0vL7'B,].
Since V; IB €L, L,, again as above L =L 'L.=
L_ (VJGJL ) L OV]EJIBj OVL (vjeJﬁ])

But since Lf is 0-r, ,BJ- € Lf LA and LB is a finite chain,
-1
by 33.19, vLi (v, B) =

from the above that L, = [0,v;_; v L}lﬂj].
On the other hand, again 3.4. 6(3) and 3.2.3(8)(b) as above
imply Le=v_, Lg =v L L

]

-1
Vi VL; B; and we get

jed jeJ

Vel Oﬂj Vijes 09VLfﬁj]:

ARY L B;1. since L; is 0-p. Clearly, now Ly =
L.

c. Let X€ D=E be fixed. Then DX = AxAvL;'Cfx

_ » _ _ =

= AXA VL (vjeleCj fX)= AXAVg VL C;fx,
where the last equality is due to 3.3.19, since (i) LB isa
finite chain and (ii) LF is O-r.

On the other hand, since L, is a complete infinite meet
distributive lattice,

Ex = v, Ejx = vjE,X(KX/\vL}lgjfx) =
{ieJ|xeE;}.
From the above, clearly it is enough to show that

VL_fICj X = v, vL}lak X, where
X

= {jed| fxeC}, I =

X

jelx

AXAV g v L,'C fx, where |, =

\

Ifx
(keJ|xeE =1"C}.

But in order for the equality it is enough to show that

jelfX

I fx = IX .
Let J €ly,. Then fXECj which implies X € f_ICJ-
= Ej,implying jel,.
Conversely, kK e, implies X € E, = f_le which
implies fx € C, implying kely,.
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andhence D = E or D =E.

The following example shows that the proposition is not

Therefore |g = |,

true if some CJ— is not Ly -regular:
Example 5.23: Let F: A—B be givenby: A = ({a},
(@0, {0,a,1[0<a<1}),8=({b}, {(b,D)},
0,a,8.1[0<a<p<1}), f ={@by} L=
10,0), (o, @), (L1);.
Let C,=({b},{b,a},{0,|0<a}) and C, =
(10}, {(b, £)}.{0,a, B| O < x < 3}).

Then Efa =1= sza, implies F is preserving 0-p
{0,at cLiL,

C, is Ly -regular, but LC2 = {0,a,p € LiL,

and 0-r. LCl = = {0, a,1} , implies

{0, a,1} , implies C, isnot L -regular.

i then C ={b}, L.=
vjeJ LCJ = LC1 Vv LC2 = LC2 = {Oaaaﬂ} and

Cb - Viel, Cib = CibvCib=Cab - .

Let D = F;C. Then D = f°'C = {a}, L, = L}'Lc

Further, if C = U,,C

- {0,a} and Da = AavL,Cfa -

Iavg = 1A0 = 0.

Let E; = F;le. Then E, = f7'C, = {a}, E, =
f7C, = {a}. L, = Li'Le, = {0.a}.

L, = L/Le, = {0.a}, Eia = AaavL/Cifa =

IAn@ = o and Ea = Ka/\vL?Ezfa =

Ianvg =0.

Letg= U, E;. Then E = E|UE, ={a} = D, Lg
= LEl v LEz = L and Ea - EavE.a-
av0=qg = 0= Ba,implyingD;tE.

The following example shows that the Proposition is not
true if Ly is not a finite chain:

Example 5.24: Let F: A —B be defined by: A =
({a}, {(a,D},[0,1]) , B = ({b}, {(b,1)},[0,1]) ,

= {(a,b)} and L; = {(x,0)|xe[0,1/3]} v
{(X,3(x—1/3)) | xe[1/3,2/3]} v
{(x,1) | xe[2/3,1]} .
Then §fa =1= sza,implies F is preserving.
Let B, = 1-1/n,n>1 and B, =
({b},{(b, 5,)}.[0, B, D) -
Let A, = F;an. Then A, = f_an = {a},LAn =

276
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LiLy = LY0.B]1 = [0vL/A] = [0.a,],

a, <2/3 and Ana = AaavLl'Bnfa = lrq, =
a, < 2/3 forall N21.

Let D = UB,.Then D = UB, = {b}, LD= vl =

v[0,4.] = [0,vB,] = [0,1] and Db = vBib =
v B, =1

Letg = UA,.Then E = UA = {a}, LE:vLAn =

v[0,a,] = [0,ver,] = [0,2/3] and Ea = v Ana =
2/3.

LetC=Fng.ThenC= f'D=1{a} = E, L =
L'Ly = L'[0,1]=[0,1] » Lg =[0,2/3] and

Ca = AaavL,Dfa = 1al =1 # 2/3 =
implying C+E.

Proposition 5.25: For any O-p and 1-p f-map
F:A—B and for any family of f-subsets (Cj)jGJ of B
, we have
E'(M
regular for eachj € Jand*=1ordorp.

Proof : Let C = M Cj.Then C=ﬂj€J Cj, L.=

iCi) = Nniu K 1C , whenever Cj is L -

jed
Njes Lcj=ﬁj€J Lcj andCC=/\jeJCjC, for  all

ceC.
Let D = F'C. Then D = f'C, L, = L{'L. and

Da = Ka/\\/L}IEfa,forall aeD.
Let EJ = F_lcj.Then EJ = f_lcj, LEJ = L_flLC

i
and Eja: Z\a/\\/L}IE'fa forallaEE-.
Nia Ej. Le

Let g = Nj; Ej. Then E = Ny, Nies LEJ_

=Ny LE and Ea = JJEja,forallaeE.
From the above it is enough to show that D =g or (1)
D=E @ L,=L. and(3 D=E.

a. D=f7'C=f"(n,,C)=n,,, f'C, =N, E

jed i
=E.
b. By 3.2.3(3), LCJ- = [O,ﬂj] for some ﬂj € LB and for
each jeJ.

By 3.2.3(8)(a), Aj; LCj = N 0,81 =04, 51
Next, since (i) F and hence Lf is 0-p and (ii) Cj is Lf -
regular and hence ﬂj € Lc C Lf LA,

j

by 3.4.6(3), L‘flLCj = 110,81 = [0.vL ;1.
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Since Ajg; ﬂ eL;L,, again as above L, :LflL =

L (/\JEJL ) L OAJEJﬁ OVL (/\je.]ﬂ)
by 3.4.6(3).

But since F and hence L is 1-p, ,Bj el;L, for all
j € J, by 3.3.16, we get that

-1
vLi(n, B) =
-1
Ly = [0.Ae; VLS B 1
On the other hand, again 3.2. 3(8)(a) with the above implies
-1
Le = A LEJ- = (L'Le ) [0,vLy B;1=

jed

Njes VLff1 p j » and from the above that

JeJ JEJ
(0.4 V L_flﬂj], implying that Ly = L.
¢.Let X D=E be fixed. Then DX = AX A \/L}lafx
=KX/\\/L}1(/\J-EJEJ xX) = ,K\X/\/\jEJ vL'C;fx,
where the last equality is due to 3.3.16, since (i) Lf is 1-p
and

i T = {Cifx|jed} < v, LCJ_ c LiL,
because each Cj is Ly -regular.

On the other hand, by 3.1.1(3), EX =
Aoy (AXAVLICfX) = AxAAJEJ v L

E -
Efx

implying BX = EX .
The following example shows that the Proposition is not

true if some CJ— is not Ly -regular:
Example 5.26: Let F:A—>B be defined by: A =
({a},{(a,)},{0,a,1|0 <a<1}), B =
({b},{b,1},{0,, 8,110 < < p<1}). f=
{(a,b)} and L;= {(0,0), (@, @), (1,1)} .
Let C, = ({b}, {(b,@)}, {0,a|0<a}) and C, =
({b}. {(b,5)}. {0,a,B|0<a<p}).

Then Bfa - 1= sza, implying F is preserving,

= {0,a}c L, = {0,a,1}, implying F is 0-p

and 1-p, C, is L;-regular, and Le, = {0,a,8} &
LiL, = {0, @,1} , implying C, isnot L; -regular.

Let C= C,NC,.Then C = C,NC, = {b}, L.
= L1/\L2 {0,a} = Cl and C = C]/\Cz
{b,a); A 40,5} = ibanp)} = (b)) =
C:.

Let D = F'C. Then D = f'C = {a}. L,
L'L. = L'0,a} = {0,a} and Da -=
AaavlCfa=1ra=a.
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Let E; = F'C,.Then E, = f'C,, E, = f7'C,
- {a). L = Lk = {04} L, = L, -
{0,a}, Eila = AaavL,Cifa = 1A = & and
E:a= AaavL,C.fa=1avg = 1A0=0.

Let E = mj=1,2Ej- Then E = E,NE, = {a} =

D, LE = LEl /\LE2 = LD and Ea = Ela/\Eza =

an0=0zx g = Ba, implying D#E.
Proposition 5.27: For any pair of f-maps F:A—>B

and G:B—C and for any fsubset E of A, the
following are true:

@ (G.F)(E) = G.(FE)

(b) (G,F)E = G, (RE), when L. is a complete infinite
meet distributive lattice

©) (Gpr)E = Gp(FpE), when L. is a complete
infinite meet distributive lattices.

Proof: Let (GF)E = H. Then H = ¢fE, L,
(LyLiLe) and Hc -

CeavL,L E((gf)'cnE) forall CeH.
Let FE = 1. Then | = fE, L|:(L](LE)|_B and 1b =

BbavL,E(f'bNE) forallbel.

Let Gl = K. Then K=gl, LK:(LgLI)LC and Kc

CeavLl I(g'cnl) forall ceK.

(a): From the above it is enough to show that f = K or (1)
H=-K@L,=L ad@ H = K.

a. H = gfE = g(fE) =gl = K.

b. By 323@3), L = [0,a] for some a€l,. By
3432, L, = (Like), = (Le[0,a]), = [0,L;e].
Again by 3.4.3(2), L = (L, L')'-c = (L,[0, Lfot]),_C =
[0,L, L.

On the other hand, again by 3.4.3(2), LH
(LgLfLE)LC =(LgLf[0,a])LC = [O,LgLfa]. Clearly,
L, = L,.

c. Let yel. Since F is increasing and EC A,
Bf Zsz\ ZLfE. Forany Xe f 'ynE, fx=y

and L, Ex<L,Ax < Bfx = By, implying
VL,LE(f'ynE) < By o ly -
ByAvL,E(f'ynE) = vL,E(f'ynE) for all
yel.
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Let zeH =K be fixed. Then Hz
CZ/\\/LgLfE((gf )7IZﬂE) and Kz

CzavL,l(g7'zn1) = CZAVyeg_lzml L,1y.

Since (i) z € H implies z = gfx for some X€E,

implying: (a) xe(gf)'znE implying

(of)"'znE=¢ () y=Tfxeg'znl implying
g'znl#¢ and () xef'ymnE implying
f'YyNE#¢ (i) pisincreasing (i) EC A (iv)
(of Y 'zmnE=uU

_ f'yNE and

yeg znfE

V) Vi, A0 T Vi Ve @, We get that Kz =
le

iel ae
Czav . L(v L, Ex) -

yeg znl XEf_lymE

CzAv v LgLfEX =

yeg_lzml XGf_lymE

Czav LLfEX =

Xxeu -1 f_lymE 9
yeg znfE
L, L Ex

xe((of )_lsz) i

Czav
= CzavL,LE((gf)'znE) = Hz.

(b): Let H,I and K be as in (a) above. Then it is enough to
show, when G is decreasing, that |y = K or

aH=K @L,=L,and(3 H=K.

b. H = K asin (a) above.

c. Ly = L again as in (a) above.

d Let zeH=K be fixed Then Hz =
CzavL,L E((gf)'znE)  and

z

_ - = —
Czavlh, (@ znl) = CZ/\vyeg_lmI L1y.
Since G is decreasing, CQg < ng. So, for each

yeg'znl, gy=z, yel and Cz = Cgy <
L, By, implying Cz A L,By = Cz.
LgLfEX

=C =L,By,b =v
Let c=Cz, a,=L,By, Db et -lyne

andY = gz 1.

Again since (i) ze H implies z = gfx for some
XeE, implying: (a) xe(gf)'znE implying
(of)Y'znE=#¢ () y=fxeg'znl implying
g'zNnl#¢ and () xef'ynE implying
f'YNE#¢ (i) L. is a complete infinite meet

distributive lattice (iii) (gf)'znE =

-1 . .

- f"ynE and (iv) Vaeu n & =
Viel Vge A o, from the above we get that
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Kz = Czav o Li(Byav ., LiEX)

Czav (L,ByAL, v L, Ex))

yegflznl S 71ymE

=Czav
yeg znl

CAV,y(@,Ab) =V, (cra, Ab)

(LByAv o LLEY

CAV, . b

:VyEY (C/\by) = yeY My

Czav Y% LgLfEX

yeg znl XEf_lymE

=CzAv LLfEX =
X [

ev 1 f’lym
yeg znl

CzAv L L, Ex

xe(gf)y 'znE 9 f
=CzavL,L E((gf)"'zNE) = Hz, implying Kz
_ .
(c): Clearly, the proof follows from (a) and (b).

Proposition 5.28 : For any pair of f-maps F: A—B and

G:B — C and for any f-subset g of C, the following are
true:

@ (Gy F*)_IE SF! (GEIE) , whenever E is Lg -regular

(b) (G*Fi)_lEgFi_l(G;lE), whenever G™'E is L -
regular and F is O-p
(©) (Gpr)flE = F;l(G;lE), whenever G™'E is L -

regular and E is L -regular and F is 0-p.

Proof: Let (GF)'E=H.Then H = (gf ) 'E, L,
= (LL) 'L and Ha= Aaav(L,L,)"E(gf)a
forall a€H .

Let G'E= I. Then I=g'E, L, = L;LE and
Ib=Bb /\vL?Egb forall bel .
Let F'I=K. Then K=f"1, L =L/L, and

Ra=KaAvL‘f‘l_fa forall aeK.

From the above it is enough to show that HDOK or (a)
KcH (b) Ly isacomplete ideal of L, and

© K<H|K.

a. K=f'l=f"g'E=H.

b L =L =L L =L,.

c.Let ae f_lg_lEZ H =K be fixed. Then gfacE,
facg™E = 1, Ha - Za/\vL_flL;nga and
Ka=ﬂa/\vL’f1Tfa= Ka/\vL’fl(gfa/\vL;nga)

Firstly, E s Lg -regular implies LE - Lg LB;
nga el cLjLy implies nga el Lg; so, by
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33.116), L, (vL; Egfa) = Egfa.
Since G is decreasing and E C C we nhave

Egfa <C gfa<L,Bfa Lnga=

pE— _l_ _ pE— — _ -
L,BfanL, (vl  Egfa)= L,BfanEgfa = Egfa,
implying I fae L;l Egfa which implies
L‘fll_fa c L}‘Lg‘nga which in turn implies v L}'Tfa
< v L}IL;nga or Ka:KaAvL}lea <
AaAv L L;nga - Ha.
(b): Let H,l and K be as in (a) above. Then it is enough to

show, when F is increasing and 0-p and when G'E is
L regular, that y < K or (1) HcK (2 L, isa
complete ideal of LK and (3) H < R| H.

(a): H = K asin (a) above.

(b): L, = L again as in (a) above.

(c):Let acH =K = f'g'E be fixed. Then gfa cE

, faeg™E =1, Ha - Ka/\vL’flL;nga and
Ka = Za/\vL'fITfa =
KaAvL}l(gfa/\vL;nga).

gfacE implies EgfacEE L. which implies
L 'Egfac 'L =L, cL;L,.since G'E = I'is
L; -regular.

Since L; is0-pand D = LEgfa < LL,.by
339, L (vL{ 'L, Egfa) = vL,'Egfa and
L, Ha = L, Aan L (vL'L, Egfa) -
sz‘a/\vL;nga < Efa/\vL;nga = Tfa,
where the last inequality is due to the fact that F is
increasing and hence L, A < Bf .

Again gfa e E implies fa e g™'E = | which implies
1faell cl,cLL,,since G'E=I isly -regular.
Since |fae L,L, and Lfﬁa < Tfa, as above by
3.3.2, we get that v L}‘Lfﬁa < v L}ITfa. But then
Hael,L,Ha implies Ha <vLjL,Ha <
Vv L‘fll_fa. Since always Ha < Ka, it follows that

Ha<Ka
(c): Clearly, the proof follows from (a) and (b).

The following example shows that a strict containment
inthe conclusion (a) may hold in the above proposition:
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Example 5.29: Let F: A—B and G:B—>C be

f'g"'E = {a}, Ly = L' = L' {0,a, 8,1} =
definedby A = ({a}, {(a.1)}, {0,a,,0,, . B,

1|O<ai'ﬂj <Ly < o, f< B o ”:Bj})vB
= ({b}, {(b,0)}, {0,, B, 1|0< @&, B<I;
allpy), C=({c} {(c,00},{0,1]0<1}), f=
{(a,b)}, g= {(b,0)}, Li=

{(010)9 (171)’(ai9a)a(ﬂi’ﬁ) | I = 132} > Lg =

{(0[,0), (an)a (1871)7(191)} and g = ({C}7 {C,O},
0,110<1}).

Then Lg = {0,1} = L, Ly implying E is L -regular;
Bfa - 0<L,Aa=1, implying F is decreasing and
Cgb=0=L,Bb, implying G is preserving.

Let (G,F))"E = H. Then H = (gf)'E
f1g7'E = {a}, Ly = (LL)'Le = L'
40,0, 81} = L, and Ha
Aaav(L,L)'Egfa = 1aa, = a,.

Let GJ'E =1.Then | = g7'E = {b}, L, = Lj'L¢
= Lgand Ib = BoavL,'Egb = 0rcr = 0.

Let Fgl| =K.Then K= f'l ={a} =H, L =
'L, = L'y = L, = L, and Ka = AaavL;Ifa

= 1IA0 = 0<e, = ﬁa, implying H > K or
HoK.

The following example shows that the condition on
GE is Lf -regular is not superfluous in (b) of the above
proposition:
Example 5.30: Let F: A—B and G:B—>C be
definedby: A = ({a}, {(a,a)},

{0,a,110<a<1}), 8= ({b}, {(b,B)},

{0,a,,110<a<p<1}), C=({c}, {(c,6)},
{0,0,1/10<6<1}) =E,

f ={@b)}, g={bo) L=
{(0,0), (@,@),(1,1)} and L=
10,0, (@), (8.9). (L)} .
ThenLiis 0-p, Bfa =p>a = L, Aa implies F is
increasing, Cgh = & = L, Bb implies G is preserving,
Lc={0,0,1} :LgLB, implying g is Lg -regular and
LyLe = {0,a,8,1} & {0,a,1} = L(L,, implying
G 'E isnot L; -regular.

Let (GpFi)flE =g Then H = (gf)'E =
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{0,a,1} = L, and Ha = AaavL/L/Egfa =
ana = a.

Let GBIE =L Then | = g"'E = {b}, L, = LfglLE
= {0,a,B,1} = Ly and Ib = BbavL/Egb =
BPAB =8

Let Fi_l| =K.Then K= f'l =f{a} =H, L =
'L, = L'{0,a, 8,1} = {0,a,1} =L,=L,, and Ka
=Aaavlilfa = anvg = an0 =0 < o =
ﬁa, implying H £ K or H C K or

(GpFi )71E & FiflG';lE .

The following example shows that the condition on E
that it is Lg -regular, is not superfluous in (c) of the above
proposition:

Example 5.31: Let F: A—>B and G:B—C be
defined by: A = ({a}, {(a,1)} ,

{0,a,8,110<a,p<1}),B=({b}, {(b,1)},

{0,110 <1}), C=({c}. {(c.1)} .
{0,6,110<5<1}), f = {(@b)}, g={(b,0)},

Li = {(0,0), (2,0), (B,1). (LD}, Ly = {(0,0),
(LD} andg= ({c}, {(c,0)}. {0,5]0<5}).
Then Bfa = 1 = L, Aa, implies F is preserving;
Cgb = 1 = L,Bb, implies G s preserving;
L = {0,6} & LyLg = {0,1}, implies E is not L-
regular and Lj'Le = {O}cLiL, = {0,1}. implies
G, E is L -regular.
Let (G,F,)"E = H. Then H = (gf)'E =
f'g"'E = {a}, L, = Li'LLe = L7(0) = {0,a}
and Ha = Ka/\vL}lL’glnga =1avg =1A0=0
Let GJE =1.Then | = g7'E = {b}, L, = L'Lg =
{0} and Ib = BoAvLEgb = 1avg = IA0 =0

Let F)'l = K. Then K = f7'l ={a} = H, L =
'L, = L'(0) = {0,a} = L, and Ka =
Ka/\vL‘f‘Tfa =lrha=a = 0= ﬁa,implying
(G,F,)'E = = K =F,'G,E.

F. More on f-Images and f-Inverse Images:
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In this section some more standard properties of the M
-f-images of L -f-subsets under an f-map and the L-f-
inverse images of M -f-subsets under an f-map are studied
in detail.

Lemmas6.1: For any 0-p f-map F: A —B and for any
L, -regular  f-subset H of B, always

F'HoF'(HNFA) holds. However, equality holds
whenever

(a) F is increasing, Lf is 1-p and L is complete infinite
meet distributive lattice (OR)

(b) F is decreasing and LB is complete infinite meet
distributive lattice.

Proof: (A) Since H is L -regular and HNFA c H,
by 4.5.6, F' is monotonic and so, F'(HNFA) <
F'(H).

B)Let F'H = C.Then C = f'H, L. = L}'L, and
Ca= AarvL'Hfa forall aeC.
Let FA =D.Then D= fA, L, = (LiLy),, and for

albeD, Db=Bb A vL,A(f'bA).
Let HND =E.Then E = HND, Lz = L, Nl
and Eb = ﬁb/\ﬁb forall e E.
Let F'E=G.Then G = f'E, Ly = L;'L; and Ga
= ManvL'Efa forall a€G.
We show that C = G or (1) C=G () L. =L, (3
E = 6 when
(a) F is increasing, Lf is 1-p and LB is complete infinite
meet distributive lattice
(OR)
(b) F is decreasing and LB is complete infinite meet
distributive lattice.
@: C=f"H=fFf"HNfA) = f'(HAD) =
f'E=G.
(b): By 3.23(3), L, = [0, B8] for some Sely. By
3.4.6(3), since (i) F and hence Lf is 0-p
(ii) H is L; -regular and hence S el < L;L,, we get
that L, = L;'L, = L;'[0,8] = [0,vL;'B].

Since (LL A)LB is a complete ideal in Ly, the above

implies [0, ] < (L, LA)LB which implies

Ly Nlp = [O’ﬁ]m(LfLA)LB =[0,8] = Ly and Lg
= L_flLE - L_fl(LH Nlp) = L_flLH = L.

(c): Let a€G = f'E = C=f"'H be fixed. Then
faecHNE.
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(2): Let F be decreasing. Then Bf <L, A. Further, for
al cef'fanA, L,Ac > Bfc - Bfa or
VL, A(f'fanA) > AL A(f 'fanA) > Bfa,
implying Dfa = BfaavL,A(f 'fanA) - Bfa
which in tum implies Ga = AaavL'Efa =
Ka/\vL_fl(ﬁfa/\Bfa) = Ka/\vL_fl(ﬁfa/\Efa)
= A /\\/L}lﬁfa - Ca, because E = HAD and
H <B. B B
(b): Let F be increasing. Then Bf >L,A. For all
cef'fanA, L Ac<Bfc - Bfa o
vL, A(f'fanA) < Bfa implying Dfa -
BfaavL, A(f'fanA) = vL A(f'fanA).
Therefore Efa = HfasDfa -
HfaavL, A(f'fanA).

Next, since (i) H is L;-regular and hence
Hfael, cL,L,

(i) vL A(f'fanA)
f'fan A# ¢ and

(iii) Ly is 1-p, by 3.3.15, VL' (Hfa AV LAA(f  fan
A)=vL'Hfa A vL'(vL, A(f ' fan A)).

Further, since v L, A(f'fanA)el,L, as
f'fanA=g¢ and vL A(f'fanA) > L Aa,
by 332, v L (vL, A(f "fan A) > vL/(L, Aa)

el,L, as

> Ka, where the last inequality is due to the fact that
AaeL;'(L, Aa).
C_onsequent from the above,

Ga = AanvL'Efa=
AaavLl (HfaavL, A(f ' fan A))
= Aan(vLHfaavL ' (vL, A(f " fan A))
(AaAvLl(vL, A(f'fanA))AvLHfa =
Ka/\vL’flﬁfa - Ca.

The followingexample showsthat theabove Proposition

is not true if F is decreasing, LB is complete infinite meet
distributive lattice but H is not L; -regular:
Example 6.2: Let F: A —>B be defined by: A =

({ah{(@D}, {a,a,B.1| 0<a< g<1}),
B =
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({b},{(0, £)}.{0,, B,y,110<a < B,y <L; B })
, T =1{(a,b)} and

L = {(0,0), (@, @),(B, ), (1,1)} . Let H =
({b}, {0, )}, {0, 2,7 | 0<a<y}).
Then L, is one-one, 0-p and 1-p. L, = {0,a,y} &

L;L, = {0,a,p,1} implies H is not L; -regular and
Bfa - p <1l= sza implies F is decreasing.

Let F;'H = C. Then C ={a}, L. = {0,c} and Ca =
AaavLHfa=1avg =1A0=0.

Let F;A =D.Then D = {b}, L, = (LfL,_\)l_B = Ly
and Db = BoAvL, A(f 'bnA) = SAl= 3.

Let HAD = E.Then E = HAD = {b}, L
L,NL, = LynLy = L, and Eb = HbADb -
yAp = a.

Let F;'E=G.Then G= f'E = {a}, Lo =L}'L; =
{0,} and Ga - Za/\vL?Efa =lAha=a =0
- Ca, implying G#C or F'(HAB) = F'(H).

The following example shows that the above Proposition

is not true if F is increasing, Lf is 1-p and LB is complete
infinite meet distributive lattice but H is not L -regular:

Example 6.3: Let F: A —B be defined by: A = ({a},
{@p)y, {0,a,p,1] 0<a<p<l}),

B= ({b}. {(b,D)},
0,,8,7,1|10<a<p,y<LBl7r}),

f = {(a,b)} and

L = {(0,0). (a,@), (B,8). (1,1)} . Let H = ({b},
b7}, {0,a,y10<a<y}).

Then LB is complete infinite meet distributive lattice,
Lf is 1-p LH = {0,a,7} € LfLA = {0,a,8,1},
implies H is not Lf -regular and Efa =1=L, Ka =p
, implies F is increasing.

Let F'H = C. Then C=f"H = {a}, L. =
'L, = {(0,&z)} and Ca = AaavL,/Hfa -
BArveg=A0=0.

Let FA = D. Then D=fA = (b}, L, =
(LiLy),, = Lgand Db = BbAvL A(f b A) =
Inpg=p.

Let HAND = E. Then E = HND = ({b},
Le=L,nLy, =L, nLy =L, and
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Eb- HbADb = yA B - «.
Let Fi_lE = G.Then G = f'E = {a}, L, =
L/'Le = {0,a} and Ga - AaAvL'Efa = fra

az 0 = Ca , implying GgC or
F'HAB)=F'(H).

Lemma 6.4:For any 0-p F:A—B and for any Lf -regular
f-subset Y of B, we have

Sl - 4

FRREY-RY holds whenever * =i ord or p.
Proof: Let F'Y = C. Then C = f7Y, L, =

L;'L, and Ca = AaavL;Yfa forall a€C.

Let FC =D .Then D = fC, L = (LfLC)LB and for

albeD, Db=Bb A vL,C(f'bnC).

Let F'D =E.Then E = f'D, L = L{'Ly and
Ea = AarvL;Dfa forall a€E.

We show that E = C or (1) E=C (2) Ly = L. and (3)

E-C.
@@ E=f'D=f"fC=f"'ff'B=f'B=C,
since f'ff'B = f'B.
(b): By 3.23(3), L, = [0, B8] for some S € Ly. Since (i)
F and hence L; is 0-p and
(i) Y is L;-regular and hence fel, cL;L,, by
3.4.60), L. = L{'L, = L{'[0,8] = [0,vL{'B].
From 34.32), Lp = (L Lc) = (Lf[O,vL‘fl,[i’])LB =
[0,L, (vL{B)] = [0, 8] = L, , where the last but one
equality follows from 3.3.11(3), since Y is Lf -regular and
hence fel, cLL,.

So from the above, Ly = L;'Ly = L}'L, = L.
(c): Let acE = f'D =C = 'Y be fixed. Then
faecYND.
(a): Let F be increasing. Then Bf > L, A.

-1
CcRRC_E for all CcA

Since when * = | or

P , we have C<E . Therefore it is enough to show that
E<C.
But since EQ = Aan vL‘flﬁfa and Ca =
Aanv L}IVfa , it is enough to show that
v L}IBfa < v LYY fa.
Let ce f'fanC. Then C€C and fc= fa.
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Yic -
33.11(3),

Further, since Y is Lf -regular,

Yfae L, cL{L, and hence by
L, (vL'Yfc)= Yfc - Yfa.

Now L,Cc = L,(AcavL]'Yfc) = L Ac &

L, (vL'Yfc) = L, AcaYfc < Yfc - Yfa,
implying v L, C(f'fanc) < Yfa.
Therefore Dfa - BfaavL,C(f 'fanC) <
BfanYfa=Yfa, because Y B.

Now, again Y is L -regular and hence Y fae L, L,
and Dfa<Yfa imply, by 332, vL'Dfa <
v L7'Y fa, as required.

(b): Let F be decreasing. Then Bf < L, A. Since
YcB, Yf<Bf <L,A. Therefore for any C€C,
L,Cc = L,AcaL,(vLi'Yfe) = L,AcAYfc =
Yfc=Yfa, because (i) Y is L -regular and hence
Yfcel, < L,L, and (ii) by 3.3.113), L, (vL;'Y fc)
— Yfc. I paticular, vL,C(f'fanC) -

Lf Cc = vCEf_l o Yfc = Yfa, implying

cef anc fa

Dfa - BfaavL,C(f'fanC) = BfanYfa -
Y fa, because Y =B andhence Y <B|Y .

Now clearly Ea - Ka/\vL'fIBfa = Ka/\vL?Vfa
- Ca.

The following example shows that the above proposition

is not true if Y isnot L -regular:

Example 6.5: Let F: A—>B be defined by: A =
({a},{(a, 1}, {0, ,1{0 <a <1}),

B=({b},{(b,D},{0,B,110< g <1}), f={(ab)}
’ Lf = {(050)3 (a90)3(191)} :
Let Y = ({b},{(b,$)}.{0,8|0<5}).

Then L, = {0, 8} & L¢L, = {0,1}, implying Y
is not L -regular and Efa =1= Lfﬂa, implying F is
preserving.

Let F'Y =C.C=f"Y = {a}. L. = L{'L, = {0}
and Ca = AaavL,Yfa=1avg = 1A0=0.
Let FpC =D.Then D= fC = {b}, L = (LfLC)LB

~ {0} and Db = BoAvL,C(f'bNC) =
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IA0=0.
Let F;D =E.Then E = f'D=¢{a} =C, L =
L'Ly = {0,a} D L. andso F;FpF’;IY =E =
C F;IY.In fact, also, Ea - Ka/\vL}‘Efa = 1lra
=a >0= Ea,implying Eia or

-l -1 -1
F'FF'Y=E = C=F'Y.

Definition 6.6: For any F: A—B and for any f -
subset C of A, C is said to be L -coregular iff
BfCcL,L,.

Proposition 6.7: For any 0-p F:A->B and for any
C FF'RC _

Lf -coregular f -subset of A, we have

FC holds whenever * =i or d or p.
Proof: Let FC = D. Then D = fC, L, =

(LiLo),, and Db = BoavL,C(f'bNC) for all
beD.

Let F'D = E. Then E = f°'D, L = LfflLD and
Ea = AarvL,Dfa forall a€E.

Let FE=G. Then G= fE, Ls=(L;L¢),, and Gb
= BbavL,E(f 'bNE) forall beG.

we show that D = G or (1) D=G (2) L, =Lg and
3) D=G.
(@: G= fE = ff'D = ff 'fC = fC = D.
(b): By 3.233), L. = [0,a] for some ael,. By
3432). Lp = (LiLo)y, = (L¢[0,a]) =[0,L;a].
By 3.4.6(3), since F and hence L; is 0-p and
LiaeliL,, Lt = L’flLD = L’fl[O,Lfa] =
[0,v L’fl L;a].
Againsince Ly e L;L, by3.4.3(2)and 3.3.11(3), L,
= (L), = &0, viilLe), =
[0,L, (vLiLi@)]=[0,Lia] = Ly
(c): Let beG (= fE = fC = D) be fixed. Then
f'bNC#¢ and T 'ONE=¢.
(a) Let F be decreasing. Then Bf < fo. Since DB,
D<B|D andhence Df <Bf <L, A.
Since (i) L,C(f'bnC)cL,CCcL,L.cL,L,
(i) Boe BfC < L, L, because C is L, -coregular and
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Gii) L L, is a complete sub lattice, we gt that Db =
BbAavL,C(f'bnC) e L;L,. Consequently,
by 3.3.11(3), L, (vL;'Db) = Db.

Now for all ee f'bNE, fe=b and from the
definition of E€ above, L, Ee = L, (AeAvL, Dfe)
= L, Aenl,(vL;'Dfe) = L, AenDfe =

Dfe= DO, where the last but one equality follows

because of F being decreasing.
Therefore, v L E(f b E)=v

eef lbnE L Ee B

Vv Dfe = v Db = Db.

et TbrE et lorE
On the other hand, Gb=Bb A vL, E(f 'bNE)
BoADb = Db, since D < B and hence BSE| D.

(b): Let F be increasing. Then For any increasing f-map, by
558, CcF'FC for al CcA. So, by 553,

monotonicity of F, implies D = F.C c F.F,'F.C = G.

Hence it is enough to show that 635

For all ec f'bnE,fe=b,
fee fC(D=G=fE) and as in (a) above,
Dfeel,L, and L,(vL,'Dfe)=Dfe=Db.
Now EeSvL_lefe for all ee f 'bNE, implying
L, Ee<L,(vL;'Dfe) - Dfe- Db and
Gb= BbAvL,E(f'bNE) < vL,E(f'bNE)
=V LfEe < Dbor GSD.

ecfIbnE
The following example shows that the above proposition

is not true if C isnot Lf -coregular but F is 0-p.

Example 6.8: Let F: A—B be defined by: A =
({a},{(a,1)},{0,110<1}),
B = ({b},{(b,2)},{0,2,1|0<a <1}) and F =

({(a,b)}, {(0,0), (1,1)})_-

Then o = Bb = Bfa < L, Aa = L1 = 1,
implying F is 0-p and decreasing, and BfC ¢ L,L,,
implying C is not L; -coregular.

Letting C=A and D =F,C, we get that Db = Bb
AvLC(f'bnC)=anl=q.

Letting E=F;'D, we get that Ea = Aa A v L, 'Dfa
= 1Avg = 1n0=0.
Letting G=F,E, we get that Gb - Bb A

VLfE(fflbf'\E) -Bb A0 = 0, implying
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FF'FC ¢ F,C.

Proposition 6.9: Forany increasing f-map F:A —B
and for any pair of f-subsets C of A and D of B,
FC < D implies CZF'D whenever D is L; -regular.

Proof: Let FC = E. Then E = fC, L =
(LiLc),, and Eb = BoavL,C(f'bNC) foral
beE.

Let F'D=G.Then G= f'D, L, = L', and
Ga = AaavL;Dfa forall a€G.

Since ECD, Ec D, L; is a complete ideal of L
and E<DJE.

We show that Cc G or (1) CcG (2) L. is a
complete ideal of Ly, and 3) C<G|C.

(a):Since fCcDiff Cc f'D,Ccf'D=0G.
(b): Since L is a complete ideal of Lp,
LiLc Q(Lch)LB =L c Ly So, L¢ QL}ILD =
L.

Since Ly and L are complete ideals of L, it follows
from L, < Lg that L is a complete ideal of L .

(©): Let a€C be fixed. Then faec fC=E. Ga =
Ka/\vL}‘Bfa .Since Aa>Ca to show ES6|C,
it is enough to show that v L' D fa > Ca .

Since ) aef'fanC,
L,Ca<vL,C(f'fanC) and (i) E<D|E, we get
that Bfaanl,Ca<BfarvL,C(f'fanC) =
Efa < Dfa.

Since CcA  and F s
L,Ca<L,Aa<Bfa which implies L,Ca =

increasing,

Bfan LfEaSBfa,fromthe above.
Since (i) Dfae Lo cLL, as D is L -regular (ii)
L,Ca<Dfa, by 332, Ca < vL/LCa <

v L}‘Bfa as required.
The following example shows that the above proposition

is not true if D is not Lf -regular but F is increasing:

Example 6.10: Let F: A —>B be defined by: A =
({a},{(a,D},{0,a,1| 0<a<l}),B=

({b}a{(bal)}a {09 ﬂ)l | 0< ﬂ < 1}) ) f= {(a,b)} and
L, = {(0,0), («,0), (1,1)} . Let C =
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({a},{(a,2)},{0,a [0 <a}) and D = ({b},
{(b,)}, {0,810<p5}).

Then Ly = {0, 8} & {0,1} = L;L,, implying D
is not L; -regular, Bfa - 1 = sza, implies F is
preserving.

Let F,C = E.Then E = fC = {b} = D, L¢ =
(LfLC)LB ={0}cLp =1{0,B} and
Eb = BbavL,C(f'bnC) = In0 = 0<Db
B, implying FC = D.

Let F'D=G.Then G= f'D ={a} =C, L =

'L, = {0,a} = L. but Ga = AaavL,Dfa =
Invg =1A0=0 < o = Ea,implying Eaﬁ_@a
o C ¢ F'D.

The following example showsthat the above proposition

is not true if F is decreasing but D is L, -regular:

Example 6.11: Let F: A —B be defined by: A =

({a},{(a,1)},{0,a, 5,

yll0<a<p,y<Lplr}),B=

({b}.{(b, )}, {0, ., B, 7. 1|0 <a < B,y <1; B[ })

, f = {(@a,b)landl; =

{(0,0), (@, @), (B, ), (7,7),(1,1)} . Let C =

({a},{(a,7)},Ly) and D = ({b},{(b, )}, L)
Then Efa = p<l= Lfﬁa, implying F is

decreasing and Ly = Ly = L¢L,, implying D is L;-

regular.

Let F;,C = E. Then E = fC = {b} = D, Lg =

(LfLC)LB - (LfLA)LB =Lg=Lpand
Eb = BbAavL,C(f 'bNC) = fAry = « = Db,
implying F,C =E =D.

Let ' D=G. Then G= f'D=1{a} =C, L =
'L, = 'Ly, = L, and Ga = AaavL,Dfa =
Ina=a % y-= Ea,implying Cz G=FD.

Proposition 6.12: For any f-map F:A—B and for
any pair of f-subsets C of A and D of B, CcF'D
implies FC < D, whenever F is 0-por D is L; -regular.

Proof: Let FC = E. Then E = fC, L. =
(LiLc),, and Eb = BoavL,C(f'bAC) forall
beE.

Let F'D = G.Then G = f'D, Ls = L}ILD and
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Ga = AaavL,Dfa forall a€G.

Since Cc G, we have C <G, Lc is a complete
ideal of Ly and ESE|C.

We show that ECD or (1) EcD (2) L is a
complete ideal of L and (3) E S5| E.
(@ CcG = f'D implies fC < D which implies
EcD.

(b): Since L, c Ly = Li'Ly, Lile <Ly and Ly is
a complete ideal of Ly implies Lz = (L, L), < L.
Since Ly and L, are complete ideals of Ly such that
Lc L, we get that L is a complete ideal of L.

(3): Let beE = FC be fixed. For any
acf'bnC, aeCand b=faecfC=D.

Since (i) Fand hence L; is 0-pby 3.3.11(4),

L, (vL;'Dfa) < Dfa or

(i) D is Ly-regular, so Ly = L(L, and hence
Dfael, cL,L,, by 33.113), L,(vL;'Dfa) =
Dfa.

Butas CC G, C<G|C and this implies L,C <
L,G and hence from the above, L,Ca < L, Ga =
L,(AaavLl;Dfa) = L,AanL,(vL;'Dfa) <
L, AanDfa < Dfa - Db forall ac f 'bnC,
implying vL,C(f 'bnC) < Db and Eb -
BoavL,C(f'bnC) < vL,C(f'bnC) <
Db, implying E<D or FC=E c D.

The following example shows that the above

proposition is not true if both F is not 0-p and D is not Lf

-regular:
Example 6.13: Let F: A —>B be defined by: A =
(ta},{(a,D},{0,,1| 0<a<l1}),B=

({b}, {(b, )}, {0, B,y,1]0< B <y <1}, f=
{(a,b)}and Ly = {(0,7),(a, ), (1,1} .

Let C=({a},{(a,0)},{0,a|0<a}),D =
({b}, {(b, £)}.{0, B,y [0< B <y}).

Then F is not 0-p, Ly = {0,8,7} &€ {1} =
L;L, implying, D is not L; -regular and §fa =1=
foa implying F is preserving.

Let F;D =G . Then G= f'D={a} =C, L, =
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/'Ly = {0,a} = L and Ga - Aanvl;Dfa =
Iavg =1A0=0=Caor C=-G=F'D.

Let F.C = E. Then E = fC = {b} = D, L =
(Lile)y,
BbAvL,C(f'bnc)=1ay =y > B = Dbor

FC=E >DoaFC D.

Lemma 6.14: For any f-map F:X—>Y and for any
f-subset A of X, A =D iff FA = O.

Proof: (=): A = @ implies A=¢, L, =¢ and
K=¢. FA = C implies C = fA= fgp = ¢,
L. = (LfLA)LB =¢ and EQCXLC = ¢, implying
FA =C=0.

(&): FA = C = ® implies, C = fA=¢ which
implies A=¢, since fA=¢ iff A=¢;
LiLa < (L LA)LB =L.=¢, implying LiL,=¢

{0,8,77 = Ly and Eb =

which implies L, = ¢ and Z\g AxL, =¢x¢@ implies
A=gor A=0.

Corollary 6.15: Forany 1-pf-map F: X—Y and
forany nonempty family (A,),_, of f-subsets of X,
.

o) FA; = © implies N,_, A = D.

Proof: It follows from the above Lemma and 5.5.21.
Lemma 6.16: Forany fmap F: X—>Y, F'®d = ®@.
Proof: Flg=C impliess C=f""g=4¢,
L. = L}l¢=¢ and EQCX L. =@dx¢@=4¢, implying
F'g=C=(g.0.9)=¢.
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