
Volume 2, No. 4, July-August 2011

International Journal of Advanced Research in Computer Science

REVIEW ARTICLE

Available Online at www.ijarcs.info

© 2010, IJARCS All Rights Reserved 19

ISSN No. 0976-5697

A Survey on the Existing Safety Patterns in Software Security

Salar Azimi Haredasht*
Department of Computer Engineering

Islamic Azad University, Qazvin Branch
Qazvin, Iran

Salar.azimi1@gmail.com

Hassan rashidi
Department of Computer Engineering

Islamic Azad University, Qazvin Branch
Qazvin, Iran

hrashi@gmail.com

Abstract: Security is one of the basic aims in software development. To discover safety problems, the software developers must consider the
security control management in software life-cycle. Considering the security foundation in design process software reduces maintenance costs
and achieving takes conveniently and quickly. Meanwhile designing safe patterns and implementation of software in the basis of them is very
important. With combination of existing safety patterns, new pattern can be created with high security feature. In this paper the final cost of
software security is shown in software life-cycle and features of safety patterns are discussed. Also security and designing of safety patterns are
examined, advantages and disadvantages of the patterns are analyzed.

Keywords: system requirements; security engineering; software life-cycle; security pattern.

I. INTRODUCTION

For the last 30 years, due to increasing production
software and growing software size, security has been one of
the main challenge in developing software [1]. With genesis
network, web and web-based software pay attention to
software security has found very importance. Whatever
access to software is wider accordingly, its vulnerability
against attacks is more. Attention to web-based software
security due to their accessible is in the first priority. With
the Moore s Law, computing processing power doubles
every eighteen months, and as a consequence, software size
and complexity grow rapidly to consume all available
memory and processing power. In section 2 of this paper,
security engineering are described. In section 3, security
pattern for software security are presented. Section 4 shows
the strengths and weaknesses of each model and section 5
contains conclusions.

II. SECURITY ENGINEERING

Security engineering is mandatory part of software
engineering that by using of tools, process and techniques
keeps system reliable against errors and abuse. Because of
the security importance in developing software of major
projects, security engineering must be separated from system
analyst and programming group. Also security engineering
focuses on the tools and methods needed to design,
implement and test complete systems, and to adapt existing
systems are their environment evolves [2]. Software
engineering has been relatively successful in programming in
the large, producing large software effectively, but it has
been so successful in producing secure software.

A. System Requiremenrs
A system requirement is divided in two main parts:

functional requirements (FRs) and non-functional
requirements (NFRs). Prior is depending of programming
language that really determine which part of software must
be run [5]. Second consist of internal system requirements
such as reliability maintainability, performance, reusability,
security and so on. In short, FRs determines which piece of

software should be implemented but NFRs describe how that
software should perform those tasks. Software developers not
enough attention to NFRs. One reason for this is that product
development by necessity must optimize the use of limited
resources such as time, funds, personnel, etc.

B. Software Life-Cycle
Software security needs to be considered from beginning

of software development life-cycle because adjourn the
security consideration after the production software makes
more resolving the cost of software errors. Therefore based
on published research by B.Boehm and V.Basili (IEEE
2005), to resolve an error after installing it, is hundred times
more than when that error discover and resolve in early the
developed it, figure 1. About security errors this digit will go
higher because in addition to cost of resolving error, to atone
due to abuse of this security flaw in order to sabotage, steal
information and other attacks, software developers are
responsible.

Figure: 1 Final cost of software security

Salar Azimi Haredasht et al, International Journal of Advanced Research in Computer Science, 2 (4), July-August, 2011,19-23

© 2010, IJARCS All Rights Reserved 20

III. EXISTING SECURITY PATTERNS

Information systems security have been broadly
considered by researchers and it has strong link with
software industry. Recent researches show that a main source
attack to software security properties arises from the
weakness of developing software. Generally software is
designed and developed without security being in the mind
of the developers. Through practical examples from attacks
to businesses and universities, it has been shown that almost
all security related attacks in fact take advantage of so-called
software holes.(software holes are part of software written in
such away that they can be exploited to perform an attack.) in
this paper existing and popular security patterns are
evaluated. How security design patterns lead software
without holes and how one good system software uses one
suitable security pattern that be able to respond each possible
attacks.

A. A Short Review of Existing Security Patterns
In field of software security patterns, first of all, Yoder

and Baralow represent several security patterns in 1997, but
their research has not clear and precise definition [6]. Each
presented papers refer to security patterns in different
perspective. For example, security patterns as basic elements
of security system architecture [8], security patterns for
cryptographic software and security patterns for agent
systems [3]. All researchers have a coordinated effort for
providing a comprehensive list of safety patterns available
with the application of each patterns. Safety patterns idea
fully released different with design pattern in 2004 by a
group.

B. Software Security Patterns
The intent of the Checkpointed System pattern is to

structure a system so that its state can be recovered and
restored to a known valid state, in case a component fails.
Figure 2 illustrates class diagram of the checkpoint system
pattern. The Checkpointed System pattern offers protection
from loss or corruption of state information in case a
component fails. The Recovery Proxy shown in the diagram
consists of one or more Mementos. It periodically checks the
Recoverable Component’s state and if it has changed from
the last check, it initiates the creation of a Memento with the
new state. Furthermore, the Recovery Proxy can detect
failures. If a failure is detected, it initiates state recovery by
instructing Recoverable Component to restore state from
Memento[7]. If a failure is detected, it initiates state recovery
by instructing Recoverable Component to restore state from
Memento. From the function of the Checkpointed System
pattern it can be concluded that if we use multiple
Mementos, we can counterbalance the failure of a Memento
itself. The intent of the Standby pattern is to structure a
system so that the service provided by one component can be
resumed from a different component. Figure 3 illustrates
class diagram of the Standby pattern. The Standby pattern
can be used in cases where failed components may not be
recoverable but a similar or identical backup component is
available. We can easily conclude that this security pattern
can be used in cases where loss of a small number of
transactions is allowed, since it takes some time until the
Standby Component restores the saved state and is activated.
The Standby pattern can be used in cases where failed
components may not be recoverable but a similar or identical
backup component is available.

Figure: 2 Class diagram of checkpointed system pattern

Figure: 3 Class diagram of the Standby pattern.

The Recovery Proxy does also in this case periodical
checks of the Recoverable Component’s state and if it has
changed from the last check, it initiates the creation of a
Memento with the new state. If the Recovery Proxy detects a
failure, it activates the Standby Component, which restores
state from a Memento. From this point on all requests are
routed to the Standby Component. We can easily conclude
that this security pattern can be used in cases where loss of a
small number of transactions is allowed, since it takes some
time until the Standby Component restores the saved state
and is activated. The intent of the Comparator-Checked Fault
Tolerant System pattern is to structure a system, so that an
independent failure of one component (i.e. a failure of a
component that does not affect other components at all) will
be detected quickly and so that an independent single-
component failure will not cause a system failure. Figure 4
illustrates class diagram of the Comparator-Checked Fault
Tolerant System pattern. The use of this pattern is more
effective compared to the Checkpointed System pattern and
the Standby pattern since it supports detection of faults,
which have not caused a failure yet[7]. The intent of the
Error Detection/Correction pattern is to add redundancy to
data to facilitate later detection of and recovery of errors.
Figure 5 illustrates a class diagram for this pattern. The Error
Control Proxy adds redundancy to the data provided by the
Client. These data that include redundancy are saved to

Salar Azimi Haredasht et al, International Journal of Advanced Research in Computer Science, 2 (4), July-August, 2011,19-23

© 2010, IJARCS All Rights Reserved 21

Redundant Media/Link. If the Client does a read request, the
Error Control Proxy forwards this request to the Redundant
Media/Link and after the data are read it checks their
integrity. If a problem occurs, the Error Control Proxy may
repair the integrity of the data before they are returned to the
Client. If this is not possible the Error Control Proxy notifies
the Client of the Problem.

Figure 4. Class diagram of the comparator-cheched fault tolerant system

patter.

Figure 5. Class diagram of the error detection/correction pattern

The intent of the Protected System pattern is to structure
a system so that all access by clients is mediated by a guard
that enforces a security policy. Figure 6 illustrates class
diagram of this pattern. The Guard controls access requests
to resources according to a predefined policy. Of course the
Guard itself must be robust to malicious code attacks. The
intent of the Policy pattern is to isolate policy enforcement to
a discrete component of an information system and to ensure
that policy enforcement activities are performed in the proper
sequence [10]. Figure 7 illustrates class diagram of this
pattern. The way it works is that Policy enforces rules that
are to be applied by the Guard for possible authentication.

The first step of the function of this pattern is the
authentication of the Client. If this step is successful,
Security Context attributes are set. After that, the Security
Context is read from the guard and the guard requests a

policy decision according to the rules. The intent of the
Authenticator pattern is to perform authentication of a
requesting process, before deciding access to distributed
objects. Figure 8 illustrates a class diagram for this pattern. If
the authentication process performed by the Authenticator is
successful, the Authenticator forwards a request for the
creation of a Remote Object to the Object Factory [9].

Figure 6. Class diagram of the protected system pattern

The intent of the Secure Communication pattern is to
ensure that mutual security policy objectives are met, when
there is a need for two parties to communicate in the
presence of threats. The Secure Communication pattern
protects the communication channel. Figure 9 illustrates class
diagram of this pattern. The Communication Protection
Proxy acts as an inline proxy that controls traffic, i.e. it
checks any message the Communicating Party wishes to
deliver, before it reaches the Communications Channel. If the
sender wants to send a message, the Communication
Protection Proxy of the sender applies appropriate protection
to the message. Then it uses the Communications Channel to
transmit the message to the Communication Protection Proxy
of the receiving Communicating Party, which verifies
protection. If verification is successful the message is
delivered to the receiver. Through the use of cryptography,
data origin authentication and promotion of data integrity and
confidentiality are possible.

Figure 7. Class diagram of the policy pattern

Salar Azimi Haredasht et al, International Journal of Advanced Research in Computer Science, 2 (4), July-August, 2011,19-23

© 2010, IJARCS All Rights Reserved 22

Figure 8. Class diagram of the authenticator pattern

The intent of the Secure Proxy pattern is to define the
relationship between the guards of two instances of Protected
System, in the case when one instance is entirely contained
within the other. Figure 10 shows a class diagram of this
pattern. The first guard checks the request of the Client,
according to some of the rules enforced by Policy. If the first
check is successful, the second guard checks the request
according to the rest of the rules. If the second check is
successful, access to the resources is allowed. The guards
may also check both on all the rules enforced by Policy, in
order to achieve increased protection in case a problem in the
first guard occurs.

Figure 9. Class diagram of the secure communication pattern

Figure 10. Class diagram of the secure proxy pattern

IV. STRENGTHS AND WEAKNESSES OF SAFTY
PATTERNS

In this section strengths and weaknesses of security
patterns are investigated and represented in table 1. Main
properties of an security pattern are error detection and repair
capabilities, data redundancy, speed and implementation.

Table I. strengths of the safty patterns
Security pattern

strengths

checkpoint In failed state it transfers system to the
valid case.
It is Easy to implementation.

standby In failed state it was down by same and
similar component.

Comparator-
checked
Fault tolerant

It recognizes errors that still leading to
failure yet.

Error detection /
correction

It recognizes next errors and repair them.

Protected Its reliability and security is high.
Security policy is run by guard.

Policy Guard and confirming validity implement
the security rules.
Its reliability is high.

Authenticator Authentication of request process is down
before accessing to resources.

Secure
communication

Development of health data is possible.

Secure proxy Its speed operation is higher.
If not successful review by the request
access of first guard to resources is
canceled.

Table II. weaknesses of the safty patterns
Security pattern

weaknesses

checkpoint It recognize errors that still happened yet.

standby It has data redundancy.
There should be a similar component.

Comparator- checked
Fault tolerant

Its implementation is easier than the tow
above patterns.

Error detection /
correction

It has data redundancy.

Protected Guard must be robust against attacks.
Policy Guard must be robust against attacks.

Its implementation is complex.
Authenticator Its reliability and security is low.

Secure
communication

It has data redundancy.

Secure proxy Its implementation is complex.

V. CONCLUSION

Generally, software security first of all depends on
security patterns with high security feature. Pattern is suitable
that have high error detection and repair capabilities,
minimum data redundancy and easy implementation.
Meanwhile speed of security pattern is an important factor.
To secure one software system a good combination of safety
patterns with high security is required when system is
designed. In web-based software due to their extensive
access, security is important to note. Also it must be

Salar Azimi Haredasht et al, International Journal of Advanced Research in Computer Science, 2 (4), July-August, 2011,19-23

© 2010, IJARCS All Rights Reserved 23

considered in the software life-cycle. In the design process
reasonable protection against attacks must be considered.

VI. REFERENCES

[1] Andy Ju An Wang “Security Testing in Software
Engineering Courses”, Department of Software
Engineering School of Computing and Software
Engineering Southern Polytechnic State University
Marietta,, October 20 – 23, IEEE, 2004

[2] Anderson, R.,” Security Engineering: A Guide to
Building Dependable Distributed Systems”, Wiley
2001.

[3] Devanbu, P. T.; S. Stubblebine, “Software Engineering
for Security”: a roadmap, proceeding of the Conference
on The Future of Software Engineering, p 227-239
ACM, Vol 46, Issue 6, p 75-78, ACM Press, 2003.

[4] Kienzle D, Elder M. "Security patterns for web
application development', University of Virginia
technical report; 2002.

[5] Mouratidis H, Giorgini P, Schumacher M. Security
patterns for agent systems. In: Proceedings of the eighth

European conference on pattern languages of programs
(EuroPLoP 03); 2003.

[6] Yoder J, Barcalow J. "Architectural patterns for
enabling application security ". In: Proceedings of the
4th conference on pattern languages of programming
(PLoP ’97), 1997.

[7] Spyris T. Halkidis, Alexander Chatzigeorgiou, George
Stephanidis,” A qualitative analysis of software security
patterns”, Department of applied informatics, university
of Macedonia, Egnatia 156, GR-54006 Thessaloniki,
Greece, Elsivier ltd,2006

[8] Ramachandran J, John Wiley and Sons, "Designing
security architecture solutions', 2002.

[9] Lee Brown, F, Di Vietri J, Diaz de Villegas G,
Fernandez E. Theauthenticator pattern. In: Proceedings
of the Sixth conferenceon pattern languages of
programming (PLoP ’99); 1999.

[10] Mahmoud Q. Security policy: a design pattern for
mobile Javacode. n: Proceedings of the seventh
conference on patternlanguages of programming (PLoP
’00); 2000.

	INTRODUCTION
	SECURITY ENGINEERING
	System Requiremenrs
	Software Life-Cycle

	EXISTING SECURITY PATTERNS
	Software Security Patterns

	STRENGTHS AND WEAKNESSES OF SAFTY PATTERNS
	CONCLUSION
	REFERENCES

